Tag Archives: cancer

Observing nanoparticle therapeutics interact with blood in real time

Sadly, there are no images showing nanoparticle therapeutics interacting with blood or anything else for that matter to illustrate this story but perhaps the insights offered should suffice. From Sept. 15, 2015 news item on Nanowerk,

Researchers at the National University of Singapore (NUS) have developed a technique to observe, in real time, how individual blood components interact and modify advanced nanoparticle therapeutics. The method, developed by an interdisciplinary team consisting clinician-scientist Assistant Professor Chester Lee Drum of the Department of Medicine at the NUS Yong Loo Lin School of Medicine, Professor T. Venky Venkatesan, Director of NUS Nanoscience and Nanotechnology Institute, and Assistant Professor James Kah of the Department of Biomedical Engineering at the NUS Faculty of Engineering, helps guide the design of future nanoparticles to interact in concert with human blood components, thus avoiding unwanted side effects.

A Sept. 15, 2015 NUS press release, which originated the news item, describes the research in more specific detail,

With their small size and multiple functionalities, nanoparticles have attracted intense attention as both diagnostic and drug delivery systems. However, within minutes of being delivered into the bloodstream, nanoparticles are covered with a shell of serum proteins, also known as a protein ‘corona’.

“The binding of serum proteins can profoundly change the behaviour of nanoparticles, at times leading to rapid clearance by the body and a diminished clinical outcome,” said Asst Prof Kah.

Existing methods such as mass spectroscopy and diffusional radius estimation, although useful for studying important nanoparticle parameters, are unable to provide detailed, real-time binding kinetics.

Novel method to understand nano-bio interactions

The NUS team, together with external collaborator Professor Bo Liedberg from the Nanyang Technological University, showed highly reproducible kinetics for the binding between gold nanoparticles and the four most common serum proteins: human serum albumin, fibrinogen, apolipoprotein A-1, and polyclonal IgG.

“What was remarkable about this project was the initiative taken by Abhijeet Patra, my graduate student from NUS Graduate School for Integrative Sciences and Engineering, in conceptualising the problem, and bringing together the various teams in NUS and beyond to make this a successful programme,” said Prof Venkatesan. “The key development is the use of a new technique using surface plasmon resonance (SPR) technology to measure the protein corona formed when common proteins in the bloodstream bind to nanoparticles,” he added.

The researchers first immobilised the gold nanoparticles to the surface of a SPR sensor chip with a linker molecule. The chip was specially modified with an alginate polymer layer which both provided a negative charge and active sites for ligand immobilisation, and prevented non-specific binding. Using a 6 x 6 microfluidic channel array, they studied up to 36 nanoparticle-protein interactions in a single experiment, running test samples alongside experimental controls.

“Reproducibility and reliability have been a bottleneck in the studies of protein coronas,” said Mr Abhijeet Patra. “The quality and reliability of the data depends most importantly upon the design of good control experiments. Our multiplexed SPR setup was therefore key to ensuring the reliability of our data.”

Testing different concentrations of each of the four proteins, the team found that apolipoprotein A-1 had the highest binding affinity for the gold nanoparticle surface, with an association constant almost 100 times that of the lowest affinity protein, polyclonal IgG.

“Our results show that the rate of association, rather than dissociation, is the main determinant of binding with the tested blood components,” said Asst Prof Drum.

The multiplex SPR system was also used to study the effect of modification with polyethylene (PEG), a synthetic polymer commonly used in nanoparticle formulations to prevent protein accumulation. The researchers found that shorter PEG chains (2-10 kilodaltons) are about three to four times more effective than longer PEG chains (20-30 kilodaltons) at preventing corona formation.

“The modular nature of our protocol allows us to study any nanoparticle which can be chemically tethered to the sensing surface,” explained Asst Prof Drum. “Using our technique, we can quickly evaluate a series of nanoparticle-based drug formulations before conducting in vivo studies, thereby resulting in savings in time and money and a reduction of in vivo testing,” he added.

The researchers plan to use the technology to quantitatively study protein corona formation for a variety of nanoparticle formulations, and rationally design nanomedicines for applications in cardiovascular diseases and cancer.

Here’s a link to and a citation for the paper,

Component-Specific Analysis of Plasma Protein Corona Formation on Gold Nanoparticles Using Multiplexed Surface Plasmon Resonance by Abhijeet Patra, Tao Ding, Gokce Engudar, Yi Wang, Michal Marcin Dykas, Bo Liedberg, James Chen Yong Kah, Thirumalai Venkatesan, and Chester Lee Drum. Small  DOI: 10.1002/smll.201501603 Article first published online: 10 SEP 2015

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Single molecule nanogold-based probe for photoacoustic Imaging and SERS biosensing

As I understand it, the big deal is that A*STAR (Singapore’s Agency for Science, Rechnology and Research) scientists have found a way to make a single molecule probe do the work of a two-molecule probe when imaging tumours. From a July 29, 2015 news item on Nanowerk (Note: A link has been removed),

An organic dye that can light up cancer cells for two powerful imaging techniques providing complementary diagnostic information has been developed and successfully tested in mice by A*STAR researchers (“Single Molecule with Dual Function on Nanogold: Biofunctionalized Construct for In Vivo Photoacoustic Imaging and SERS Biosensing”).

