Tag Archives: Catalan Institute of Nanotechnology

Natural and engineered nanoparticles in an Orion magazine podcast & in a NanoBosc machinima piece

The Jan. 16, 2013 Orion magazine podcast discussion (more about that later) regarding safety and engineered and natural nanoparticles arose from an article (worth reading) by Heather Millar in the magazine’s January/February 2013 issue, Pandora’s Boxes.

For anyone familiar with the term ‘Pandora’s box’, Millar’s and the magazine’s bias is made clear immediately, nanoparticles are small and threatening. From the Pandora’s box Wikipedia essay,

Today, the phrase “to open Pandora’s box” means to perform an action that may seem small or innocuous, but that turns out to have severe and far-reaching consequences. [emphases mine]

Millar’s article is well written and offers some excellent explanations. For example, there’s this from Pandora’s Boxes,

So chemistry and physics work differently if you’re a nanoparticle. You’re not as small as an atom or a molecule, but you’re also not even as big as a cell, so you’re definitely not of the macro world either. You exist in an undiscovered country somewhere between the molecular and the macroscopic. Here, the laws of the very small (quantum mechanics) merge quirkily with the laws of the very large (classical physics). Some say nanomaterials bring a third dimension to chemistry’s periodic table, because at the nano scale, long-established rules and groupings don’t necessarily hold up.

Then, she has some dodgier material,

Yet size seems to be a double-edged sword in the nanoverse. Because nanoparticles are so small, they can slip past the body’s various barriers: skin, the blood-brain barrier, the lining of the gut and airways. Once inside, these tiny particles can bind to many things. They seem to build up over time, especially in the brain. Some cause inflammation and cell damage. Preliminary research shows this can harm the organs of lab animals, though the results of some of these studies are a matter of debate.

Some published research has shown that inhaled nanoparticles actually become more toxic as they get smaller. Nano–titanium dioxide, one of the most commonly used nanoparticles (Pop-Tarts, sunblock), has been shown to damage DNA in animals and prematurely corrode metals. Carbon nanotubes seem to penetrate lungs even more deeply than asbestos. [emphases mine]

I think it’s worth ‘unpacking’ these two paragraphs, so here goes.  Slipping past the body’s barriers is a lot more difficult than Millar suggests in the first paragraph. My July 4, 2012 posting on breakthough research  where they penetrated the skin barrier includes this comment from me,

After all the concerns  about nanosunscreens and nanoparticles penetrating the skin raised by civil society groups, the Friends of the Earth in particular, it’s interesting to note that doctors and scientists consider penetration of the skin barrier to be extremely difficult. Of course, they seem to have solved [as of July 2012] that problem which means the chorus of concerns may rise to new heights.

I had a followup in my Oct.3, 2012 posting titled, Can nanoparticles pass through the skin or not?, suggesting there’s still a lot of confusion about this topic even within the scientific community.

Moving on to the other ‘breaches’. As I recall, there was a recent  (Autumn 2012?) nanomedicine research announcement that the blood-brain barrier was breached by nanoparticles. I haven’t yet encountered any mention of breaching the gut and I mention lungs in my next paragraph where I discuss carbon nanotubes.

As for that second paragraph, it’s an example of scaremongering. ‘Inhaled nanoparticles become more toxic as their size decreases’—ok. Why mention nano-titanium oxide in pop tarts and sunblocks, which are not inhaled, in the followup sentence? As for the reference to DNA damage and corroded metals further on, this is straight out of the Friends of the Earth literature which often cites research in a misleading fashion including those two pieces.  There is research supporting part of Millar’s statement about carbon nanotubes—provided they are long and multiwalled. In fact, as they get shorter, the resemblance to asbestos fibers in the lungs or elsewhere seems to disappear as per my Aug 22, 2012 posting and my Jan. 16, 2013 posting.

You don’t need to read the article before listening to the fascinating Jan. 16, 2013 Orion magazine podcast with Millar (reading portions of her article) and expert guests, Mark Wiesner from Duke University and director of their Center for Environmental Implications of Nano Technology (CEINT was first mentioned in my April 15, 2011 posting), Ronald Sandler from Northeastern University and author of Nanotechnology: The Social And Ethical Issues, and Jaydee Hanson, policy director for the International Center for Technology Assessment.

