Tag Archives: cellulose nanofiber

Cleaning up disasters with Hokusai’s blue and cellulose nanofibers to clean up contaminated soil and water in Fukushima

The Great Wave off Kanagawa (Under a wave off Kanagawa”), also known as The Great Wave or simply The Wave, by Katsushika Hokusai – Metropolitan Museum of Art, online database: entry 45434, Public Domain, https://commons.wikimedia.org/w/index.php?curid=2798407

I thought it might be a good idea to embed a copy of Hokusai’s Great Wave and the blue these scientists in Japan have used as their inspiration. (By the way, it seems these scientists collaborated with Mildred Dresselhaus who died at the age of 86, a few months after their paper was published. In honour of he and before the latest, here’s my Feb. 23, 2017 posting about the ‘Queen of Carbon’.)

Now onto more current news, from an Oct. 13, 2017 news item on Nanowerk (Note: A link has been removed),

By combining the same Prussian blue pigment used in the works of popular Edo-period artist Hokusai and cellulose nanofiber, a raw material of paper, a University of Tokyo research team succeeded in synthesizing compound nanoparticles, comprising organic and inorganic substances (Scientific Reports, “Cellulose nanofiber backboned Prussian blue nanoparticles as powerful adsorbents for the selective elimination of radioactive cesium”). This new class of organic/inorganic composite nanoparticles is able to selectively adsorb, or collect on the surface, radioactive cesium.

The team subsequently developed sponges from these nanoparticles that proved highly effective in decontaminating the water and soil in Fukushima Prefecture exposed to radioactivity following the nuclear accident there in March 2011.

I think these are the actual sponges not an artist’s impression,

Decontamination sponge spawned from current study
Cellulose nanofiber-Prussian blue compounds are permanently anchored in spongiform chambers (cells) in this decontamination sponge. It can thus be used as a powerful adsorbent for selectively eliminating radioactive cesium. © 2017 Sakata & Mori Laboratory.

An Oct. 13, 2017 University of Tokyo press release, which originated the news item, provides more detail about the sponges and the difficulties of remediating radioactive air and soil,

Removing radioactive materials such as cesium-134 and -137 from contaminated seawater or soil is not an easy job. First of all, a huge amount of similar substances with competing functions has to be removed from the area, an extremely difficult task. Prussian blue (ferric hexacyanoferrate) has a jungle gym-like colloidal structure, and the size of its single cubic orifice, or opening, is a near-perfect match to the size of cesium ions; therefore, it is prescribed as medication for patients exposed to radiation for selectively adsorbing cesium. However, as Prussian blue is highly attracted to water, recovering it becomes highly difficult once it is dissolved into the environment; for this reason, its use in the field for decontamination has been limited.

Taking a hint from the Prussian blue in Hokusai’s woodblock prints not losing their color even when getting wet from rain, the team led by Professor Ichiro Sakata and Project Professor Bunshi Fugetsu at the University of Tokyo’s Nanotechnology Innovation Research Unit at the Policy Alternatives Research Institute, and Project Researcher Adavan Kiliyankil Vipin at the Graduate School of Engineering developed an insoluble nanoparticle obtained from combining cellulose and Prussian blue—Hokusai had in fact formed a chemical bond in his handling of Prussian blue and paper (cellulose).

The scientists created this cellulose-Prussian blue combined nanoparticle by first preparing cellulose nanofibers using a process called TEMPO oxidization and securing ferric ions (III) onto them, then introduced a certain amount of hexacyanoferrate, which adhered to Prussian blue nanoparticles with a diameter ranging from 5–10 nanometers. The nanoparticles obtained in this way were highly resistant to water, and moreover, were capable of adsorbing 139 mg of radioactive cesium ion per gram.

Field studies on soil decontamination in Fukushima have been underway since last year. A highly effective approach has been to sow and allow plant seeds to germinate inside the sponge made from the nanoparticles, then getting the plants’ roots to take up cesium ions from the soil to the sponge. Water can significantly shorten decontamination times compared to soil, which usually requires extracting cesium from it with a solvent.

It has been more than six years since the radioactive fallout from a series of accidents at the Fukushima Daiichi nuclear power plant following the giant earthquake and tsunami in northeastern Japan. Decontamination with the cellulose nanofiber-Prussian blue compound can lead to new solutions for contamination in disaster-stricken areas.

“I was pondering about how Prussian blue immediately gets dissolved in water when I happened upon a Hokusai woodblock print, and how the indigo color remained firmly set in the paper, without bleeding, even after all these years,” reflects Fugetsu. He continues, “That revelation provided a clue for a solution.”

“The amount of research on cesium decontamination increased after the Chernobyl nuclear power plant accident, but a lot of the studies were limited to being academic and insufficient for practical application in Fukushima,” says Vipin. He adds, “Our research offers practical applications and has high potential for decontamination on an industrial scale not only in Fukushima but also in other cesium-contaminated areas.”

Here’s a link to and a citation for the paper,

Cellulose nanofiber backboned Prussian blue nanoparticles as powerful adsorbents for the selective elimination of radioactive cesium by Adavan Kiliyankil Vipin, Bunshi Fugetsu, Ichiro Sakata, Akira Isogai, Morinobu Endo, Mingda Li, & Mildred S. Dresselhaus. Scientific Reports 6, Article number: 37009 (2016) doi:10.1038/srep37009 Published online: 15 November 2016

This is open access.

Nanocellulose from sugarcane?

Iran adds to this blog’s growing catalogue of plant materials from which nanocellulose can be derived. From an April 27, 2014 news item on Nanowerk,

Researchers from University of Tehran utilized sugarcane waste to produce nanocomposite film (“All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application”).