A July 29, 2015 A*STAR news release, which originated the news item, describes the currently used multimodal imaging technique and provides details about the new single molecule technique,

Imaging tumors is vitally important for cancer research, but each imaging technique has its own limitations for studying cancer in living organisms. To overcome the limitations of individual techniques, researchers typically employ a combination of various imaging methods — a practice known as multimodal imaging. In this way, they can obtain complementary information and hence a more complete picture of cancer.

Two very effective methods for imaging tumors are photoacoustic imaging and surface-enhanced Raman scattering (SERS). Photoacoustic imaging can image deep tissue with a good resolution, whereas SERS detects miniscule amounts of a target molecule. To simultaneously use both photoacoustic imaging and SERS, a probe must produce signals for both imaging modalities.

In multimodal imaging, researchers typically combine probes for each imaging modality into a single two-molecule probe. However, the teams of Malini Olivo at the A*STAR Singapore Bioimaging Consortium and Bin Liu at the A*STAR Institute of Materials Research and Engineering, along with overseas collaborator Ben Zhong Tang from the Hong Kong University of Science and Technology, adopted a different approach — they developed single-molecule probes that can be used for both photoacoustic imaging and SERS. The probes are based on organic cyanine dyes that absorb near-infrared light, which has the advantage of being able to deeply penetrate tissue, enabling tumors deep within the body to be imaged.

Once the team had verified that the probes worked for both imaging modalities, they optimized the performances of the probes by adding gold nanoparticles to them to amplify the SERS signal and by encapsulating them in the polymer polyethylene glycol to stabilize their structures.

The researchers then deployed these optimized probes in live mice. By functionalizing the probes with an antibody that recognizes a tumor cell-surface protein, they were able to use them to target tumors. The scientists found that, in photoacoustic imaging, the tumor-targeted probes produced signals that were roughly three times stronger than those of unmodified probes. Using SERS, the team was also able to monitor the concentrations of the probes in the tumor, spleen and liver in real time with a high degree of sensitivity.

U. S. Dinish, a senior scientist in Olivo’s group, recalls the team’s “surprise at the sensitivity and potential of the nanoconstruct.” He anticipates that the probe could be used to guide surgical removal of tumors.

Here’s a link to and a citation for the paper,

Single Molecule with Dual Function on Nanogold: Biofunctionalized Construct for In Vivo Photoacoustic Imaging and SERS Biosensing by U. S. Dinish, Zhegang Song, Chris Jun Hui Ho, Ghayathri Balasundaram, Amalina Binte Ebrahim Attia, Xianmao Lu, Ben Zhong Tang, Bin Liu, and Malini Olivo. Advanced Functional Materials, Vol 25 Issue 15
pages 2316–2325, April 15, 2015 DOI: 10.1002/adfm.201404341 Article first published online: 11 MAR 2015

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Crowdfund nano spies for cancer

University of Groningen (Netherlands) researcher, Romana Schirhagl, is crowdfunding her development of a new technique (using nanodiamonds) for biomedical research which would allow observation of free radicals in cells. From a June 25, 2015 news item on Nanowerk,

Romana Schirhagl, a researcher at the University Medical Center Groningen, is hoping to garner public support for a new form of cancer research. Schirhagl wants to introduce miniscule diamonds into living cancer cells. Like spies, these nanodiamonds will be on a mission to reveal the secrets of the cell. Schirhagl applies a unique combination of knowledge and techniques from physics, chemistry and medicine in the research. This could form the basis of new and improved cancer drugs.

A June 16, 2015 University of Groningen press release, which originated the news item, provides background information for the research,

The research of Schirhagl and her research group in the department of Biomedical Engineering focuses on the behaviour of free radicals in a cell. These radicals have an important role in the body. They are sometimes extremely useful, as in the immune system, where they help fight bacteria and viruses, but sometimes very harmful, as when they actually harm healthy cells and can cause cancer. As the radicals only exist for a fraction of a second, it is difficult to tell them apart and study them.

New technique

Schirhagl wants to apply a new technique that currently is mainly used in fundamental physics but looks extremely promising for biomedical research. The technique is based on very small diamonds that can ‘sense’ the presence of magnetic fields from the radicals. The nanodiamonds are fluorescent and change in luminosity as a response to their environment. This makes it easier to determine which radicals occur when and how they work. This information should make it possible to improve cancer drugs – which themselves sometimes use free radicals – or even develop new ones.

Unexpectedly, the crowdfunding platform is the University of Groningen’s own. You can find out more about Nano spies here. To date the project has raised over 6,600 Euros towards a goal of 20,000 Euros.