The discussion between Wiesner, Sandler, and Hanson about engineered and natural nanoparticles is why I’ve called the podcast fascinating. Hearing these experts ‘fence’ with each other highlights the complexities and subtleties inherent in discussions about emerging technologies (nano or other) and risk. Millar did not participate in that aspect of the conversation and I imagine that’s due to the fact that she has only been researching this area for six months while the other speakers all have several years worth experience individually and, I suspect, may have debated each other previously.

At the risk of enthusing too much about naturally occurring nanoparticles, I’m mentioning, again (my Feb. 1, 2013 posting), the recently published book by Nanowiki, Nanoparticles Before Nanotechnology, in the context of the stunning visual images used to illustrate the book. I commented previously about them and Victor Puntes of the Inorganic Nanoparticles Group at the Catalan Institute of Nanotechnology (ICN) and one of the creators of this imagery, kindly directed me to a machinima piece (derived from the NanoBosc Second Life community) which is the source for the imagery. Here it is,

NanoBosc from Per4mance MetaLES ..O.. on Vimeo.

Happy Weekend!

Brits go for the graphene gusto in Warsaw but where are the Swedes?

The Universities of Cambridge, Manchester, and Lancaster (all in the UK) have launched an exhibition extolling graphene in Warsaw (Poland). From the Nov. 25, 2011 news item on physorg.com,

The European programme for research into graphene, for which the Universities of Cambridge, Manchester and Lancaster are leading the technology roadmap, today unveiled an exhibition and new videos communicating the potential for the material that could revolutionise the electronics industries. [emphasis mine]

I’m a little confused as I thought the Swedish partner was either the leader or one of the lead partners.

I found this Nov. 24, 2011 news release from the University of Cambridge where the announcement was made,

An exhibition has been launched in Warsaw today highlighting the development and future of graphene, the ‘wonder substance’ set to change the face of electronics manufacturing, as part of the Graphene Flagship Pilot (GFP), aimed at developing the proposal for a 1 billion European programme conducting research and development on graphene, for which the Universities of Cambridge, Manchester and Lancaster are leading the technology roadmap.

The exhibition covers the development of the material, the present research and the vast potential for future applications. The GFP also released two videos aimed at introducing this extraordinary material to a wider audience, ranging from stakeholders and politicians to the general public. The videos also convey the mission and vision of the graphene initiative.

“Our mission is to take graphene and related layered materials from a state of raw potential to a point where they can revolutionise multiple industries – from flexible, wearable and transparent electronics to high performance computing and spintronics” says Professor Andrea Ferrari, Head of the Nanomaterials and Spectroscopy Group.

“This material will bring a new dimension to future technology – a faster, thinner, stronger, flexible, and broadband revolution. Our program will put Europe firmly at the heart of the process, with a manifold return on the investment of 1 billion Euros, both in terms of technological innovation and economic exploitation.”

Graphene, a single layer of carbon atoms, could prove to be the most versatile substance available to mankind. Stronger than diamond, yet lightweight and flexible, graphene enables electrons to flow much faster than silicon. It is also a transparent conductor, combining electrical and optical functionalities in an exceptional way.

This is connected to the European Union’s FET11 flagship projects initiative (described at more length in my June 13, 2011 graphene roundup posting) where six different research areas have been funded in preparation for a major funding round in late 2012 when two research projects will  be selected for a prize of 1B Euros each.

I find the communications strategy mildly confusing since the original project team listed Jari Kinaret of Chalmers University of Technology in Sweden (as highlighted in my Nov. 9, 2011 posting about funding for the Swedish effort with no mention of the other partners). The flagship group appears to be working both cooperatively and separately on the same project.

I did get a little curious as to the membership for this graphene research group (consortium) and found this,

1  CHALMERS UNIVERSITY OF TECHNOLOGY, Sweden

2  THE UNIVERSITY OF MANCHESTER,  United Kingdom

3  LANCASTER UNIVERSITY, United Kingdom

4  THE UNIVERSITY OF CAMBRIDGE, United Kingdom

5  AMO GMBH, Germany

6  CATALAN INSTITUTE OF NANOTECHNOLOGY, Spain

7  NATIONAL RESEARCH COUNCIL OF ITALY, Italy

8  NOKIA OYJ, Finland

9  EUROPEAN SCIENCE FOUNDATION, France

You can find more information about the Graphene Flagship Project here although they don’t appear to update the information very frequently.