The product has unique physical and mechanical properties and has many applications in packaging, glue making, medicine and electronic industries.

An April 28, 2014 Iran Nanotechnology Initiative Council (INIC) news release, which originated the news item, describes the advantages of this potential product and the research that led to it,

These nanofibers have simpler, faster and more cost-effective production method in comparison with other production methods. The size of the produced cellulose nanofiber has been reported about 39±13 nm while tension resistant of the nanocomposite produced from the nanofibers has been reported about 140 MPa. The produced nanocomposite has higher strength in comparison with the majority of biodegradable and non-biodegradable films. It seems that the produced nanocomposite can be considered an appropriate option for the elimination of artificial polymers and oil derivatives from packaging materials.

In order to produce the product, cellulose fibers were produced through mechanical milling method after separation and purification of cellulose from sugarcane bagasse, and then nanopapers were produced. Next, full cellulose nanocomposite was produced through partial dissolving method, and its characteristics were evaluated.

Results showed that as the time of partial dissolving increases, the diffusivity of the nanocomposite into vapor decreases due to the increase in glassy part (amorphous) to crystalline part. However, thermal resistant decreases as the time of partial dissolving increases because a decrease is observed in the crystalline part.

In addition, when cellulose microfibers turn into nanofibers, resistance against the tension of the produced films increases. The researchers believe that the reason for the increase is the reduction in fault points (points that lead to the fracture in cellulose fibers), increase in specific area, and integrity of nanofibers. Transparency of samples significantly increases as the size of particles decreases to nanometric scale.

Here’s a link to and a citation for the paper,

All-cellulose nanocomposite film made from bagasse cellulose nanofibers for food packaging application by Moein Ghaderi, Mohammad Mousavi, Hossein Yousefi, & Mohsen Labbafi. Carbohydrate Polymers, vol. 104, issue 1, January 2014, pp. 59-65 http://dx.doi.org/10.1016/j.carbpol.2014.01.013

This paper is behind a paywall.

You say nanocrystalline cellulose, I say cellulose nanocrystals; CelluForce at Japan conference and at UK conference

In reading the Oct. 14, 2012 news release from CelluForce about its presence at conferences in Japan and in the UK, I was interested to note the terminology being used,

CelluForce, the world leader in the commercial development of NanoCrystalline Cellulose (NCC), also referred to as Cellulose Nanocrystals (CNC),[emphases mine] is participating in two  upcoming industry conferences:  the ‘Nanocellulose Summit 2012’ in Kyoto, Japan on October 15, 2012, and ‘Investing in Cellulose 2012’, in London, UK, on November 5, 2012.

All of the materials from Canadian companies and not-for-profits have used the term nanocrystalline cellulose (NCC) exclusively, until now. I gather there’ve been some international discussions regarding terminology and that the term cellulose nanocrystals (CNC) is, at the least, a synonym if not the preferred term.

Here’s more about the conference in Japan (from the CelluForce news release),

The 209th Symposium on Sustainable Humanosphere: Nanocellulose Summit 2012’ welcomes the world’s top scientists and large research project leaders involved with nanocellulose to present on each country’s current status and prospects concerning nanocellulose research and industrialization.

What:                  CelluForce – What do we do?

Who:                    Richard Berry, Vice President and Chief  Technology Officer, CelluForce

When:                 Monday, October 15, 2012, 4 p.m. JST

Where:                 Kyoto Terrsa Venue, Shinmachi Kujo Minami-ku,
Kyoto, Japan (Kyoto Citizen’s Amenity Plaza)

I found out a little more about the conference Dr. Richard Berry will be attending on the Nanocellulose Summit 2012 webpage on the Kyoto University website,

The world’s top scientists and large research project leaders involved with nanocellulose (cellulose nanofiber (CNF) [sic] and cellulose nanocrystal (CNC or NCC) ) brought together. They will talk about each country’s current status and prospects concerning nanocellulose research and industrialization.

You can find more details, including the agenda, on the conference webpage.

Here’s more about the investment-oriented conference taking place in the UK,

In its second edition, ‘Investing in Cellulose 2012’ is a global conference on specialty cellulose, organized by CelCo. The company focuses primarily on the specialty cellulose business including the organization of cellulose training courses as well as advisory and consultancy to the industry.

What:                  Nanocrystalline technologies: Bringing Innovation to the Market

Who:                    Jean Moreau, President and CEO, CelluForce

When:                 Monday, November 5, 2012, 2:30 p.m. BST

Where:                The Royal Horseguards Hotel, 2 Whitehall Court Whitehall, London SW1A 2EJ, United Kingdom

I have found an ‘Investing in Cellulose 2012‘ conference webpage (of sorts) on the CelCo website (Note: I have removed some of the formatting),

Based on the success of 2011 specialty cellulose conference and encouraged by a 92% return intention response we are pleased to announce that Investing in Cellulose -2012 Conference will take place in London on November 5th.

A cocktail will kick off the event the preceding night and close around 18:00 of November 5th.

So please SAVE THE DATE in your calendar and contact us HERE

 We have taken into account your wishes and suggestions for this second year event and some of the changes will include:

  • Antitrust lawyer attending meeting allowing larger participation esp. from USA.
  • New topics to allow ether and viscose market to be better covered. Technology section during the day.
  • Seat in lunch accommodations and air condition.
  • Larger china representation.
  • More downstream value chain participation.

We will share later this year the Agenda but feel free to let us know if there were any particular topics you would like us to cover or you would like to present.

The most I could find out about the UK conference organizer is that  Celco Cellulose Consulting is a Swiss company founded by two partners.