Tag Archives: Charles Lieber

Update on Charles Lieber (former Harvard professor) has been convicted

That was quick. Lieber went on trial Tuesday, December 14, 2021 and he was found guilty of two charges one week later on Tuesday, December 21, 2021. (You can see my December 20, 2021 posting for mention of the trial and a description of the events leading up to it.)

As for the conviction, here’s more from a December 23, 2021 posting by Brian Liu and Raquel Leslie for the Law Fare blog (Note: Links have been removed),

The Justice Department announced on Tuesday [December 21, 2921] that Charles Lieber, former chair of Harvard’s Chemistry and Chemical Biology Department, was convicted by a federal jury in connection with his ties to China’s Thousand Talents Program. Lieber was convicted for failing to report income and making false statements to authorities regarding his affiliation with the Wuhan University of Technology (WUT). The conviction is a significant chapter in the story of the department’s China Initiative, which has recently come under fire by groups who allege that the program has led to racial profiling and amounts to prosecutorial overreach. 

The jury convicted Lieber of knowingly and willfully making a materially false statement to federal authorities regarding his work with China’s Thousand Talents Program. The program, launched in 2008, began with the aim of reversing brain drain by enticing Chinese scientists overseas to return to China. Over time, the program evolved to also recruit foreigners with expertise in key technologies. The program provided Lieber with $50,000 a month to work at WUT, in addition to up to $150,000 in living expenses and more than $1.5 million in grants. Though it is not illegal to participate in Chinese recruitment programs, federal prosecutors alleged that Lieber had failed to report these payments as required of scientists receiving federal funding.

This is why Lieber’s prosecution is such a big deal (from the December 23, 2021 posting),

Lieber was seen by some as a potential Nobel Prize winner [emphasis mine] for his work in nanotechnology. Nanotechnology, the manipulation of materials at a near-atomic level, is a strategically important field with civilian and military application in medicine, green energy, computing and propulsion. In 2012, China’s Academy of Sciences launched a Strategic Pioneering Programme dedicated to nanotechnology research, investing one billion yuan ($152 million) over five years. As a result of the investment, China now ranks first worldwide for the number of patents and articles published on nanotechnology.

Both Liu and Leslie are JD (Juris Doctor) candidates (JD is an advanced law degree) at Yale Law School. Their posting is well worth reading in its entirety as they go on to discuss China and US tensions with regard to science and technology advancements. They also provide links to further commentaries at the end of their posting.

At this point (given limited information and from my admittedly amateur perspective), it looks more like a tax evasion case than anything else.

Charles Lieber, nanoscientist, and the US Dept. of Justice

Charles Lieber, professor at Harvard University and one of the world’s leading researchers in nanotechnology went on trial on Tuesday, December 14, 2021.

Accused of hiding his ties to a People’s Republic of China (PRC)-run recruitment programme, Lieber is probably the highest profile academic and one of the few who was not born in China or has familial origins in China to be charged under the auspices of the US Department of Justice’s ‘China Initiative’.

This US National Public Radio (NPR) December 14, 2021 audio excerpt provides a brief summary of the situation by Ryan Lucas,

A December 14, 2021 article by Jess Aloe, Eileen Guo, and Antonio Regalado for the Massachusetts Institute of Technology (MIT) Technology Review lays out the situation in more detail (Note: A link has been removed),

In January of 2020, agents arrived at Harvard University looking for Charles Lieber, a renowned nanotechnology researcher who chaired the school’s department of chemistry and chemical biology. They were there to arrest him on charges of hiding his financial ties with a university in China. By arresting Lieber steps from Harvard Yard, authorities were sending a loud message to the academic community: failing to disclose such links is a serious crime.

Now Lieber is set to go on trial beginning December 14 [2021] in federal court in Boston. He has pleaded not guilty, and hundreds of academics have signed letters of support. In fact, some critics say it’s the Justice Department’s China Initiative—a far-reaching effort started in 2018 to combat Chinese economic espionage and trade-secret theft—that should be on trial, not Lieber. They are calling the prosecutions fundamentally flawed, a witch hunt that misunderstands the open-book nature of basic science and that is selectively destroying scientific careers over financial misdeeds and paperwork errors without proof of actual espionage or stolen technology.

For their part, prosecutors believe they have a tight case. They allege that Lieber was recruited into China’s Thousand Talents Plan—a program aimed at attracting top scientists—and paid handsomely to establish a research laboratory at the Wuhan University of Technology, but hid the affiliation from US grant agencies when asked about it (read a copy of the indictment here). Lieber is facing six felony charges: two counts of making false statements to investigators, two counts of filing a false tax return, and two counts of failing to report a foreign bank account. [emphases mine; Note: None of these charges have been proved in court]

The case against Lieber could be a bellwether for the government, which has several similar cases pending against US professors alleging that they didn’t disclose their China affiliations to granting agencies.

