Tag Archives: Carnegie Mellon University

Synthesized nanoparticles with the complexity of protein molecules

Caption: The structure of the largest gold nanoparticle to-date, Au246(SR)80, was resolved using x-ray crystallography. Credit: Carnegie Mellon University

Carnegie Mellon University (CMU) researchers synthesized a self-assembled nanoparticle of gold as they built on their 2015 work described in my April 14, 2015 posting (Nature’s patterns reflected in gold nanoparticles). Here’s the latest from the team in a Jan. 23, 2017 news item on phys.org,

Chemists at Carnegie Mellon University have demonstrated that synthetic nanoparticles can achieve the same level of structural complexity, hierarchy and accuracy as their natural counterparts – biomolecules. The study, published in Science, also reveals the atomic-level mechanisms behind nanoparticle self-assembly.

The findings from the lab of Chemistry Professor Rongchao Jin provide researchers with an important window into how nanoparticles form, and will help guide the construction of nanoparticles, including those that can be used in the fabrication of computer chips, creation of new materials, and development of new drugs and drug delivery devices.

Caption: By resolving the structure of Au246, Carnegie Mellon researchers were able to visualize its hierarchical assembly into artificial solid. Credit: Carnegie Mellon University

A Jan.  23, 2017 CMU news release on EurekAlert, which originated the news item, expands on the theme,

“Most people think that nanoparticles are simple things, because they are so small. But when we look at nanoparticles at the atomic level, we found that they are full of wonders,” said Jin.

Nanoparticles are typically between 1 and 100 nanometers in size. Particles on the larger end of the nanoscale are harder to create precisely. Jin has been at the forefront of creating precise gold nanoparticles for a decade, first establishing the structure of an ultra-small Au25 nanocluster and then working on larger and larger ones. In 2015, his lab used X-ray crystallography to establish the structure of an Au133 nanoparticle and found that it contained complex, self-organized patterns that mirrored patterns found in nature.

In the current study, they sought to find out the mechanisms that caused these patterns to form. The researchers, led by graduate student Chenjie Zeng, established the structure of Au246, one of the largest and most complex nanoparticles created by scientists to-date and the largest gold nanoparticle to have its structure determined by X-ray crystallography. Au246 turned out to be an ideal candidate for deciphering the complex rules of self- assembly because it contains an ideal number of atoms and surface ligands and is about the same size and weight as a protein molecule.

Analysis of Au246’s structure revealed that the particles had much more in common with biomolecules than size. They found that the ligands in the nanoparticles self-assembled into rotational and parallel patterns that are strikingly similar to the patterns found in proteins’ secondary structure. This could indicate that nanoparticles of this size could easily interact with biological systems, providing new avenues for drug discovery.

The researchers also found that Au246 particles form by following two rules. First, they maximize the interactions between atoms, a mechanism that had been theorized but not yet seen. Second the nanoparticles match symmetric surface patterns, a mechanism that had not been considered previously. The matching, which is similar to puzzle pieces coming together, shows that the components of the particle can recognize each other by their patterns and spontaneously assemble into the highly ordered structure of a nanoparticle.

“Self-assembly is an important way of construction in the nanoworld. Understanding the rules of self-assembly is critical to designing and building up complex nanoparticles with a wide-range of functionalities,” said Zeng, the study’s lead author.

In future studies, Jin hopes to push the crystallization limits of nanoparticles even farther to larger and larger particles. He also plans to explore the particles’ electronic and catalytic power.

Here’s a link to and a citation for the paper,

Emergence of hierarchical structural complexities in nanoparticles and their assembly by Chenjie Zeng, Yuxiang Chen, Kristin Kirschbaum, Kelly J. Lambright, Rongchao Jin. Science  23 Dec 2016: Vol. 354, Issue 6319, pp. 1580-1584 DOI: 10.1126/science.aak9750

This paper is behind a paywall.

Investigating nanoparticles and their environmental impact for industry?

It seems the Center for the Environmental Implications of Nanotechnology (CEINT) at Duke University (North Carolina, US) is making an adjustment to its focus and opening the door to industry, as well as, government research. It has for some years (my first post about the CEINT at Duke University is an Aug. 15, 2011 post about its mesocosms) been focused on examining the impact of nanoparticles (also called nanomaterials) on plant life and aquatic systems. This Jan. 9, 2017 US National Science Foundation (NSF) news release (h/t Jan. 9, 2017 Nanotechnology Now news item) provides a general description of the work,

We can’t see them, but nanomaterials, both natural and manmade, are literally everywhere, from our personal care products to our building materials–we’re even eating and drinking them.

At the NSF-funded Center for Environmental Implications of Nanotechnology (CEINT), headquartered at Duke University, scientists and engineers are researching how some of these nanoscale materials affect living things. One of CEINT’s main goals is to develop tools that can help assess possible risks to human health and the environment. A key aspect of this research happens in mesocosms, which are outdoor experiments that simulate the natural environment – in this case, wetlands. These simulated wetlands in Duke Forest serve as a testbed for exploring how nanomaterials move through an ecosystem and impact living things.

CEINT is a collaborative effort bringing together researchers from Duke, Carnegie Mellon University, Howard University, Virginia Tech, University of Kentucky, Stanford University, and Baylor University. CEINT academic collaborations include on-going activities coordinated with faculty at Clemson, North Carolina State and North Carolina Central universities, with researchers at the National Institute of Standards and Technology and the Environmental Protection Agency labs, and with key international partners.

The research in this episode was supported by NSF award #1266252, Center for the Environmental Implications of NanoTechnology.

The mention of industry is in this video by O’Brien and Kellan, which describes CEINT’s latest work ,

Somewhat similar in approach although without a direction reference to industry, Canada’s Experimental Lakes Area (ELA) is being used as a test site for silver nanoparticles. Here’s more from the Distilling Science at the Experimental Lakes Area: Nanosilver project page,

Water researchers are interested in nanotechnology, and one of its most commonplace applications: nanosilver. Today these tiny particles with anti-microbial properties are being used in a wide range of consumer products. The problem with nanoparticles is that we don’t fully understand what happens when they are released into the environment.

The research at the IISD-ELA [International Institute for Sustainable Development Experimental Lakes Area] will look at the impacts of nanosilver on ecosystems. What happens when it gets into the food chain? And how does it affect plants and animals?

Here’s a video describing the Nanosilver project at the ELA,

You may have noticed a certain tone to the video and it is due to some political shenanigans, which are described in this Aug. 8, 2016 article by Bartley Kives for the Canadian Broadcasting Corporation’s (CBC) online news.