Herbicide nanometric sensor could help diagnose multiple sclerosis

This research into nanometric sensors and multiple sclerosis comes from Brazil. According to a June 23, 2015 news item on Nanowerk (Note: A link has been removed),

The early diagnosis of certain types of cancer, as well as nervous system diseases such as multiple sclerosis and neuromyelitis optica, may soon be facilitated by the use of a nanosensor capable of identifying biomarkers of these pathological conditions (“A Nanobiosensor Based on 4-Hydroxyphenylpyruvate Dioxygenase Enzyme for Mesotrione Detection”).

The nanobiosensor was developed at the Federal University of São Carlos (UFSCar), Sorocaba, in partnership with the São Paulo Federal Institute of Education, Science & Technology (IFSP), Itapetininga, São Paulo State, Brazil. It was originally designed to detect herbicides, heavy metals and other pollutants.

A June 23, 2015 Fundação de Amparo à Pesquisa do Estado de São Paulo news release on EurekAlert, which originated the news item, describes the sensor as it was originally used and explains its new function as a diagnostic tool for multiple sclerosis and other diseases,

“It’s a highly sensitive device, which we developed in collaboration with Alberto Luís Dario Moreau, a professor at IFSP. “We were able to increase sensitivity dramatically by going down to the nanometric scale,” said physicist Fábio de Lima Leite, a professor at UFSCar and the coordinator of the research group.

The nanobiosensor consists of a silicon nitride (Si3N4) or silicon (Si) nanoprobe with a molecular-scale elastic constant and a nanotip coupled to an enzyme, protein or other molecule.

When this molecule touches a target of interest, such as an antibody or antigen, the probe bends as the two molecules adhere. The deflection is detected and measured by the device, enabling scientists to identify the target.

“We started by detecting herbicides and heavy metals. Now we’re testing the device for use in detecting target molecules typical of nervous system diseases, in partnership with colleagues at leading centers of research on demyelinating diseases of the central nervous system”

The migration from herbicide detection to antibody detection was motivated mainly by the difficulty of diagnosing demyelinating diseases, cancer and other chronic diseases before they have advanced beyond an initial stage.

The criteria for establishing a diagnosis of multiple sclerosis or neuromyelitis optica are clinical (supplemented by MRI scans), and patients do not always present with a characteristic clinical picture. More precise diagnosis entails ruling out several other diseases.

The development of nanodevices will be of assistance in identifying these diseases and reducing the chances of false diagnosis.

The procedure can be as simple as placing a drop of the patient’s cerebrospinal fluid on a glass slide and observing its interaction with the nanobiosensor.

“If the interaction is low, we’ll be able to rule out multiple sclerosis with great confidence,” Leite said. “High interaction will indicate that the person is very likely to have the disease.” In this case, further testing would be required to exclude the possibility of a false positive.

“Different nervous system diseases have highly similar symptoms. Multiple sclerosis and neuromyelitis optica are just two examples. Even specialists experience difficulties or take a long time to diagnose them. Our technique would provide a differential diagnostic tool,” Leite said.

The next step for the group is to research biomarkers for these diseases that have not been completely mapped, including antibodies and antigens, among others. The group has begun tests for the detection of head and neck cancer.

Here’s a link to and a citation for the paper,

A Nanobiosensor Based on 4-Hydroxyphenylpyruvate Dioxygenase Enzyme for Mesotrione Detection by P. Soto Garcia, A.L.D Moreau, J.C. Magalhaes Ierich,  A.C Araujo Vig, A.M. Higa, G.S. Oliveira, F. Camargo Abdalla, M. Hausen, & F.L. Leite. Sensors Journal, IEEE  (Volume:15 ,  Issue: 4) pp. 2106 – 2113 Date of Publication: 20 November 2014 Date of Current Version: 27 January 2015 Issue Date: April 2015  DOI 10.1109/JSEN.2014.2371773

This paper is behind a paywall.

Microbubbles reform into nanoparticles after bursting

It seems researchers at the Toronto-based (Canada), Princess Margaret Cancer Centre, have developed a new theranostic tool made of microbubbles used for imaging that are then burst into nanoparticles delivering therapeutics. From a March 30, 2015 news item on phys.org,

Biomedical researchers led by Dr. Gang Zheng at Princess Margaret Cancer Centre have successfully converted microbubble technology already used in diagnostic imaging into nanoparticles that stay trapped in tumours to potentially deliver targeted, therapeutic payloads.

The discovery, published online today [March 30, 2015] in Nature Nanotechnology, details how Dr. Zheng and his research team created a new type of microbubble using a compound called porphyrin – a naturally occurring pigment in nature that harvests light.

A March 30, 2015 University Health Network news release on EurekAlert, which originated the news item, describes the laboratory research on mice,

In the lab in pre-clinical experiments, the team used low-frequency ultrasound to burst the porphyrin containing bubbles and observed that they fragmented into nanoparticles. Most importantly, the nanoparticles stayed within the tumour and could be tracked using imaging.