As for the China Initiative (from the MIT Technology Review December 14, 2021 article),

The China Initiative was announced in 2018 by Jeff Sessions, then the Trump administration’s attorney general, as a central component of the administration’s tough stance toward China.

An MIT Technology Review investigation published earlier this month [December 2021] found that the China Initiative is an umbrella for various types of prosecutions somehow connected to China, with targets ranging from a Chinese national who ran a turtle-smuggling ring to state-sponsored hackers believed to be behind some of the biggest data breaches in history. In total, MIT Technology Review identified 77 cases brought under the initiative; of those, a quarter have led to guilty pleas or convictions, but nearly two-thirds remain pending.

The government’s prosecution of researchers like Lieber for allegedly hiding ties to Chinese institutions has been the most controversial, and fastest-growing, aspect of the government’s efforts. In 2020, half of the 31 new cases brought under the China Initiative were cases against scientists or researchers. These cases largely did not accuse the defendants of violating the Economic Espionage Act.

… hundreds of academics across the country, from institutions including Stanford University and Princeton University,signed a letter calling on Attorney General Merrick Garland to end the China Initiative. The initiative, they wrote, has drifted from its original mission of combating Chinese intellectual-property theft and is instead harming American research competitiveness by discouraging scholars from coming to or staying in the US.

Lieber’s case is the second [emphasis mine] China Initiative prosecution of an academic to end up in the courtroom. The only previous person to face trial [emphasis mine] on research integrity charges, University of Tennessee–Knoxville professor Anming Hu, was acquitted of all charges [emphasis mine] by a judge in June [2021] after a deadlocked jury led to a mistrial.

Ken Dilanian wrote an October 19, 2021 article for (US) National Broadcasting Corporation’s (NBC) news online about Hu’s eventual acquittal and about the China Inititative (Note: Dilanian’s timeline for the acquittal differs from the timeline in the MIT Technology Review),

The federal government brought the full measure of its legal might against Anming Hu, a nanotechnology expert at the University of Tennessee.

But the Justice Department’s efforts to convict Hu as part of its program to crack down on illicit technology transfer to China failed — spectacularly. A judge acquitted him last month [September 2021] after a lengthy trial offered little evidence of anything other than a paperwork misunderstanding, according to local newspaper coverage. It was the second trial, after the first ended in a hung jury.

“The China Initiative has turned up very little by way of clear espionage and the transfer of genuinely strategic information to the PRC,” said Robert Daly, a China expert at the Wilson Center, referring to the country by its formal name, the People’s Republic of China. “They are mostly process crimes, disclosure issues. A growing number of voices are calling for an end to the China initiative because it’s seen as discriminatory.”

The China Initiative began under President Donald Trump’s attorney general, Jeff Sessions, in 2018. But concerns about Chinese espionage in the United States — and the transfer of technology to China through business and academic relationships — are bipartisan.

John Demers, who departed in June [2021] as head of the Justice Department’s National Security Division, said in an interview that the problem of technology transfer at universities is real. But he said he also believes conflict of interest and disclosure rules were not rigorously enforced for many years. For that reason, he recommended an amnesty program offering academics with undisclosed foreign ties a chance to come clean and avoid penalties. So far, the Biden administration has not implemented such a program.

When I first featured the Lieber case in a January 28, 2020 posting I was more focused on the financial elements,

ETA January 28, 2020 at 1645 hours: I found a January 28, 2020 article by Antonio Regalado for the MIT Technology Review which provides a few more details about Lieber’s situation,

“…

Big money: According to the charging document, Lieber, starting in 2011,  agreed to help set up a research lab at the Wuhan University of Technology and “make strategic visionary and creative research proposals” so that China could do cutting-edge science.

He was well paid for it. Lieber earned a salary when he visited China worth up to $50,000 per month, as well as $150,000 a year in expenses in addition to research funds. According to the complaint, he got paid by way of a Chinese bank account but also was known to send emails asking for cash instead.

Harvard eventually wised up to the existence of a Wuhan lab using its name and logo, but when administrators confronted Lieber, he lied and said he didn’t know about a formal joint program, according to the government complaint.

This is messy not least because Lieber and the members of his Harvard lab have done some extraordinary work as per my November 15, 2019 (Human-machine interfaces and ultra-small nanoprobes) posting about injectable electronics.

Follow up to the Charles M. Lieber affair and US government efforts to prosecute nanotech scientists

Rebecca Trager in a March 5, 2021 news article for Chemistry World highlights support for Charles M. Lieber (Harvard professor and chair of the chemistry department) from his colleagues (Note: Links have been removed),

More than a year after the chair of Harvard University’s chemistry department was arrested for allegedly hiding his receipt of millions of dollars in research funding from China from his university and the US government, dozens of prominent researchers – including many Nobel Prize winners – are coming to Charles Lieber’s defence. They are calling the US Department of Justice (DOJ) case against him ‘unjust’ and urging the agency to drop it.