Nanomedicine and the immune system

Interest in how the body reacts to nanoparticle drug delivery materials seems to be gaining momentum (see my Sept. 9, 2016 post about how the liver prevents nanoparticles from reaching cancer cells and my April 27, 2016 post about the discovery that fewer than 1% of nanoparticle-based drugs reach their destination). Now, we can add this research to the list according to an Oct. 4, 2016 news item on phys.org,

Katie Whitehead, assistant professor of chemical engineering at Carnegie Mellon University, has focused her research efforts on two clear objectives: treating and preventing disease. Her clinical-minded approach to laboratory research has recently led her to join forces with immunologists at the Indian Institute of Technology (IIT) in Bombay on a project that will explore how the immune system reacts to nanoparticle drug delivery materials.

“At its face, it may seem like an obvious goal. You would want a drug delivery system that doesn’t provoke an immune response,” says Whitehead. “However, the immune response to drug delivery vehicles is an understudied area because it’s complicated and expensive—but it deserves more attention.”

An Oct. 4, 2016 Carnegie Mellon University news release, which originated the news item, describes the research in more detail (Note: A link has been removed),

If the immune system reacts to a drug delivery system, the body mistakenly identifies the material as an invading pathogen and goes into a heightened state of alert. This response can trigger inflammation throughout the body and lead to a host of issues. According to Nature, about 25 percent of all Phase II and III clinical trials fail, not because the drug did not treat the disease, but because of safety concerns.

Creating a drug delivery system that effectively treats disease at the same time as avoiding immune response are two separate aims in drug delivery research. But for Whitehead, “My argument has always been that both pieces of the puzzle are equally important. If a system causes an immune response, then it’s a nonstarter. It may yield great results in treating disease in the lab, but it won’t ever reach a patient.”

Unfortunately, very little is understood about how the chemical molecules that make up nanoparticles ultimately affect our body’s immune response. “This research, however, is going to fill a critical gap in our knowledge base that will allow us to create nanoparticle systems that effectively deliver drugs without provoking our body’s natural defense mechanisms,” explains Whitehead. “Such knowledge will give us a head start in moving our delivery systems into clinical settings.”

Whitehead’s lab creates a number of nanoparticle drug delivery systems for diseases ranging from inflammatory bowel disease to Mantle cell lymphoma. She is tackling the challenge of immune response head-on with the help of a four-year, $500,000 grant from the Wadhwani Foundation for her work with IIT Bombay. She’ll specifically study how the chemical structure of the drug delivery nanoparticles affects the immune system.

Here’s a video of Katie Whitehead discussing her work in a simplified fashion,


How might artificial intelligence affect urban life in 2030? A study

Peering into the future is always a chancy business as anyone who’s seen those film shorts from the 1950’s and 60’s which speculate exuberantly as to what the future will bring knows.

A sober approach (appropriate to our times) has been taken in a study about the impact that artificial intelligence might have by 2030. From a Sept. 1, 2016 Stanford University news release (also on EurekAlert) by Tom Abate (Note: Links have been removed),

A panel of academic and industrial thinkers has looked ahead to 2030 to forecast how advances in artificial intelligence (AI) might affect life in a typical North American city – in areas as diverse as transportation, health care and education ­– and to spur discussion about how to ensure the safe, fair and beneficial development of these rapidly emerging technologies.

Titled “Artificial Intelligence and Life in 2030,” this year-long investigation is the first product of the One Hundred Year Study on Artificial Intelligence (AI100), an ongoing project hosted by Stanford to inform societal deliberation and provide guidance on the ethical development of smart software, sensors and machines.

“We believe specialized AI applications will become both increasingly common and more useful by 2030, improving our economy and quality of life,” said Peter Stone, a computer scientist at the University of Texas at Austin and chair of the 17-member panel of international experts. “But this technology will also create profound challenges, affecting jobs and incomes and other issues that we should begin addressing now to ensure that the benefits of AI are broadly shared.”

The new report traces its roots to a 2009 study that brought AI scientists together in a process of introspection that became ongoing in 2014, when Eric and Mary Horvitz created the AI100 endowment through Stanford. AI100 formed a standing committee of scientists and charged this body with commissioning periodic reports on different aspects of AI over the ensuing century.

“This process will be a marathon, not a sprint, but today we’ve made a good start,” said Russ Altman, a professor of bioengineering and the Stanford faculty director of AI100. “Stanford is excited to host this process of introspection. This work makes practical contribution to the public debate on the roles and implications of artificial intelligence.”

The AI100 standing committee first met in 2015, led by chairwoman and Harvard computer scientist Barbara Grosz. It sought to convene a panel of scientists with diverse professional and personal backgrounds and enlist their expertise to assess the technological, economic and policy implications of potential AI applications in a societally relevant setting.

“AI technologies can be reliable and broadly beneficial,” Grosz said. “Being transparent about their design and deployment challenges will build trust and avert unjustified fear and suspicion.”

The report investigates eight domains of human activity in which AI technologies are beginning to affect urban life in ways that will become increasingly pervasive and profound by 2030.

The 28,000-word report includes a glossary to help nontechnical readers understand how AI applications such as computer vision might help screen tissue samples for cancers or how natural language processing will allow computerized systems to grasp not simply the literal definitions, but the connotations and intent, behind words.

The report is broken into eight sections focusing on applications of AI. Five examine application arenas such as transportation where there is already buzz about self-driving cars. Three other sections treat technological impacts, like the section on employment and workplace trends which touches on the likelihood of rapid changes in jobs and incomes.

“It is not too soon for social debate on how the fruits of an AI-dominated economy should be shared,” the researchers write in the report, noting also the need for public discourse.

“Currently in the United States, at least sixteen separate agencies govern sectors of the economy related to AI technologies,” the researchers write, highlighting issues raised by AI applications: “Who is responsible when a self-driven car crashes or an intelligent medical device fails? How can AI applications be prevented from [being used for] racial discrimination or financial cheating?”

The eight sections discuss:

Transportation: Autonomous cars, trucks and, possibly, aerial delivery vehicles may alter how we commute, work and shop and create new patterns of life and leisure in cities.

Home/service robots: Like the robotic vacuum cleaners already in some homes, specialized robots will clean and provide security in live/work spaces that will be equipped with sensors and remote controls.

Health care: Devices to monitor personal health and robot-assisted surgery are hints of things to come if AI is developed in ways that gain the trust of doctors, nurses, patients and regulators.

Education: Interactive tutoring systems already help students learn languages, math and other skills. More is possible if technologies like natural language processing platforms develop to augment instruction by humans.

Entertainment: The conjunction of content creation tools, social networks and AI will lead to new ways to gather, organize and deliver media in engaging, personalized and interactive ways.

Low-resource communities: Investments in uplifting technologies like predictive models to prevent lead poisoning or improve food distributions could spread AI benefits to the underserved.

Public safety and security: Cameras, drones and software to analyze crime patterns should use AI in ways that reduce human bias and enhance safety without loss of liberty or dignity.

Employment and workplace: Work should start now on how to help people adapt as the economy undergoes rapid changes as many existing jobs are lost and new ones are created.

“Until now, most of what is known about AI comes from science fiction books and movies,” Stone said. “This study provides a realistic foundation to discuss how AI technologies are likely to affect society.”