“Our work provides the first evidence that the microbubble reforms into nanoparticles after bursting and that it also retains its intrinsic imaging properties. We have identified a new mechanism for the delivery of nanoparticles to tumours, potentially overcoming one of the biggest translational challenges of cancer nanotechnology. In addition, we have demonstrated that imaging can be used to validate and track the delivery mechanism,” says Dr. Zheng, Senior Scientist at the Princess Margaret and also Professor of Medical Biophysics at the University of Toronto.

Conventional microbubbles, on the other hand, lose all intrinsic imaging and therapeutic properties once they burst, he says, in a blink-of-an-eye process that takes only a minute or so after bubbles are infused into the bloodstream.

“So for clinicians, harnessing microbubble to nanoparticle conversion may be a powerful new tool that enhances drug delivery to tumours, prolongs tumour visualization and enables them to treat cancerous tumours with greater precision.”

For the past decade, Dr. Zheng’s research focus has been on finding novel ways to use heat, light and sound to advance multi-modality imaging and create unique, organic nanoparticle delivery platforms capable of transporting cancer therapeutics directly to tumours.

Interesting development, although I suspect there are many challenges yet to be met such as ensuring the microbubbles consistently arrive at their intended destination in sufficient mass to be effective both for imaging purposes and, later, as nanoparticles for drug delivery purposes.

Here’s a link to and citation for the paper,

In situ conversion of porphyrin microbubbles to nanoparticles for multimodality imaging by Elizabeth Huynh, Ben Y. C. Leung, Brandon L. Helfield, Mojdeh Shakiba, Julie-Anne Gandier, Cheng S. Jin, Emma R. Master, Brian C. Wilson, David E. Goertz, & Gang Zheng. Nature Nanotechnology (2015) doi:10.1038/nnano.2015.25 Published online 30 March 2015

This paper is behind a paywall but a free preview is available via ReadCube Access.

This is one of those times where I’m including the funding agencies and the ‘About’ portions of the news release,

The research published today was funded by the Canadian Institutes of Health Research (CIHR) Frederick Banting and Charles Best Canada Graduate Scholarship, the Emerging Team Grant on Regenerative Medicine and Nanomedicine co-funded by the CIHR and the Canadian Space Agency, the Natural Sciences and Engineering Research Council of Canada, the Ontario Institute for Cancer Research, the International Collaborative R&D Project of the Ministry of Knowledge Economy, South Korea, the Joey and Toby Tanenbaum/Brazilian Ball Chair in Prostate Cancer Research, the Canada Foundation for Innovation and The Princess Margaret Cancer Foundation.

About Princess Margaret Cancer Centre, University Health Network

The Princess Margaret Cancer Centre has achieved an international reputation as a global leader in the fight against cancer and delivering personalized cancer medicine. The Princess Margaret, one of the top five international cancer research centres, is a member of the University Health Network, which also includes Toronto General Hospital, Toronto Western Hospital and Toronto Rehabilitation Institute. All are research hospitals affiliated with the University of Toronto. For more information, go to http://www.theprincessmargaret.ca or http://www.uhn.ca .

I was not expecting to see South Korea or Brazil mentioned in the funding. Generally, when multiple countries are funding research, their own research institutions are also involved. As for the Princess Margaret Cancer Centre being one of the top five such centres internationally, I wonder how these rankings are determined.

Gold nanotubes could be used in cancer therapies

Where nanotubes are concerned I don’t often see mention of any type other than ‘carbon’ nanotubes so, this Feb. 12, 2015 nanomedicine news item on ScienceDaily featuring ‘gold’ nanotubes caught my attention,

Scientists have shown that gold nanotubes have many applications in fighting cancer: internal nanoprobes for high-resolution imaging; drug delivery vehicles; and agents for destroying cancer cells.

The study, published today in the journal Advanced Functional Materials, details the first successful demonstration of the biomedical use of gold nanotubes in a mouse model of human cancer.

A Feb. 13, 2015 University of Leeds press release, which originated the news item despite what the publication date suggests, describes the research in more detail (Note: Links have been removed),

Study lead author Dr Sunjie Ye, who is based in both the School of Physics and Astronomy and the Leeds Institute for Biomedical and Clinical Sciences at the University of Leeds, said:  “High recurrence rates of tumours after surgical removal remain a formidable challenge in cancer therapy. Chemo- or radiotherapy is often given following surgery to prevent this, but these treatments cause serious side effects.

Gold nanotubes – that is, gold nanoparticles with tubular structures that resemble tiny drinking straws – have the potential to enhance the efficacy of these conventional treatments by integrating diagnosis and therapy in one single system.”

The researchers say that a new technique to control the length of nanotubes underpins the research. By controlling the length, the researchers were able to produce gold nanotubes with the right dimensions to absorb a type of light called ‘near infrared’.