Following his January 2020 arrest, Lieber was placed on ‘indefinite’ paid administrative leave. The nanoscience pioneer was indicted in June [2020] on charges of making false statements to federal authorities regarding his participation in China’s Thousand Talents plan – the country’s programme to attract, recruit and cultivate high-level scientific talent from abroad. Lieber faces up to five years in prison and a fine of $250,000 (£179,000) if convicted.

A 1 March [2021] open letter, drafted and coordinated by Harvard chemist Stuart Schreiber, co-founder of the Broad Institute, and professor emeritus Elias Corey, winner of the 1990 chemistry Nobel prize, says Lieber became the target of a ‘tragically misguided government campaign’. The letter refers to Lieber as ‘one of the great scientist of his generation’ and warns such government actions are discouraging US scientists from collaborating with peers in other countries, particularly China. The open letter also notes that Lieber is fighting to salvage his reputation while suffering from incurable lymphoma.

Ferguson goes on to contrast Lieber’s treatment by Harvard to another embattled colleague’s treatment by his home institution (Note: Links have been removed),

Harvard’s treatment of Lieber stands in contrast to how the Massachusetts Institute of Technology (MIT) handled the more recent case of nanotechnologist Gang Chen, who was arrested in January [2021] for failing to report his ties to the Chinese government. MIT agreed to cover his legal fees, and more than 100 faculty members signed a letter to their university’s president that picked apart the DOJ’s allegations against Chen.

I have more details about the case against Lieber (as it was presented at the time) in a January 28, 2020 posting.

As for Professor Chen, I found this MIT statement dated January 14, 2021 (the date of his arrest) and this January 14, 2021 statement from The United States District Attorney’s Office District of Massachusetts.

Harvard professor and leader in nanoscale electronics charged with making false statements about Chinese funding

I may be mistaken but the implication seems to be that Charles M. Lieber’s lies (he was charged today, January 28, 2020 ) are the ‘tip of the iceberg’ of a very large problem. Ellen Barry’s January 28, 2020 article for the New York Times outlines at least part of what the US government is doing to discover and ultimately discourage the theft of biomedical research from US laboratories.

Dr. Lieber, a leader in the field of nanoscale electronics, was one of three Boston-area scientists accused on Tuesday [January 28, 2020] of working on behalf of China. His case involves work with the Thousand Talents Program, a state-run program that seeks to draw talent educated in other countries.

American officials are investigating hundreds of cases of suspected theft of intellectual property by visiting scientists, nearly all of them Chinese nationals or of Chinese descent. Some are accused of obtaining patents in China based on work that is funded by the United States government, and others of setting up laboratories in China that secretly duplicated American research.

Dr. Lieber, who was arrested on Tuesday [January 28, 2020], stands out among the accused scientists, because he is neither Chinese nor of Chinese descent. …

Lieber is the Chair of Harvard’s Department of Chemistry and Chemical Biology and much more, according to his Wikipedia entry (Note: Links have been removed),

Charles M. Lieber (born 1959) is an American chemist and pioneer in the field of nanoscience and nanotechnology. In 2011, Lieber was recognized by Thomson Reuters as the leading chemist in the world for the decade 2000-2010 based on the impact of his scientific publications.[1] Lieber has published over 400 papers in peer-reviewed scientific journals and has edited and contributed to many books on nanoscience.[2] He is the principal inventor on over fifty issued US patents and applications, and founded the nanotechnology company Nanosys in 2001 and Vista Therapeutics in 2007.[3] He is known for his contributions to the synthesis, assembly and characterization of nanoscale materials and nanodevices, the application of nanoelectronic devices in biology, and as a mentor to numerous leaders in nanoscience.[4] Thompson Reuters predicted Lieber to be a recipient of the 2008 Nobel Prize in Chemistry [to date, January 28, 2020, Lieber has not received a Nobel prize].

Should you search Charles Lieber or Charles M. Lieber on this blog’s search engine, you will find a number of postings about his and his students’ work dating from 2012 to as recently as November 15, 2019.

Here’s another example from Barry’s January 28, 2020 article for the New York Times which illustrates just how shocking this is (Note: Links have been removed),

In 2017 he was named a University Professor, Harvard’s highest faculty rank, one of only 26 professors to hold that status. The same year, he earned the National Institutes of Health Director’s Pioneer Award for inventing syringe-injectable mesh electronics that can integrate with the brain.

Harvard’s president at the time, Drew G. Faust, called him “an extraordinary scientist whose work has transformed nanoscience and nanotechnology and has led to a remarkable range of valuable applications that improve the quality of people’s lives.”