Grosz said she hopes the AI 100 report “initiates a century-long conversation about ways AI-enhanced technologies might be shaped to improve life and societies.”

You can find the A100 website here, and the group’s first paper: “Artificial Intelligence and Life in 2030” here. Unfortunately, I don’t have time to read the report but I hope to do so soon.

The AI100 website’s About page offered a surprise,

This effort, called the One Hundred Year Study on Artificial Intelligence, or AI100, is the brainchild of computer scientist and Stanford alumnus Eric Horvitz who, among other credits, is a former president of the Association for the Advancement of Artificial Intelligence.

In that capacity Horvitz convened a conference in 2009 at which top researchers considered advances in artificial intelligence and its influences on people and society, a discussion that illuminated the need for continuing study of AI’s long-term implications.

Now, together with Russ Altman, a professor of bioengineering and computer science at Stanford, Horvitz has formed a committee that will select a panel to begin a series of periodic studies on how AI will affect automation, national security, psychology, ethics, law, privacy, democracy and other issues.

“Artificial intelligence is one of the most profound undertakings in science, and one that will affect every aspect of human life,” said Stanford President John Hennessy, who helped initiate the project. “Given’s Stanford’s pioneering role in AI and our interdisciplinary mindset, we feel obliged and qualified to host a conversation about how artificial intelligence will affect our children and our children’s children.”

Five leading academicians with diverse interests will join Horvitz and Altman in launching this effort. They are:

  • Barbara Grosz, the Higgins Professor of Natural Sciences at HarvardUniversity and an expert on multi-agent collaborative systems;
  • Deirdre K. Mulligan, a lawyer and a professor in the School of Information at the University of California, Berkeley, who collaborates with technologists to advance privacy and other democratic values through technical design and policy;

    This effort, called the One Hundred Year Study on Artificial Intelligence, or AI100, is the brainchild of computer scientist and Stanford alumnus Eric Horvitz who, among other credits, is a former president of the Association for the Advancement of Artificial Intelligence.

    In that capacity Horvitz convened a conference in 2009 at which top researchers considered advances in artificial intelligence and its influences on people and society, a discussion that illuminated the need for continuing study of AI’s long-term implications.

    Now, together with Russ Altman, a professor of bioengineering and computer science at Stanford, Horvitz has formed a committee that will select a panel to begin a series of periodic studies on how AI will affect automation, national security, psychology, ethics, law, privacy, democracy and other issues.

    “Artificial intelligence is one of the most profound undertakings in science, and one that will affect every aspect of human life,” said Stanford President John Hennessy, who helped initiate the project. “Given’s Stanford’s pioneering role in AI and our interdisciplinary mindset, we feel obliged and qualified to host a conversation about how artificial intelligence will affect our children and our children’s children.”

    Five leading academicians with diverse interests will join Horvitz and Altman in launching this effort. They are:

    • Barbara Grosz, the Higgins Professor of Natural Sciences at HarvardUniversity and an expert on multi-agent collaborative systems;
    • Deirdre K. Mulligan, a lawyer and a professor in the School of Information at the University of California, Berkeley, who collaborates with technologists to advance privacy and other democratic values through technical design and policy;
    • Yoav Shoham, a professor of computer science at Stanford, who seeks to incorporate common sense into AI;
    • Tom Mitchell, the E. Fredkin University Professor and chair of the machine learning department at Carnegie Mellon University, whose studies include how computers might learn to read the Web;
    • and Alan Mackworth, a professor of computer science at the University of British Columbia [emphases mine] and the Canada Research Chair in Artificial Intelligence, who built the world’s first soccer-playing robot.

    I wasn’t expecting to see a Canadian listed as a member of the AI100 standing committee and then I got another surprise (from the AI100 People webpage),

    Study Panels

    Study Panels are planned to convene every 5 years to examine some aspect of AI and its influences on society and the world. The first study panel was convened in late 2015 to study the likely impacts of AI on urban life by the year 2030, with a focus on typical North American cities.

    2015 Study Panel Members

    • Peter Stone, UT Austin, Chair
    • Rodney Brooks, Rethink Robotics
    • Erik Brynjolfsson, MIT
    • Ryan Calo, University of Washington
    • Oren Etzioni, Allen Institute for AI
    • Greg Hager, Johns Hopkins University
    • Julia Hirschberg, Columbia University
    • Shivaram Kalyanakrishnan, IIT Bombay
    • Ece Kamar, Microsoft
    • Sarit Kraus, Bar Ilan University
    • Kevin Leyton-Brown, [emphasis mine] UBC [University of British Columbia]
    • David Parkes, Harvard
    • Bill Press, UT Austin
    • AnnaLee (Anno) Saxenian, Berkeley
    • Julie Shah, MIT
    • Milind Tambe, USC
    • Astro Teller, Google[X]
  • [emphases mine] and the Canada Research Chair in Artificial Intelligence, who built the world’s first soccer-playing robot.

I wasn’t expecting to see a Canadian listed as a member of the AI100 standing committee and then I got another surprise (from the AI100 People webpage),

Study Panels

Study Panels are planned to convene every 5 years to examine some aspect of AI and its influences on society and the world. The first study panel was convened in late 2015 to study the likely impacts of AI on urban life by the year 2030, with a focus on typical North American cities.

2015 Study Panel Members

  • Peter Stone, UT Austin, Chair
  • Rodney Brooks, Rethink Robotics
  • Erik Brynjolfsson, MIT
  • Ryan Calo, University of Washington
  • Oren Etzioni, Allen Institute for AI
  • Greg Hager, Johns Hopkins University
  • Julia Hirschberg, Columbia University
  • Shivaram Kalyanakrishnan, IIT Bombay
  • Ece Kamar, Microsoft
  • Sarit Kraus, Bar Ilan University
  • Kevin Leyton-Brown, [emphasis mine] UBC [University of British Columbia]
  • David Parkes, Harvard
  • Bill Press, UT Austin
  • AnnaLee (Anno) Saxenian, Berkeley
  • Julie Shah, MIT
  • Milind Tambe, USC
  • Astro Teller, Google[X]

I see they have representation from Israel, India, and the private sector as well. Refreshingly, there’s more than one woman on the standing committee and in this first study group. It’s good to see these efforts at inclusiveness and I’m particularly delighted with the inclusion of an organization from Asia. All too often inclusiveness means Europe, especially the UK. So, it’s good (and I think important) to see a different range of representation.

As for the content of report, should anyone have opinions about it, please do let me know your thoughts in the blog comments.

Korea Advanced Institute of Science and Technology (KAIST) at summer 2016 World Economic Forum in China

From the Ideas Lab at the 2016 World Economic Forum at Davos to offering expertise at the 2016 World Economic Forum in Tanjin, China that is taking place from June 26 – 28, 2016.