The study’s corresponding author Professor Steve Evans, from the School of Physics and Astronomy at the University of Leeds, said: “Human tissue is transparent for certain frequencies of light – in the red/infrared region. This is why parts of your hand appear red when a torch is shone through it.

“When the gold nanotubes travel through the body, if light of the right frequency is shone on them they absorb the light. This light energy is converted to heat, rather like the warmth generated by the Sun on skin. Using a pulsed laser beam, we were able to rapidly raise the temperature in the vicinity of the nanotubes so that it was high enough to destroy cancer cells.”

In cell-based studies, by adjusting the brightness of the laser pulse, the researchers say they were able to control whether the gold nanotubes were in cancer-destruction mode, or ready to image tumours.

In order to see the gold nanotubes in the body, the researchers used a new type of  imaging technique called ‘multispectral optoacoustic tomography’ (MSOT) to detect the gold nanotubes in mice, in which gold nanotubes had been injected intravenously. It is the first biomedical application of gold nanotubes within a living organism. It was also shown that gold nanotubes were excreted from the body and therefore are unlikely to cause problems in terms of toxicity, an important consideration when developing nanoparticles for clinical use.

Study co-author Dr James McLaughlan, from the School of Electronic & Electrical Engineering at the University of Leeds, said: “This is the first demonstration of the production, and use for imaging and cancer therapy, of gold nanotubes that strongly absorb light within the ‘optical window’ of biological tissue.

“The nanotubes can be tumour-targeted and have a central ‘hollow’ core that can be loaded with a therapeutic payload. This combination of targeting and localised release of a therapeutic agent could, in this age of personalised medicine, be used to identify and treat cancer with minimal toxicity to patients.”

The use of gold nanotubes in imaging and other biomedical applications is currently progressing through trial stages towards early clinical studies.

Here’s a link to and a citation for the paper,

Engineering Gold Nanotubes with Controlled Length and Near-Infrared Absorption for Theranostic Applications by Sunjie Ye, Gemma Marston, James R. McLaughlan, Daniel O. Sigle, Nicola Ingram, Steven Freear, Jeremy J. Baumberg, Richard J. Bushby, Alexander F. Markham, Kevin Critchley, Patricia Louise Coletta, and Stephen D. Evans. Advanced Functional Materials DOI: 10.1002/adfm.201404358 Article first published online: 12 FEB 2015

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Doctor to patient: “Where would you like your carbon nanotubes implanted?”

A Nov. 3, 2013 news item on ScienceDaily offers some context, as well as, details for a sensing research project with medical applications being conducted at the Massachusetts Institute of Technology (MIT),

Nitric oxide (NO) is one of the most important signaling molecules in living cells, carrying messages within the brain and coordinating immune system functions. In many cancerous cells, levels are perturbed, but very little is known about how NO behaves in both healthy and cancerous cells.

“Nitric oxide has contradictory roles in cancer progression, and we need new tools in order to better understand it,” says Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT. “Our work provides a new tool for measuring this important molecule, and potentially others, in the body itself and in real time.”

Led by postdoc Nicole Iverson, Strano’s lab has built a sensor that can monitor NO in living animals for more than a year. The sensors, described in the Nov. 3 issue of Nature Nanotechnology, can be implanted under the skin and used to monitor inflammation — a process that produces NO. This is the first demonstration that nanosensors could be used within the body for this extended period of time.

The Nov. 3, 2013 MIT news release (also on EurekAlert) written by Anne Trafton, which originated the news item, describes carbon nanotubes and how they are being used as sensing devices by the research team,

Carbon nanotubes — hollow, one-nanometer-thick cylinders made of pure carbon — have drawn great interest as sensors. Strano’s lab has recently developed carbon nanotube sensors for a variety of molecules, including hydrogen peroxide and toxic agents such as the nerve gas sarin. Such sensors take advantage of carbon nanotubes’ natural fluorescence, by coupling them to a molecule that binds to a specific target. When the target is bound, the tubes’ fluorescence brightens or dims.

Strano’s lab has previously shown that carbon nanotubes can detect NO if the tubes are wrapped in DNA with a particular sequence. In the new paper, the researchers modified the nanotubes to create two different types of sensors: one that can be injected into the bloodstream for short-term monitoring, and another that is embedded in a gel so it can be implanted long-term under the skin.

To make the particles injectable, Iverson attached PEG, a biocompatible polymer that inhibits particle-clumping in the bloodstream. She found that when injected into mice, the particles can flow through the lungs and heart without causing any damage. Most of the particles accumulate in the liver, where they can be used to monitor NO associated with inflammation.

“So far we have only looked at the liver, but we do see that it stays in the bloodstream and goes to kidneys. Potentially we could study all different areas of the body with this injectable nanoparticle,” Iverson says.

The longer-term sensor consists of nanotubes embedded in a gel made from alginate, a polymer found in algae. Once this gel is implanted under the skin of the mice, it stays in place and remains functional for 400 days; the researchers believe it could last even longer. This kind of sensor could be used to monitor cancer or other inflammatory diseases, or to detect immune reactions in patients with artificial hips or other implanted devices, according to the researchers.