Here’s a bit more about the Chinese program that Lieber is affiliated with,

Launched in 2008, its [China] Thousand Talents Program is an effort to recruit Chinese and foreign academics and entrepreneurs. According to a report in the China Daily, new recruits receive 1 million yuan, or about $146,000, from the central government, and a pledge of 10 million yuan for their ongoing research from the Chinese Academy of Sciences.

The recruitment flows both ways. Researchers of Chinese descent make up nearly half of the work force in American research laboratories, in part because American-born scientists are drawn to the private sector and less interested in academic careers.

I encourage you to read Barry’s entire article. It is jaw-dropping and, where Lieber is concerned, sad. It’s beginning to look like US universities are corrupt. The ‘Jeffrey Epstein (a wealthy and convicted sexual predator and more) connection’ to the Massachusetts Institute of Technology, which led to the resignation of a prominent faculty member (Sept. 19, 2019 article by Anna North for Vox.com), and the Fall 2019 cheating scandal (gaining admission to big name educational institutions by paying someone other than the student to take exams, among many other schemes) suggest a reckoning might be in order.

ETA January 28, 2020 at 1645 hours: I found a January 28, 2020 article by Antonio Regalado for the MIT Technology Review which provides a few more details about Lieber’s situation,

Big money: According to the charging document, Lieber, starting in 2011,  agreed to help set up a research lab at the Wuhan University of Technology and “make strategic visionary and creative research proposals” so that China could do cutting-edge science.

He was well paid for it. Lieber earned a salary when he visited China worth up to $50,000 per month, as well as $150,000 a year in expenses in addition to research funds. According to the complaint, he got paid by way of a Chinese bank account but also was known to send emails asking for cash instead.

Harvard eventually wised up to the existence of a Wuhan lab using its name and logo, but when administrators confronted Lieber, he lied and said he didn’t know about a formal joint program, according to the government complaint.

I imagine the money paid by the Chinese government is in addition to Lieber’s Harvard salary (no doubt a substantial one especially since he’s chair of his department and one of a select number of Harvard’s University Professors) and in addition to any other deals he might have on the side.

Human-machine interfaces and ultra-small nanoprobes

We’re back on the cyborg trail or what I sometimes refer to as machine/flesh. A July 3, 2019 news item on ScienceDaily describes the latest attempts to join machine with flesh,

Machine enhanced humans — or cyborgs as they are known in science fiction — could be one step closer to becoming a reality, thanks to new research Lieber Group at Harvard University, as well as scientists from University of Surrey and Yonsei University.

Researchers have conquered the monumental task of manufacturing scalable nanoprobe arrays small enough to record the inner workings of human cardiac cells and primary neurons.

The ability to read electrical activities from cells is the foundation of many biomedical procedures, such as brain activity mapping and neural prosthetics. Developing new tools for intracellular electrophysiology (the electric current running within cells) that push the limits of what is physically possible (spatiotemporal resolution) while reducing invasiveness could provide a deeper understanding of electrogenic cells and their networks in tissues, as well as new directions for human-machine interfaces.

The Lieber Group at Harvard University provided this image illustrating the work,

U-shaped nanowires can record electrical chatter inside a brain or heart cell without causing any damage. The devices are 100 times smaller than their biggest competitors, which kill a cell after recording. Courtesy: University of Surrey

A July 3, 2019 University of Surrey press release (also on EurekAlert), which originated the news item, provides more details about this UK/US/China collaboration,

In a paper published by Nature Nanotechnology, scientists from Surrey’s Advanced Technology Institute (ATI) and Harvard University detail how they produced an array of the ultra-small U-shaped nanowire field-effect transistor probes for intracellular recording. This incredibly small structure was used to record, with great clarity, the inner activity of primary neurons and other electrogenic cells, and the device has the capacity for multi-channel recordings.

Dr Yunlong Zhao from the ATI at the University of Surrey said: “If our medical professionals are to continue to understand our physical condition better and help us live longer, it is important that we continue to push the boundaries of modern science in order to give them the best possible tools to do their jobs. For this to be possible, an intersection between humans and machines is inevitable.

“Our ultra-small, flexible, nanowire probes could be a very powerful tool as they can measure intracellular signals with amplitudes comparable with those measured with patch clamp techniques; with the advantage of the device being scalable, it causes less discomfort and no fatal damage to the cell (cytosol dilation). Through this work, we found clear evidence for how both size and curvature affect device internalisation and intracellular recording signal.”

Professor Charles Lieber from the Department of Chemistry and Chemical Biology at Harvard University said: “This work represents a major step towards tackling the general problem of integrating ‘synthesised’ nanoscale building blocks into chip and wafer scale arrays, and thereby allowing us to address the long-standing challenge of scalable intracellular recording.

“The beauty of science to many, ourselves included, is having such challenges to drive hypotheses and future work. In the longer term, we see these probe developments adding to our capabilities that ultimately drive advanced high-resolution brain-machine interfaces and perhaps eventually bringing cyborgs to reality.”