Here’s more from a June 24, 2016 KAIST news release on EurekAlert,

Scientific and technological breakthroughs are more important than ever as a key agent to drive social, economic, and political changes and advancements in today’s world. The World Economic Forum (WEF), an international organization that provides one of the broadest engagement platforms to address issues of major concern to the global community, will discuss the effects of these breakthroughs at its 10th Annual Meeting of the New Champions, a.k.a., the Summer Davos Forum, in Tianjin, China, June 26-28, 2016.

Three professors from the Korea Advanced Institute of Science and Technology (KAIST) will join the Annual Meeting and offer their expertise in the fields of biotechnology, artificial intelligence, and robotics to explore the conference theme, “The Fourth Industrial Revolution and Its Transformational Impact.” The Fourth Industrial Revolution, a term coined by WEF founder, Klaus Schwab, is characterized by a range of new technologies that fuse the physical, digital, and biological worlds, such as the Internet of Things, cloud computing, and automation.

Distinguished Professor Sang Yup Lee of the Chemical and Biomolecular Engineering Department will speak at the Experts Reception to be held on June 25, 2016 on the topic of “The Summer Davos Forum and Science and Technology in Asia.” On June 27, 2016, he will participate in two separate discussion sessions.

In the first session entitled “What If Drugs Are Printed from the Internet?” Professor Lee will discuss the future of medicine being impacted by advancements in biotechnology and 3D printing technology with Nita A. Farahany, a Duke University professor, under the moderation of Clare Matterson, the Director of Strategy at Wellcome Trust in the United Kingdom. The discussants will note recent developments made in the way patients receive their medicine, for example, downloading drugs directly from the internet and the production of yeast strains to make opioids for pain treatment through systems metabolic engineering, and predicting how these emerging technologies will transform the landscape of the pharmaceutical industry in the years to come.

In the second session, “Lessons for Life,” Professor Lee will talk about how to nurture life-long learning and creativity to support personal and professional growth necessary in an era of the new industrial revolution.

During the Annual Meeting, Professors Jong-Hwan Kim of the Electrical Engineering School and David Hyunchul Shim of the Aerospace Department will host, together with researchers from Carnegie Mellon University and AnthroTronix, an engineering research and development company, a technological exhibition on robotics. Professor Kim, the founder of the internally renowned Robot World Cup, will showcase his humanoid micro-robots that play soccer, displaying their various cutting-edge technologies such as imaging processing, artificial intelligence, walking, and balancing. Professor Shim will present a human-like robotic piloting system, PIBOT, which autonomously operates a simulated flight program, grabbing control sticks and guiding an airplane from take offs to landings.

In addition, the two professors will join Professor Lee, who is also a moderator, to host a KAIST-led session on June 26, 2016, entitled “Science in Depth: From Deep Learning to Autonomous Machines.” Professors Kim and Shim will explore new opportunities and challenges in their fields from machine learning to autonomous robotics including unmanned vehicles and drones.

Since 2011, KAIST has been participating in the World Economic Forum’s two flagship conferences, the January and June Davos Forums, to introduce outstanding talents, share their latest research achievements, and interact with global leaders.

KAIST President Steve Kang said, “It is important for KAIST to be involved in global talks that identify issues critical to humanity and seek answers to solve them, where our skills and knowledge in science and technology could play a meaningful role. The Annual Meeting in China will become another venue to accomplish this.”

I mentioned KAIST and the Ideas Lab at the 2016 Davos meeting in this Nov. 20, 2015 posting and was able to clear up my (and possible other people’s) confusion as to what the Fourth Industrial revolution might be in my Dec. 3, 2015 posting.

I sing the body cyber: two projects funded by the US National Science Foundation

Points to anyone who recognized the reference to Walt Whitman’s poem, “I sing the body electric,” from his classic collection, Leaves of Grass (1867 edition; h/t Wikipedia entry). I wonder if the cyber physical systems (CPS) work being funded by the US National Science Foundation (NSF) in the US will occasion poetry too.

More practically, a May 15, 2015 news item on Nanowerk, describes two cyber physical systems (CPS) research projects newly funded by the NSF,

Today [May 12, 2015] the National Science Foundation (NSF) announced two, five-year, center-scale awards totaling $8.75 million to advance the state-of-the-art in medical and cyber-physical systems (CPS).

One project will develop “Cyberheart”–a platform for virtual, patient-specific human heart models and associated device therapies that can be used to improve and accelerate medical-device development and testing. The other project will combine teams of microrobots with synthetic cells to perform functions that may one day lead to tissue and organ re-generation.

CPS are engineered systems that are built from, and depend upon, the seamless integration of computation and physical components. Often called the “Internet of Things,” CPS enable capabilities that go beyond the embedded systems of today.

“NSF has been a leader in supporting research in cyber-physical systems, which has provided a foundation for putting the ‘smart’ in health, transportation, energy and infrastructure systems,” said Jim Kurose, head of Computer & Information Science & Engineering at NSF. “We look forward to the results of these two new awards, which paint a new and compelling vision for what’s possible for smart health.”

Cyber-physical systems have the potential to benefit many sectors of our society, including healthcare. While advances in sensors and wearable devices have the capacity to improve aspects of medical care, from disease prevention to emergency response, and synthetic biology and robotics hold the promise of regenerating and maintaining the body in radical new ways, little is known about how advances in CPS can integrate these technologies to improve health outcomes.

These new NSF-funded projects will investigate two very different ways that CPS can be used in the biological and medical realms.

A May 12, 2015 NSF news release (also on EurekAlert), which originated the news item, describes the two CPS projects,

Bio-CPS for engineering living cells

A team of leading computer scientists, roboticists and biologists from Boston University, the University of Pennsylvania and MIT have come together to develop a system that combines the capabilities of nano-scale robots with specially designed synthetic organisms. Together, they believe this hybrid “bio-CPS” will be capable of performing heretofore impossible functions, from microscopic assembly to cell sensing within the body.

“We bring together synthetic biology and micron-scale robotics to engineer the emergence of desired behaviors in populations of bacterial and mammalian cells,” said Calin Belta, a professor of mechanical engineering, systems engineering and bioinformatics at Boston University and principal investigator on the project. “This project will impact several application areas ranging from tissue engineering to drug development.”

The project builds on previous research by each team member in diverse disciplines and early proof-of-concept designs of bio-CPS. According to the team, the research is also driven by recent advances in the emerging field of synthetic biology, in particular the ability to rapidly incorporate new capabilities into simple cells. Researchers so far have not been able to control and coordinate the behavior of synthetic cells in isolation, but the introduction of microrobots that can be externally controlled may be transformative.

In this new project, the team will focus on bio-CPS with the ability to sense, transport and work together. As a demonstration of their idea, they will develop teams of synthetic cell/microrobot hybrids capable of constructing a complex, fabric-like surface.

Vijay Kumar (University of Pennsylvania), Ron Weiss (MIT), and Douglas Densmore (BU) are co-investigators of the project.