Once the sensors are in the body, the researchers shine a near-infrared laser on them, producing a near-infrared fluorescent signal that can be read using an instrument that can tell the difference between nanotubes and other background fluorescence.

There is research into how the sensor could be adapted for use in diabetics, from the news release,

Iverson is now working on adapting the technology to detect glucose, by wrapping different kinds of molecules around the nanotubes.

Most diabetic patients must prick their fingers several times a day to take blood glucose readings. While there are electrochemical glucose sensors available that can be attached to the skin, those sensors last only a week at most, and there is a risk of infection because the electrode pierces the skin.

Furthermore, Strano says, the electrochemical sensor technology is not accurate enough to be incorporated into the kind of closed-loop monitoring system that scientists are now working toward. This type of system would consist of a sensor that offers real-time glucose monitoring, connected to an insulin pump that would deliver insulin when needed, with no need for finger pricking or insulin injection by the patient.

“The current thinking is that every part of the closed-loop system is in place except for an accurate and stable sensor. There is considerable opportunity to improve upon devices that are now on the market so that a complete system can be realized,” Strano says.

Here’s a link to and a citation for the paper,

In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes by Nicole M. Iverson, Paul W. Barone, Mia Shandell, Laura J. Trudel, Selda Sen, Fatih Sen, Vsevolod Ivanov, Esha Atolia, Edgardo Farias, Thomas P. McNicholas, Nigel Reuel, Nicola M. A. Parry, Gerald N. Wogan & Michael S. Strano. Nature Nanotechnology (2013) doi:10.1038/nnano.2013.222 Published online 03 November 2013

There is a free preview of the article available via ReadCube Access otherwise this article is behind a paywall.

How many Holy Grails are there? Nanoscientists have reached another one (cancer, again)

A July 24, 2013 news item on ScienceDaily mentions the latest ‘Holy Grail’ breakthrough’,

Just months after setting a record for detecting the smallest single virus in solution, researchers at the Polytechnic Institute of New York University (NYU-Poly) have announced a new breakthrough: They used a nano-enhanced version of their patented microcavity biosensor to detect a single cancer marker protein, which is one-sixth the size of the smallest virus, and even smaller molecules below the mass of all known markers.

The July 24, 2013 Polytechnic Institute of New York University (NYU-Poly) press release features the Holy Grail in its headline (Note: Links have been removed),

NYU-Poly Nano Scientists Reach the Holy Grail in Label-Free Cancer Marker Detection: Single Molecules

Unlike current technology, which attaches a fluorescent molecule, or label, to the antigen to allow it to be seen, the new process detects the antigen without an interfering label.
Stephen Arnold, university professor of applied physics and member of the Othmer-Jacobs Department of Chemical and Biomolecular Engineering, published details of the achievement in Nano Letters, a publication of the American Chemical Society.

The press release goes on to the describe the context for this breakthrough and provides details about it (Note: A link has been removed),

In 2012, Arnold and his team were able to detect in solution the smallest known RNA virus, MS2, with a mass of 6 attograms. Now, with experimental work by postdoctoral fellow Venkata Dantham and former student David Keng, two proteins have been detected: a human cancer marker protein called Thyroglobulin, with a mass of just 1 attogram, and the bovine form of a common plasma protein, serum albumin, with a far smaller mass of 0.11 attogram. [emphasis mine] “An attogram is a millionth of a millionth of a millionth of a gram,” said Arnold, “and we believe that our new limit of detection may be smaller than 0.01 attogram.”

This latest milestone builds on a technique pioneered by Arnold and collaborators from NYU-Poly and Fordham University.  In 2012, the researchers set the first sizing record by treating a novel biosensor with plasmonic gold nano-receptors, enhancing the electric field of the sensor and allowing even the smallest shifts in resonant frequency to be detected. Their plan was to design a medical diagnostic device capable of identifying a single virus particle in a point-of-care setting, without the use of special assay preparations.

At the time, the notion of detecting a single protein—phenomenally smaller than a virus—was set forth as the ultimate goal.

“Proteins run the body,” explained Arnold. “When the immune system encounters virus, it pumps out huge quantities of antibody proteins, and all cancers generate protein markers. A test capable of detecting a single protein would be the most sensitive diagnostic test imaginable.”

To the surprise of the researchers, examination of their nanoreceptor under a transmission electron microscope revealed that its gold shell surface was covered with random bumps roughly the size of a protein. Computer mapping and simulations created by Stephen Holler, once Arnold’s student and now assistant professor of physics at Fordham University, showed that these irregularities generate their own highly reactive local sensitivity field extending out several nanometers, amplifying the capabilities of the sensor far beyond original predictions. “A virus is far too large to be aided in detection by this field,” Arnold said. “Proteins are just a few nanometers across—exactly the right size to register in this space.”