Professor Ravi Silva, Director of the ATI at the University of Surrey, said: “This incredibly exciting and ambitious piece of work illustrates the value of academic collaboration. Along with the possibility of upgrading the tools we use to monitor cells, this work has laid the foundations for machine and human interfaces that could improve lives across the world.”

Dr Yunlong Zhao and his team are currently working on novel energy storage devices, electrochemical probing, bioelectronic devices, sensors and 3D soft electronic systems. Undergraduate, graduate and postdoc students with backgrounds in energy storage, electrochemistry, nanofabrication, bioelectronics, tissue engineering are very welcome to contact Dr Zhao to explore the opportunities further.

Here’s a link to and a citation for the paper,

Scalable ultrasmall three-dimensional nanowire transistor probes for intracellular recording by Yunlong Zhao, Siheng Sean You, Anqi Zhang, Jae-Hyun Lee, Jinlin Huang & Charles M. Lieber. Nature Nanotechnology (2019) DOI: https://doi.org/10.1038/s41565-019-0478-y Published 01 July 2019

The link I’ve provided leads to a paywall. However, I found a freely accessible version of the paper (this may not be the final published version) here.

Brain and machine as one (machine/flesh)

The essay on brains and machines becoming intertwined is making the rounds. First stop on my tour was its Oct. 4, 2016 appearance on the Mail & Guardian, then there was its Oct. 3, 2016 appearance on The Conversation, and finally (moving forward in time) there was its Oct. 4, 2016 appearance on the World Economic Forum website as part of their Final Frontier series.

The essay was written by Richard Jones of Sheffield University (mentioned here many times before but most recently in a Sept. 4, 2014 posting). His book ‘Soft Machines’ provided me with an important and eminently readable introduction to nanotechnology. He is a professor of physics at the University of Sheffield and here’s more from his essay (Oct. 3, 2016 on The Conversation) about brains and machines (Note: Links have been removed),

Imagine a condition that leaves you fully conscious, but unable to move or communicate, as some victims of severe strokes or other neurological damage experience. This is locked-in syndrome, when the outward connections from the brain to the rest of the world are severed. Technology is beginning to promise ways of remaking these connections, but is it our ingenuity or the brain’s that is making it happen?

Ever since an 18th-century biologist called Luigi Galvani made a dead frog twitch we have known that there is a connection between electricity and the operation of the nervous system. We now know that the signals in neurons in the brain are propagated as pulses of electrical potential, whose effects can be detected by electrodes in close proximity. So in principle, we should be able to build an outward neural interface system – that is to say, a device that turns thought into action.

In fact, we already have the first outward neural interface system to be tested in humans. It is called BrainGate and consists of an array of micro-electrodes, implanted into the part of the brain concerned with controlling arm movements. Signals from the micro-electrodes are decoded and used to control the movement of a cursor on a screen, or the motion of a robotic arm.

A crucial feature of these systems is the need for some kind of feedback. A patient must be able to see the effect of their willed patterns of thought on the movement of the cursor. What’s remarkable is the ability of the brain to adapt to these artificial systems, learning to control them better.

You can find out more about BrainGate in my May 17, 2012 posting which also features a video of a woman controlling a mechanical arm so she can drink from a cup coffee by herself for the first time in 15 years.

Jones goes on to describe the cochlear implants (although there’s no mention of the controversy; not everyone believes they’re a good idea) and retinal implants that are currently available. Jones notes this (Note Links have been removed),

The key message of all this is that brain interfaces now are a reality and that the current versions will undoubtedly be improved. In the near future, for many deaf and blind people, for people with severe disabilities – including, perhaps, locked-in syndrome – there are very real prospects that some of their lost capabilities might be at least partially restored.

Until then, our current neural interface systems are very crude. One problem is size; the micro-electrodes in use now, with diameters of tens of microns, may seem tiny, but they are still coarse compared to the sub-micron dimensions of individual nerve fibres. And there is a problem of scale. The BrainGate system, for example, consists of 100 micro-electrodes in a square array; compare that to the many tens of billions of neurons in the brain. The fact these devices work at all is perhaps more a testament to the adaptability of the human brain than to our technological prowess.

Scale models

So the challenge is to build neural interfaces on scales that better match the structures of biology. Here, we move into the world of nanotechnology. There has been much work in the laboratory to make nano-electronic structures small enough to read out the activity of a single neuron. In the 1990s, Peter Fromherz, at the Max Planck Institute for Biochemistry, was a pioneer of using silicon field effect transistors, similar to those used in commercial microprocessors, to interact with cultured neurons. In 2006, Charles Lieber’s group at Harvard succeeded in using transistors made from single carbon nanotubes – whiskers of carbon just one nanometer in diameter – to measure the propagation of single nerve pulses along the nerve fibres.