Medical-CPS and the ‘Cyberheart’

CPS such as wearable sensors and implantable devices are already being used to assess health, improve quality of life, provide cost-effective care and potentially speed up disease diagnosis and prevention. [emphasis mine]

Extending these efforts, researchers from seven leading universities and centers are working together to develop far more realistic cardiac and device models than currently exist. This so-called “Cyberheart” platform can be used to test and validate medical devices faster and at a far lower cost than existing methods. CyberHeart also can be used to design safe, patient-specific device therapies, thereby lowering the risk to the patient.

“Innovative ‘virtual’ design methodologies for implantable cardiac medical devices will speed device development and yield safer, more effective devices and device-based therapies, than is currently possible,” said Scott Smolka, a professor of computer science at Stony Brook University and one of the principal investigators on the award.

The group’s approach combines patient-specific computational models of heart dynamics with advanced mathematical techniques for analyzing how these models interact with medical devices. The analytical techniques can be used to detect potential flaws in device behavior early on during the device-design phase, before animal and human trials begin. They also can be used in a clinical setting to optimize device settings on a patient-by-patient basis before devices are implanted.

“We believe that our coordinated, multi-disciplinary approach, which balances theoretical, experimental and practical concerns, will yield transformational results in medical-device design and foundations of cyber-physical system verification,” Smolka said.

The team will develop virtual device models which can be coupled together with virtual heart models to realize a full virtual development platform that can be subjected to computational analysis and simulation techniques. Moreover, they are working with experimentalists who will study the behavior of virtual and actual devices on animals’ hearts.

Co-investigators on the project include Edmund Clarke (Carnegie Mellon University), Elizabeth Cherry (Rochester Institute of Technology), W. Rance Cleaveland (University of Maryland), Flavio Fenton (Georgia Tech), Rahul Mangharam (University of Pennsylvania), Arnab Ray (Fraunhofer Center for Experimental Software Engineering [Germany]) and James Glimm and Radu Grosu (Stony Brook University). Richard A. Gray of the U.S. Food and Drug Administration is another key contributor.

It is fascinating to observe how terminology is shifting from pacemakers and deep brain stimulators as implants to “CPS such as wearable sensors and implantable devices … .” A new category has been created, CPS, which conjoins medical devices with other sensing devices such as wearable fitness monitors found in the consumer market. I imagine it’s an attempt to quell fears about injecting strange things into or adding strange things to your body—microrobots and nanorobots partially derived from synthetic biology research which are “… capable of performing heretofore impossible functions, from microscopic assembly to cell sensing within the body.” They’ve also sneaked in a reference to synthetic biology, an area of research where some concerns have been expressed, from my March 19, 2013 post about a poll and synthetic biology concerns,

In our latest survey, conducted in January 2013, three-fourths of respondents say they have heard little or nothing about synthetic biology, a level consistent with that measured in 2010. While initial impressions about the science are largely undefined, these feelings do not necessarily become more positive as respondents learn more. The public has mixed reactions to specific synthetic biology applications, and almost one-third of respondents favor a ban “on synthetic biology research until we better understand its implications and risks,” while 61 percent think the science should move forward.

I imagine that for scientists, 61% in favour of more research is not particularly comforting given how easily and quickly public opinion can shift.

Centralized depot (Wikipedia style) for data on neurons

The decades worth of data that has been collected about the billions of neurons in the brain is astounding. To help scientists make sense of this “brain big data,” researchers at Carnegie Mellon University have used data mining to create http://www.neuroelectro.org, a publicly available website that acts like Wikipedia, indexing physiological information about neurons.

opens a March 30, 2015 news item on ScienceDaily (Note: A link has been removed),

The site will help to accelerate the advance of neuroscience research by providing a centralized resource for collecting and comparing data on neuronal function. A description of the data available and some of the analyses that can be performed using the site are published online by the Journal of Neurophysiology

A March 30, 2015 Carnegie Mellon University news release on EurekAlert, which originated the news item, describes, in more detail,  the endeavour and what the scientists hope to achieve,

The neurons in the brain can be divided into approximately 300 different types based on their physical and functional properties. Researchers have been studying the function and properties of many different types of neurons for decades. The resulting data is scattered across tens of thousands of papers in the scientific literature. Researchers at Carnegie Mellon turned to data mining to collect and organize these data in a way that will make possible, for the first time, new methods of analysis.

“If we want to think about building a brain or re-engineering the brain, we need to know what parts we’re working with,” said Nathan Urban, interim provost and director of Carnegie Mellon’s BrainHubSM neuroscience initiative. “We know a lot about neurons in some areas of the brain, but very little about neurons in others. To accelerate our understanding of neurons and their functions, we need to be able to easily determine whether what we already know about some neurons can be applied to others we know less about.”

Shreejoy J. Tripathy, who worked in Urban’s lab when he was a graduate student in the joint Carnegie Mellon/University of Pittsburgh Center for the Neural Basis of Cognition (CNBC) Program in Neural Computation, selected more than 10,000 published papers that contained physiological data describing how neurons responded to various inputs. He used text mining algorithms to “read” each of the papers. The text mining software found the portions of each paper that identified the type of neuron studied and then isolated the electrophysiological data related to the properties of that neuronal type. It also retrieved information about how each of the experiments in the literature was completed, and corrected the data to account for any differences that might be caused by the format of the experiment. Overall, Tripathy, who is now a postdoc at the University of British Columbia, was able to collect and standardize data for approximately 100 different types of neurons, which he published on the website http://www.neuroelectro.org.

Since the data on the website was collected using text mining, the researchers realized that it was likely to contain errors related to extraction and standardization. Urban and his group validated much of the data, but they also created a mechanism that allows site users to flag data for further evaluation. Users also can contribute new data with minimal intervention from site administrators, similar to Wikipedia.

“It’s a dynamic environment in which people can collect, refine and add data,” said Urban, who is the Dr. Frederick A. Schwertz Distinguished Professor of Life Sciences and a member of the CNBC. “It will be a useful resource to people doing neuroscience research all over the world.”

Ultimately, the website will help researchers find groups of neurons that share the same physiological properties, which could provide a better understanding of how a neuron functions. For example, if a researcher finds that a type of neuron in the brain’s neocortex fires spontaneously, they can look up other neurons that fire spontaneously and access research papers that address this type of neuron. Using that information, they can quickly form hypotheses about whether or not the same mechanisms are at play in both the newly discovered and previously studied neurons.

To demonstrate how neuroelectro.org could be used, the researchers compared the electrophysiological data from more than 30 neuron types that had been most heavily studied in the literature. These included pyramidal neurons in the hippocampus, which are responsible for memory, and dopamine neurons in the midbrain, thought to be responsible for reward-seeking behaviors and addiction, among others. The site was able to find many expected similarities between the different types of neurons, and some similarities that were a surprise to researchers. Those surprises represent promising areas for future research.