The implications of single protein detection are significant and may lay the foundation for improved medical therapeutics.  Among other advances, Arnold and his colleagues posit that the ability to follow a signal in real time—to actually witness the detection of a single disease marker protein and track its movement—may yield new understanding of how proteins attach to antibodies.

Arnold named the novel method of label-free detection “whispering gallery-mode biosensing” because light waves in the system reminded him of the way that voices bounce around the whispering gallery under the dome of St. Paul’s Cathedral in London. A laser sends light through a glass fiber to a detector. When a microsphere is placed against the fiber, certain wavelengths of light detour into the sphere and bounce around inside, creating a dip in the light that the detector receives. When a molecule like a cancer marker clings to a gold nanoshell attached to the microsphere, the microsphere’s resonant frequency shifts by a measureable amount.

Just a brief comment about the attogram, this is the first time I’ve seen atto prepended to anything other than a unit of time, e.g. attosecond. For anyone who’s not familiar with the atto scale, it’s less than femto,which is less than pico, which is less than nano. There are two more scales moving downward after atto:  zetto followed by yocto. As far as I’m aware, yocto is still the smallest unit of measurement. (more simply and moving down in scale: micro, nano, pico, femto, atto, zetto, yocto)

Back to the Holy Grail at hand, here’s a link to and a citation for the published paper,

Label-Free Detection of Single Protein Using a Nanoplasmonic-Photonic Hybrid Microcavity by Venkata R. Dantham, Stephen Holler, Curtis Barbre, David Keng, Vasily Kolchenko, and Stephen Arnold. Nano Lett., 2013, 13 (7), pp 3347–3351 DOI: 10.1021/nl401633y Publication Date (Web): June 18, 2013
Copyright © 2013 American Chemical Society

This paper is behind a paywall.

Multi-walled carbon nanotubes, cancer, and the US National Institute of Occupational Health and Safety’s (NIOSH) latest findings

A Mar. 11, 2013 news item on Nanowerk reveals some of the latest research performed by US National Institute of Occupational Health Safety (NIOSH) researchers into the question of whether or not multi-walled carbon nanotubes (MWCNT) cause cancer,

Earlier today, at the annual meeting of the Society of Toxicology, NIOSH researchers reported preliminary findings from a new laboratory study in which mice were exposed by inhalation to multi-walled carbon nanotubes (MWCNT). The study was designed to investigate whether these tiny particles have potential to initiate or promote cancer. By “initiate,” we mean the ability of a substance to cause mutations in DNA that can lead to tumors. By “promote,” we mean the ability of a substance to cause cells that have already sustained such DNA mutations to then become tumors.

It is very important to have new data that describe the potential health hazards that these materials might represent, so that protective measures can be developed to ensure the safe advancement of nanotechnology in the many industries where it is being applied.

The Mar. 11, 2013 posting (which originated the news item) by Vincent Castranova, PhD; Charles L Geraci, PhD; Paul Schulte, PhD  on the NIOSH blog provides details about the experimental protocols and the outcome of the experiments,

In the NIOSH study, a group of laboratory mice were injected with a chemical that is a known cancer initiator, methylcholanthrene.  Another group of mice were injected with a saline solution as a control group.  The mice then were exposed by inhalation either to air or to a concentration of MWCNT.   These protocols enabled the researchers to investigate whether MWNCT alone would initiate cancer in mice, or whether MWCNT would promote cancer where the initiator, methylcholanthrene, had already been applied.

Mice receiving both the initiator chemical plus exposure to MWCNT were significantly more likely to develop tumors (90% incidence) and have more tumors (an average of 3.3 tumors/mouse lung) than mice receiving the initiator chemical alone (50% of mice developing tumors with an average of 1.4 tumors/lung).  Additionally, mice exposed to MWCNT and to MWCNT plus the initiator chemical had larger tumors than the respective control groups.  The number of tumors per animal exposed to MWCNT alone was not significantly elevated compared with the number per animal in the controls.  These results indicate that MWCNT can increase the risk of cancer in mice exposed to a known carcinogen.  The study does not suggest that MWCNTs alone cause cancer in mice.

That last sentence is quite important because (from the NIOSH blog post),

Several earlier studies in the scientific literature indicated that MWCNT could have the potential to initiate or promote cancer. The new NIOSH study is the first to show that MWCNT is a cancer promoter in a laboratory experiment, and reports the growth of lung tumors in laboratory mice following inhalation exposure to MWCNT rather than injection, instillation, or aspiration.  Inhalation exposure most closely resembles the exposure route of greatest concern in the workplace. In the study, laboratory mice were exposed to one type of MWCNT through inhalation at a concentration of 5 milligrams per cubic meter of air for five hours per day for a period of 15 days.

Risk of occupational cancer depends on the potency of a given substance to cause or promote cancer and the concentration and duration of worker exposure to that substance.  This research is an important step in our understanding of the hazard associated with MWCNT, but before we can determine whether MWCNT pose an occupational cancer risk, we need more information about actual exposure levels and the types and nature of MWCNT being used in the workplace, and how that compares to the material  used in this study.