But these successes have been achieved, not in whole organisms, but in cultured nerve cells which are typically on something like the surface of a silicon wafer. It’s going to be a challenge to extend these methods into three dimensions, to interface with a living brain. Perhaps the most promising direction will be to create a 3D “scaffold” incorporating nano-electronics, and then to persuade growing nerve cells to infiltrate it to create what would in effect be cyborg tissue – living cells and inorganic electronics intimately mixed.

I have featured Charles Lieber and his work here in two recent posts: ‘Bionic’ cardiac patch with nanoelectric scaffolds and living cells on July 11, 2016 and Long-term brain mapping with injectable electronics on Sept. 22, 2016.

For anyone interested in more about the controversy regarding cochlear implants, there’s this page on the Brown University (US) website. You might also want to check out Gregor Wolbring (professor at the University of Calgary) who has written extensively on the concept of ableism (links to his work can be found at the end of this post). I have excerpted from an Aug. 30, 2011 post the portion where Gregor defines ‘ableism’,

From Gregor’s June 17, 2011 posting on the FedCan blog,

The term ableism evolved from the disabled people rights movements in the United States and Britain during the 1960s and 1970s.  It questions and highlights the prejudice and discrimination experienced by persons whose body structure and ability functioning were labelled as ‘impaired’ as sub species-typical. Ableism of this flavor is a set of beliefs, processes and practices, which favors species-typical normative body structure based abilities. It labels ‘sub-normative’ species-typical biological structures as ‘deficient’, as not able to perform as expected.

The disabled people rights discourse and disability studies scholars question the assumption of deficiency intrinsic to ‘below the norm’ labeled body abilities and the favoritism for normative species-typical body abilities. The discourse around deafness and Deaf Culture would be one example where many hearing people expect the ability to hear. This expectation leads them to see deafness as a deficiency to be treated through medical means. In contrast, many Deaf people see hearing as an irrelevant ability and do not perceive themselves as ill and in need of gaining the ability to hear. Within the disabled people rights framework ableism was set up as a term to be used like sexism and racism to highlight unjust and inequitable treatment.

Ableism is, however, much more pervasive.

You can find out more about Gregor and his work here: http://www.crds.org/research/faculty/Gregor_Wolbring2.shtml or here:
https://www.facebook.com/GregorWolbring.

Long-term brain mapping with injectable electronics

Charles Lieber and his team at Harvard University announced a success with their work on injectable electronics last year (see my June 11, 2015 posting for more) and now they are reporting on their work with more extensive animal studies according to an Aug. 29, 2016 news item on psypost.org,

Scientists in recent years have made great strides in the quest to understand the brain by using implanted probes to explore how specific neural circuits work.

Though effective, those probes also come with their share of problems as a result of rigidity. The inflammation they produce induces chronic recording instability and means probes must be relocated every few days, leaving some of the central questions of neuroscience – like how the neural circuits are reorganized during development, learning and aging- beyond scientists’ reach.

But now, it seems, things are about to change.

Led by Charles Lieber, The Mark Hyman Jr. Professor of Chemistry and chair of the Department of Chemistry and Chemical Biology, a team of researchers that included graduate student Tian-Ming Fu, postdoctoral fellow Guosong Hong, graduate student Tao Zhou and others, has demonstrated that syringe-injectable mesh electronics can stably record neural activity in mice for eight months or more, with none of the inflammation

An Aug. 29, 2016 Harvard University press release, which originated the news item, provides more detail,

“With the ability to follow the same individual neurons in a circuit chronically…there’s a whole suite of things this opens up,” Lieber said. “The eight months we demonstrate in this paper is not a limit, but what this does show is that mesh electronics could be used…to investigate neuro-degenerative diseases like Alzheimer’s, or processes that occur over long time, like aging or learning.”

Lieber and colleagues also demonstrated that the syringe-injectable mesh electronics could be used to deliver electrical stimulation to the brain over three months or more.

“Ultimately, our aim is to create these with the goal of finding clinical applications,” Lieber said. “What we found is that, because of the lack of immune response (to the mesh electronics), which basically insulates neurons, we can deliver stimulation in a much more subtle way, using lower voltages that don’t damage tissue.”

The possibilities, however, don’t end there.

The seamless integration of the electronics and biology, Lieber said, could open the door to an entirely new class of brain-machine interfaces and vast improvements in prosthetics, among other fields.

“Today, brain-machine interfaces are based on traditional implanted probes, and there has been some impressive work that’s been done in that field,” Lieber said. “But all the interfaces rely on the same technique to decode neural signals.”

Because traditional rigid implanted probes are invariably unstable, he explained, researchers and clinicians rely on decoding what they call the “population average” – essentially taking a host of neural signals and applying complex computational tools to determine what they mean.

Using tissue-like mesh electronics, by comparison, researchers may be able to read signals from specific neurons over time, potentially allowing for the development of improved brain-machine interfaces for prosthetics.