In ongoing work, the Carnegie Mellon researchers are comparing the data on neuroelectro.org with other kinds of data, including data on neurons’ patterns of gene expression. For example, Urban’s group is using another publicly available resource, the Allen Brain Atlas, to find whether groups of neurons with similar electrical function have similar gene expression.

“It would take a lot of time, effort and money to determine both the physiological properties of a neuron and its gene expression,” Urban said. “Our website will help guide this research, making it much more efficient.”

The researchers have produced a brief video describing neurons and their project,

Here’s a link to and a citation for the researchers’ paper,

Brain-wide analysis of electrophysiological diversity yields novel categorization of mammalian neuron types by Shreejoy J Tripathy, Shawn D. Burton, Matthew Geramita, Richard C. Gerkin, and Nathaniel N. Urban. Journal of Neurophysiology Published 25 March 2015 DOI: 10.1152/jn.00237.2015

This paper is behind a paywall.

Think of your skin as a smartphone

A March 5, 2015 news item on Azonano highlights work on flexible, transparent electronics designed to adhere to your skin,

Someone wearing a smartwatch can look at a calendar or receive e-mails without having to reach further than their wrist. However, the interaction area offered by the watch face is both fixed and small, making it difficult to actually hit individual buttons with adequate precision. A method currently being developed by a team of computer scientists from Saarbrücken in collaboration with researchers from Carnegie Mellon University in the USA may provide a solution to this problem. They have developed touch-sensitive stickers made from flexible silicone and electrically conducting sensors that can be worn on the skin.

Here’s what the sticker looks like,

Caption: The stickers are skin-friendly and are attached to the skin with a biocompatible, medical-grade adhesive. Credit: Oliver Dietze

Caption: The stickers are skin-friendly and are attached to the skin with a biocompatible, medical-grade adhesive. Credit: Oliver Dietze Courtesy: Saarland University

A March 4, 2015 University of Saarland press release on EurekAlert, which originated the news item, expands on the theme on connecting technology to the body,

… The stickers can act as an input space that receives and executes commands and thus controls mobile devices. Depending on the type of skin sticker used, applying pressure to the sticker could, for example, answer an incoming call or adjust the volume of a music player. ‘The stickers allow us to enlarge the input space accessible to the user as they can be attached practically anywhere on the body,’ explains Martin Weigel, a PhD student in the team led by Jürgen Steimle at the Cluster of Excellence at Saarland University. The ‘iSkin’ approach enables the human body to become more closely connected to technology. [emphasis mine]

Users can also design their iSkin patches on a computer beforehand to suit their individual tastes. ‘A simple graphics program is all you need,’ says Weigel. One sticker, for instance, is based on musical notation, another is circular in shape like an LP. The silicone used to fabricate the sensor patches makes them flexible and stretchable. ‘This makes them easier to use in an everyday environment. The music player can simply be rolled up and put in a pocket,’ explains Jürgen Steimle, who heads the ‘Embodied Interaction Group’ in which Weigel is doing his research. ‘They are also skin-friendly, as they are attached to the skin with a biocompatible, medical-grade adhesive. Users can therefore decide where they want to position the sensor patch and how long they want to wear it.’

In addition to controlling music or phone calls, the iSkin technology could be used for many other applications. For example, a keyboard sticker could be used to type and send messages. Currently the sensor stickers are connected via cable to a computer system. According to Steimle, in-built microchips may in future allow the skin-worn sensor patches to communicate wirelessly with other mobile devices.

The publication about ‘iSkin’ won the ‘Best Paper Award’ at the SIGCHI conference, which ranks among the most important conferences within the research area of human computer interaction. The researchers will present their project at the SIGCHI conference in April [2015] in Seoul, Korea, and beforehand at the computer expo Cebit, which takes place from the 16th until the 20th of March [2015] in Hannover (hall 9, booth E13).

Hopefully, you’ll have a chance to catch researchers’ presentation at the SIGCHI or Cebit events.

That quote about enabling “the human body to become more closely connected to technology” reminds me of a tag (machine/flesh) I created to categorize research of this nature. I explained the idea being explored in a May 9, 2012 posting titled: Everything becomes part machine,

Machine/flesh. That’s what I’ve taken to calling this process of integrating machinery into our and, as I newly realized, other animals’ flesh.

I think my latest previous post on this topic was a Jan. 10, 2014 post titled: Chemistry of Cyborgs: review of the state of the art by German researchers.

Nanomaterials and safety: Europe’s non-governmental agencies make recommendations; (US) Arizona State University initiative; and Japan’s voluntary carbon nanotube management

I have three news items which have one thing in common, they concern nanomaterials and safety. Two of these of items are fairly recent; the one about Japan has been sitting in my drafts folder for months and I’m including it here because if I don’t do it now, I never will.

First, there’s an April 7, 2014 news item on Nanowerk (h/t) about European non-governmental agencies (CIEL; the Center for International Environmental Law and its partners) and their recommendations regarding nanomaterials and safety. From the CIEL April 2014 news release,

CIEL and European partners* publish position paper on the regulation of nanomaterials at a meeting of EU competent authorities

*ClientEarth, The European Environmental Bureau, European citizen’s Organization for Standardisation, The European consumer voice in Standardisation –ANEC, and Health Care Without Harm, Bureau of European Consumers

… Current EU legislation does not guarantee that all nanomaterials on the market are safe by being assessed separately from the bulk form of the substance. Therefore, we ask the European Commission to come forward with concrete proposals for a comprehensive revision of the existing legal framework addressing the potential risks of nanomaterials.

1. Nanomaterials are different from other substances.

We are concerned that EU law does not take account of the fact that nano forms of a substance are different and have different intrinsic properties from their bulk counterpart. Therefore, we call for this principle to be explicitly established in the REACH, and Classification Labeling and Packaging (CLP) regulations, as well as in all other relevant legislation. To ensure adequate consideration, the submission of comprehensive substance identity and characterization data for all nanomaterials on the market, as defined by the Commission’s proposal for a nanomaterial definition, should be required.

Similarly, we call on the European Commission and EU Member States to ensure that nanomaterials do not benefit from the delays granted under REACH to phase-in substances, on the basis of information collected on their bulk form.

Further, nanomaterials, due to their properties, are generally much more reactive than their bulk counterpart, thereby increasing the risk of harmful impact of nanomaterials compared to an equivalent mass of bulk material. Therefore, the present REACH thresholds for the registration of nanomaterials should be lowered.

Before 2018, all nanomaterials on the market produced in amounts of over 10kg/year must be registered with ECHA on the basis of a full registration dossier specific to the nanoform.

2. Risk from nanomaterials must be assessed

Six years after the entry into force of the REACH registration requirements, only nine substances have been registered as nanomaterials despite the much wider number of substances already on the EU market, as demonstrated by existing inventories. Furthermore, the poor quality of those few nano registration dossiers does not enable their risks to be properly assessed. To confirm the conclusions of the Commission’s nano regulatory review assuming that not all nanomaterials are toxic, relevant EU legislation should be amended to ensure that all nanomaterials are adequately assessed for their hazardous properties.