This study is part of a larger program designed to establish safety practices with regard to handling nanomaterials/nanoparticles (from the NIOSH blog post),

These laboratory studies are part of a strategic program of NIOSH research to better understand the occupational health and safety implications of nanoparticle exposure, and to make authoritative science-based recommendations for controlling exposures so that the technology is developed responsibly as the research advances, and the societal benefits of nanotechnology can be realized.  NIOSH has worked closely with diverse public and private sector partners over the past decade to incorporate occupational health and safety into practical strategies for safe development of this revolutionary technology. More information is available on the NIOSH nanotechnology topic page.

There is no mention in the blog post as to whether the MWCNTs in this latest work were long or short or a mixture of both. Unfortunately, the study has not yet been published in a journal, so it’s not yet available for reading purposes. I did mention carbon nanotubes and toxicity in a Jan. 16, 2013 posting about a recent study,

Researchers at the University College of London (UCL), France’s Centre national de la recherche scientifique (CNRS), and Italy’s University of Trieste have determined that carbon nanotube toxicity issues can be addressed be reducing their length and treating them chemically.

While I find this latest work from NIOSH interesting, it’s hard for me to understand why there’s no mention of length. Unless, the NIOSH work is focused on what happens when MWCNTs are inhaled along with known cancer initiators and they believe that length is not a factor.

ETA Mar. 15, 2013: I did find get some information about the length (long carbon nanotubes for the most part) as per this Mar. 14, 2013 posting or you can find the update in my Mar. 15, 2013 posting here.

University of Alberta, Movember, and nanomedicine cancer research

Not sure when November became Movember but in keeping with the theme researchers at the University of Alberta have just published their work on developing ‘homing beacon drugs’ that eliminate cancerous cells only while leaving healthy cells to go about their work. From the Nov. 20, 2012 University of Alberta news release by Raquel Maurier (Note: I have removed some links),

A medical researcher with the University of Alberta and his team just published their findings about their work on developing “homing beacon drugs” that kill only cancer cells, not healthy ones, thanks to nanotechnology.

John Lewis, the Sojonky Chair in Prostate Cancer Research with the Faculty of Medicine & Dentistry, published his findings in the peer-reviewed journal, Nano Letters. He is also an associate professor in the Department of Oncology at the U of A, the director of the Translational Prostate Cancer Research Group and a fellow of the National Institute for Nanotechnology.

Lewis noted chemotherapy goes through the body and kills any cells that are dividing, even healthy ones—which is why cancer patients have immune-system problems, hair loss, nausea and skin problems.

“We are developing smart drugs that determine which are the cancer cells and which aren’t, then selectively kill only the cancer cells. The drugs look for a protein that is only found in cancer cells, not normal cells. This system acts like a homing beacon for tumours.”

These drugs, tested to date in only animal lab models, could be used within a week of cancer diagnoses, predicts Lewis. The drugs would target cancerous cells throughout the body, attacking sneaky cancer cells that have already escaped and grown outside the site of the main tumour.

Lewis isn’t sure when these homing beacon drugs could be available for physicians to use with patients, but hopes his works paves the way for patient-centred therapies.

Catherine Griwkowsky posted a Nov. 20, 2012 article and video about the research on the Edmonton Sun website which features an interview with the lead researcher, Choi-Fong Cho,

Fong Cho, lead researcher on the study published in the peer-reviewed Nano Letters, said the nanoparticles can be used both for imaging and for drug delivery.

“For my purpose, you put in something that binds to your cancer directly to a particle that leads to your cancer and the nanoparticle will light up the cancer,” she said.

“You could also, for example, put drugs on it and deliver the drugs specifically to the tumour without harming the surrounding cells and tissues that causes a lot of side effects.”

The lab is also looking at ways of identifying and stopping metastasis …

In keeping with the Movember theme, here’s John Lewis,

UAlberta medical researcher John Lewis sports a Movember mustache to support prostate cancer awareness and research. Lewis and his team are developing ‘homing beacon drugs’ that can target cancer cells while sparing healthy cells. Their findings could help improve survival rates and quality of life for people undergoing cancer treatment. (downloaded from http://www.news.ualberta.ca/article.aspx?id=4CD917F418E3492F92CCCDDA7B8221640)

Here’s a citation for Cho’s and Lewis’ article,

Discovery of Novel Integrin Ligands from Combinatorial Libraries Using a Multiplex “Beads on a Bead” Approach by Choi-Fong Cho, Giulio A. Amadei, Daniel Breadner, Leonard G. Luyt, and John D. Lewis in Nano Lett., 2012, 12 (11), pp 5957–5965 DOI: 10.1021/nl3034043 Publication Date (Web): October 25, 2012 Copyright © 2012 American Chemical Society

This article is behind a paywall.