“We think this is going to be very powerful, because we can identify circuits and both record and stimulate in a way that just hasn’t been possible before,” Lieber said. “So what I like to say is: I think therefore it happens.”

Lieber even held out the possibility that the syringe-injectable mesh electronics could one day be used to treat catastrophic injuries to the brain and spinal cord.

“I don’t think that’s science-fiction,” he said. “Other people may say that will be possible through, for example, regenerative medicine, but we are pursuing this from a different angle.

“My feeling is that this is about a seamless integration between the biological and the electronic systems, so they’re not distinct entities,” he continued. “If we can make the electronics look like the neural network, they will work together…and that’s where you want to be if you want to exploit the strengths of both.”

In the 2015 posting, Lieber was discussing cyborgs, here he broaches the concept without using the word, “… seamless integration between the biological and the electronic systems, so they’re not distinct entities.”

Here’s a link to and a citation for the paper,

Stable long-term chronic brain mapping at the single-neuron level by Tian-Ming Fu, Guosong Hong, Tao Zhou, Thomas G Schuhmann, Robert D Viveros, & Charles M Lieber. Nature Methods (2016) doi:10.1038/nmeth.3969 Published online 29 August 2016

This paper is behind a paywall.

‘Bionic’ cardiac patch with nanoelectric scaffolds and living cells

A June 27, 2016 news item on Nanowerk announced that Harvard University researchers may have taken us a step closer to bionic cardiac patches for human hearts (Note: A link has been removed),

Scientists and doctors in recent decades have made vast leaps in the treatment of cardiac problems – particularly with the development in recent years of so-called “cardiac patches,” swaths of engineered heart tissue that can replace heart muscle damaged during a heart attack.

Thanks to the work of Charles Lieber and others, the next leap may be in sight.

The Mark Hyman, Jr. Professor of Chemistry and Chair of the Department of Chemistry and Chemical Biology, Lieber, postdoctoral fellow Xiaochuan Dai and other co-authors of a study that describes the construction of nanoscale electronic scaffolds that can be seeded with cardiac cells to produce a “bionic” cardiac patch. The study is described in a June 27 [2016] paper published in Nature Nanotechnology (“Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues”).

A June 27, 2016 Harvard University press release on EurekAlert, which originated the news item, provides more information,

“I think one of the biggest impacts would ultimately be in the area that involves replaced of damaged cardiac tissue with pre-formed tissue patches,” Lieber said. “Rather than simply implanting an engineered patch built on a passive scaffold, our works suggests it will be possible to surgically implant an innervated patch that would now be able to monitor and subtly adjust its performance.”

Once implanted, Lieber said, the bionic patch could act similarly to a pacemaker – delivering electrical shocks to correct arrhythmia, but the possibilities don’t end there.

“In this study, we’ve shown we can change the frequency and direction of signal propagation,” he continued. “We believe it could be very important for controlling arrhythmia and other cardiac conditions.”

Unlike traditional pacemakers, Lieber said, the bionic patch – because its electronic components are integrated throughout the tissue – can detect arrhythmia far sooner, and operate at far lower voltages.

“Even before a person started to go into large-scale arrhythmia that frequently causes irreversible damage or other heart problems, this could detect the early-stage instabilities and intervene sooner,” he said. “It can also continuously monitor the feedback from the tissue and actively respond.”

“And a normal pacemaker, because it’s on the surface, has to use relatively high voltages,” Lieber added.

The patch might also find use, Lieber said, as a tool to monitor the responses under cardiac drugs, or to help pharmaceutical companies to screen the effectiveness of drugs under development.

Likewise, the bionic cardiac patch can also be a unique platform, he further mentioned, to study the tissue behavior evolving during some developmental processes, such as aging, ischemia or differentiation of stem cells into mature cardiac cells.

Although the bionic cardiac patch has not yet been implanted in animals, “we are interested in identifying collaborators already investigating cardiac patch implantation to treat myocardial infarction in a rodent model,” he said. “I don’t think it would be difficult to build this into a simpler, easily implantable system.”

In the long term, Lieber believes, the development of nanoscale tissue scaffolds represents a new paradigm for integrating biology with electronics in a virtually seamless way.

Using the injectable electronics technology he pioneered last year, Lieber even suggested that similar cardiac patches might one day simply be delivered by injection.

“It may actually be that, in the future, this won’t be done with a surgical patch,” he said. “We could simply do a co-injection of cells with the mesh, and it assembles itself inside the body, so it’s less invasive.”

Here’s a link to and a citation for the paper,

Three-dimensional mapping and regulation of action potential propagation in nanoelectronics-innervated tissues by Xiaochuan Dai, Wei Zhou, Teng Gao, Jia Liu & Charles M. Lieber. Nature Nanotechnology (2016)  doi:10.1038/nnano.2016.96 Published online 27 June 2016

This paper is behind a paywall.