Given the concerns about novel properties of nanomaterials, under REACH, all registration dossiers of nanomaterials must include a chemical safety assessment and must comply with the same information submission requirements currently required for substances classified as Carcinogenic, Mutagenic or Reprotoxic (CMRs).

3. Nanomaterials should be thoroughly evaluated

Pending the thorough risk assessment of nanomaterials demonstrated by comprehensive and up-to-date registration dossiers for all nanoforms on the market, we call on ECHA to systematically check compliance for all nanoforms, as well as check the compliance of all dossiers which, due to uncertainties in the description of their identity and characterization, are suspected of including substances in the nanoform. Further, the Community Roling Action Plan (CoRAP) list should include all identified substances in the nanoform and evaluation should be carried out without delay.

4. Information on nanomaterials must be collected and disseminated

All EU citizens have the right to know which products contain nanomaterials as well as the right to know about their risks to health and environment and overall level of exposure. Given the uncertainties surrounding nanomaterials, the Commission must guarantee that members of the public are in a position to exercise their right to know and to make informed choices pending thorough risk assessments of nanomaterials on the market.

Therefore, a publicly accessible inventory of nanomaterials and consumer products containing nanomaterials must be established at European level. Moreover, specific nano-labelling or declaration requirements must be established for all nano-containing products (detergents, aerosols, sprays, paints, medical devices, etc.) in addition to those applicable to food, cosmetics and biocides which are required under existing obligations.

5. REACH enforcement activities should tackle nanomaterials

REACH’s fundamental principle of “no data, no market” should be thoroughly implemented. Therefore, nanomaterials that are on the market without a meaningful minimum set of data to allow the assessment of their hazards and risks should be denied market access through enforcement activities. In the meantime, we ask the EU Member States and manufacturers to use a precautionary approach in the assessment, production, use and disposal of nanomaterials

This comes on the heels of CIEL’s March 2014 news release announcing a new three-year joint project concerning nanomaterials and safety and responsible development,

Supported by the VELUX foundations, CIEL and ECOS (the European Citizen’s Organization for Standardization) are launching a three-year project aiming to ensure that risk assessment methodologies and risk management tools help guide regulators towards the adoption of a precaution-based regulatory framework for the responsible development of nanomaterials in the EU and beyond.

Together with our project partner the German Öko-Institut, CIEL and ECOS will participate in the work of the standardization organizations Comité Européen de Normalisation and International Standards Organization, and this work of the OECD [Organization for Economic Cooperation and Development], especially related to health, environmental and safety aspects of nanomaterials and exposure and risk assessment. We will translate progress into understandable information and issue policy recommendations to guide regulators and support environmental NGOs in their campaigns for the safe and sustainable production and use of nanomaterials.

The VILLUM FOUNDATION and the VELUX FOUNDATION are non-profit foundations created by Villum Kann Rasmussen, the founder of the VELUX Group and other entities in the VKR Group, whose mission it is to bring daylight, fresh air and a better environment into people’s everyday lives.

Meanwhile in the US, an April 6, 2014 news item on Nanowerk announces a new research network, based at Arizona State University (ASU), devoted to studying health and environmental risks of nanomaterials,

Arizona State University researchers will lead a multi-university project to aid industry in understanding and predicting the potential health and environmental risks from nanomaterials.

Nanoparticles, which are approximately 1 to 100 nanometers in size, are used in an increasing number of consumer products to provide texture, resiliency and, in some cases, antibacterial protection.

The U.S. Environmental Protection Agency (EPA) has awarded a grant of $5 million over the next four years to support the LCnano Network as part of the Life Cycle of Nanomaterials project, which will focus on helping to ensure the safety of nanomaterials throughout their life cycles – from the manufacture to the use and disposal of the products that contain these engineered materials.

An April 1, 2014 ASU news release, which originated the news item, provides more details and includes information about project partners which I’m happy to note include nanoHUB and the Nanoscale Informal Science Education Network (NISENet) in addition to the other universities,

Paul Westerhoff is the LCnano Network director, as well as the associate dean of research for ASU’s Ira A. Fulton Schools of Engineering and a professor in the School of Sustainable Engineering and the Built Environment.

The project will team engineers, chemists, toxicologists and social scientists from ASU, Johns Hopkins, Duke, Carnegie Mellon, Purdue, Yale, Oregon’s state universities, the Colorado School of Mines and the University of Illinois-Chicago.

Engineered nanomaterials of silver, titanium, silica and carbon are among the most commonly used. They are dispersed in common liquids and food products, embedded in the polymers from which many products are made and attached to textiles, including clothing.

Nanomaterials provide clear benefits for many products, Westerhoff says, but there remains “a big knowledge gap” about how, or if, nanomaterials are released from consumer products into the environment as they move through their life cycles, eventually ending up in soils and water systems.

“We hope to help industry make sure that the kinds of products that engineered nanomaterials enable them to create are safe for the environment,” Westerhoff says.

“We will develop molecular-level fundamental theories to ensure the manufacturing processes for these products is safer,” he explains, “and provide databases of measurements of the properties and behavior of nanomaterials before, during and after their use in consumer products.”

Among the bigger questions the LCnano Network will investigate are whether nanomaterials can become toxic through exposure to other materials or the biological environs they come in contact with over the course of their life cycles, Westerhoff says.

The researchers will collaborate with industry – both large and small companies – and government laboratories to find ways of reducing such uncertainties.

Among the objectives is to provide a framework for product design and manufacturing that preserves the commercial value of the products using nanomaterials, but minimizes potentially adverse environmental and health hazards.

In pursuing that goal, the network team will also be developing technologies to better detect and predict potential nanomaterial impacts.

Beyond that, the LCnano Network also plans to increase awareness about efforts to protect public safety as engineered nanomaterials in products become more prevalent.

The grant will enable the project team to develop educational programs, including a museum exhibit about nanomaterials based on the LCnano Network project. The exhibit will be deployed through a partnership with the Arizona Science Center and researchers who have worked with the Nanoscale Informal Science Education Network.

The team also plans to make information about its research progress available on the nanotechnology industry website Nanohub.org.

“We hope to use Nanohub both as an internal virtual networking tool for the research team, and as a portal to post the outcomes and products of our research for public access,” Westerhoff says.

The grant will also support the participation of graduate students in the Science Outside the Lab program, which educates students on how science and engineering research can help shape public policy.

Other ASU faculty members involved in the LCnano Network project are:

• Pierre Herckes, associate professor, Department of Chemistry and Biochemistry, College of Liberal Arts and Sciences
• Kiril Hristovski, assistant professor, Department of Engineering, College of Technology and Innovation
• Thomas Seager, associate professor, School of Sustainable Engineering and the Built Environment
• David Guston, professor and director, Consortium for Science, Policy and Outcomes
• Ira Bennett, assistant research professor, Consortium for Science, Policy and Outcomes
• Jameson Wetmore, associate professor, Consortium for Science, Policy and Outcomes, and School of Human Evolution and Social Change

I hope to hear more about the LCnano Network as it progresses.

Finally, there was this Nov. 12, 2013 news item on Nanowerk about instituting  voluntary safety protocols for carbon nanotubes in Japan,

Technology Research Association for Single Wall Carbon Nanotubes (TASC)—a consortium of nine companies and the National Institute of Advanced Industrial Science and Technology (AIST) — is developing voluntary safety management techniques for carbon nanotubes (CNTs) under the project (no. P10024) “Innovative carbon nanotubes composite materials project toward achieving a low-carbon society,” which is sponsored by the New Energy and Industrial Technology Development Organization (NEDO).

Lynn Bergeson’s Nov. 15, 2013 posting on nanotech.lawbc.com provides a few more details abut the TASC/AIST carbon nanotube project (Note: A link has been removed),

Japan’s National Institute of Advanced Industrial Science and Technology (AIST) announced in October 2013 a voluntary guidance document on measuring airborne carbon nanotubes (CNT) in workplaces. … The guidance summarizes the available practical methods for measuring airborne CNTs:  (1) on-line aerosol measurement; (2) off-line quantitative analysis (e.g., thermal carbon analysis); and (3) sample collection for electron microscope observation. …

You can  download two protocol documents (Guide to measuring airborne carbon nanotubes in workplaces and/or The protocols of preparation, characterization and in vitro cell based assays for safety testing of carbon nanotubes), another has been published since Nov. 2013, from the AIST’s Developing voluntary safety management techniques for carbon nanotubes (CNTs): Protocol and Guide webpage., Both documents are also available in Japanese and you can link to the Japanese language version of the site from the webpage.

Duke University’s (North Carolina, US) Center for Environmental Implications of NanoTechnology (CEINT) wins $15M grant

A Nov. 13, 2013 news item on Azonano announces that the Center for Environmental Implications of Nanotechnology (CEINT) at Duke University has been awarded $15M,

A pioneering, multi-institution research center headquartered at Duke’s Pratt School of Engineering has just won $15-million grant renewal from the National Science Foundation and the US Environmental Protection Agency to continue learning more about where nanoparticles accumulate, how they interact with other chemicals and how they affect the environment.

Founded in 2008, the Center for Environmental Implications of NanoTechnology (CEINT) has been evaluating the effect of long-term nanomaterial exposure on organisms and ecosystems.

“The previous focus has been on studying simple, uniform nanomaterials in simple environments,” said Mark Wiesner, James L. Meriam Professor of Civil & Environmental Engineering and director of CEINT. “As we look to the next five years, we envision a dramatically different landscape. We will be evaluating more complex nanomaterials in more realistic natural environments such as agricultural lands and water treatment systems where these materials are likely to be found.”

The Nov. 11, 2013 Duke University news release by Karyn Hede, which originated the news item, provides some history and context for CEINT (Note: Links have been removed),

When CEINT formed, little research had been done on how materials manufactured at the nanoscale—about 1/10,000th the diameter of a human hair—enter the environment and whether their size and unique properties render them a new category of environmental risk. For example, nanoparticles can be highly reactive with other chemicals in the environment and had been shown to disrupt activities in living organisms. Indeed, nanosilver is used in clothing precisely because it effectively kills odor-causing bacteria.

To tackle this expansive research agenda, CEINT leadership assembled a multi-institutional research team encompassing expertise in ecosystems biology, chemistry, geology, materials science, computational science, mathematical modeling and other specialties, to complement its engineering expertise. The Center has 29 faculty collaborators, as well as 76 graduate and undergraduate students participating in research. Over its first five years, CEINT has answered some of the most pressing questions about environmental risk and has learned where to focus future research.

The center also pioneered the use of a new test chamber, called a mesocosm, that replicates a small wetland environment. “Over the long term, we want to evaluate how nanoparticles bioaccumulate in complex food webs,” said Emily Bernhardt, an associate professor of biology at Duke and ecosystem ecologist who helped design the simulated ecosystems. “The additional funding will allow us to study the subtle effect of low-dose exposure on ecosystems over time, as well as complex interactions among nanoparticles and other environmental contaminants.”

Looking forward, the investigators at CEINT plan to expand the use of systems modeling and to create a “knowledge commons,” a place to store various kinds of data that can then be analyzed as a whole, said CEINT Executive Director Christine Hendren.

“Our investigators and collaborators are located across the globe,” Hendren added. “We are committed to disseminating information that can be translated into responsible regulatory frameworks and that will be available to compare with results of future research.”

Key findings from CEINT’s first five years include:

Naturally occurring nanomaterials far outnumber engineered particles. CEINT scientist Michael Hochella, a geoscientist at Virginia Tech, inventoried nanoparticles and concluded that natural nanoparticles are found everywhere, from dust in the atmosphere to sea spray to volcanoes. The environmental risks of these natural nanomaterials are difficult to separate from engineered nanomaterials.

Engineered nanoparticles change once they enter the environment. Gregory V. Lowry, deputy director of CEINT and professor at Carnegie Mellon University, Pittsburgh, along with colleagues from the University of Birmingham, U.K. and the University of South Carolina found that the relatively large surface area of nanoparticles makes them highly reactive once they enter the environment. These transformations will alter their movement and toxicity and must be considered when studying nanomaterials. Their review article on this topic was named the best feature article of 2012 by the journal Environmental Science and Technology.

Nanoparticles can be visualized, even in complex environmental samples. A research team led by CEINT investigators Jie Liu, associate professor of chemistry at Duke, and CEINT Director Mark Wiesner showed that more than a dozen types of engineered nanoparticles, including silver, gold, and titanium dioxide, along with carbon nanotubes, can be surveyed using a technique called hyperspectral imaging, which measures light scattering caused by different types of nanoparticles. The new technique, co-developed by postdoctoral researcher Appala Raju Badireddy, is sensitive enough to analyze nanoparticles found in water samples ranging from ultrapurified to wastewater. It will be used in future long-term studies of how nanoparticles move and accumulate in ecological systems.

It is possible to estimate current and future volume of engineered nanomaterials. Understanding the volume of nanomaterials being produced and released into the environment is a crucial factor in risk assessment. CEINT researchers led by Christine Hendren measured the upper- and lower-bound annual U.S. production of five classes of nanomaterials, totaling as much as a combined 40,000 metric tons annually as of 2011.

Silver nanoparticles caused environmental stress in a simulated wetland environment. CEINT has developed  “mesocosms,”  open-air terrarium-like structures that simulate wetland ecosystems that can be evaluated over time. Even low doses of silver nanoparticles used in many consumer products produced about a third less biomass in a mesocosm. The researchers will now  look at how nanomaterials are transferred between organisms in a mesocosm.

I have written about CEINT and its work, including the mesocosm, many times. My August 15, 2011 posting offers an introduction to the CEINT mesocosm.