Dexter Johnson in a June 27, 2016 posting on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website) provides more technical detail (Note: Links have been removed),

In research described in the journal Nature Nanotechnology, Lieber and his team employed a bottom-up approach that started with the fabrication of doped p-type silicon nanowires. Lieber has been spearheading the use of silicon nanowires as a scaffold for growing nerve, heart, and muscle tissue for years now.

In this latest work, Lieber and his team fabricated the nanowires, applied them onto a polymer surface, and arranged them into a field-effect transistor (FET). The researchers avoided an increase in the device’s impedance as its dimensions were reduced by adopting this FET approach as opposed to simply configuring the device as an electrode. Each FET, along with its source-drain interconnects, created a 4-micrometer-by-20-micrometer-by-350-nanometer pad. Each of these pads was, in effect, a single recording device.

I recommend reading Dexter’s posting in its entirety as Charles Lieber shares additional technical information not found in the news release.

Cyborgs (a presentation) at the American Chemical Society’s 248th meeting

There will be a plethora of chemistry news online over the next few days as the American Society’s (ACS) 248th meeting in San Francisco, CA from Aug. 10 -14, 2014 takes place. Unexpectedly, an Aug. 11, 2014 news item on Azonano highlights a meeting presentation focused on cyborgs,

No longer just fantastical fodder for sci-fi buffs, cyborg technology is bringing us tangible progress toward real-life electronic skin, prosthetics and ultraflexible circuits. Now taking this human-machine concept to an unprecedented level, pioneering scientists are working on the seamless marriage between electronics and brain signaling with the potential to transform our understanding of how the brain works — and how to treat its most devastating diseases.

An Aug. 10, 2014 ACS news release on EurekAlert provides more detail about the presentation (Note: Links have been removed),

“By focusing on the nanoelectronic connections between cells, we can do things no one has done before,” says Charles M. Lieber, Ph.D. “We’re really going into a new size regime for not only the device that records or stimulates cellular activity, but also for the whole circuit. We can make it really look and behave like smart, soft biological material, and integrate it with cells and cellular networks at the whole-tissue level. This could get around a lot of serious health problems in neurodegenerative diseases in the future.”

These disorders, such as Parkinson’s, that involve malfunctioning nerve cells can lead to difficulty with the most mundane and essential movements that most of us take for granted: walking, talking, eating and swallowing.

Scientists are working furiously to get to the bottom of neurological disorders. But they involve the body’s most complex organ — the brain — which is largely inaccessible to detailed, real-time scrutiny. This inability to see what’s happening in the body’s command center hinders the development of effective treatments for diseases that stem from it.

By using nanoelectronics, it could become possible for scientists to peer for the first time inside cells, see what’s going wrong in real time and ideally set them on a functional path again.

For the past several years, Lieber has been working to dramatically shrink cyborg science to a level that’s thousands of times smaller and more flexible than other bioelectronic research efforts. His team has made ultrathin nanowires that can monitor and influence what goes on inside cells. Using these wires, they have built ultraflexible, 3-D mesh scaffolding with hundreds of addressable electronic units, and they have grown living tissue on it. They have also developed the tiniest electronic probe ever that can record even the fastest signaling between cells.

Rapid-fire cell signaling controls all of the body’s movements, including breathing and swallowing, which are affected in some neurodegenerative diseases. And it’s at this level where the promise of Lieber’s most recent work enters the picture.

In one of the lab’s latest directions, Lieber’s team is figuring out how to inject their tiny, ultraflexible electronics into the brain and allow them to become fully integrated with the existing biological web of neurons. They’re currently in the early stages of the project and are working with rat models.

“It’s hard to say where this work will take us,” he says. “But in the end, I believe our unique approach will take us on a path to do something really revolutionary.”

Lieber acknowledges funding from the U.S. Department of Defense, the National Institutes of Health and the U.S. Air Force.

I first covered Lieber’s work in an Aug. 27, 2012 posting  highlighting some good descriptions from Lieber and his colleagues of their work. There’s also this Aug. 26, 2012 article by Peter Reuell in the Harvard Gazette (featuring a very good technical description for someone not terribly familiar with the field but able to grasp some technical information while managing their own [mine] ignorance). The posting and the article provide details about the foundational work for Lieber’s 2014 presentation at the ACS meeting.

Lieber will be speaking next at the IEEE (Institute for Electrical and Electronics Engineers) 14th International Conference on Nanotechnology sometime between August 18 – 21, 2014 in Toronto, Ontario, Canada.

As for some of Lieber’s latest published work, there’s more information in my Feb. 20, 2014 posting which features a link to a citation for the paper (behind a paywall) in question.

Institute of Electrical and Electronics Engineers (IEEE) 2014 international nanotechnology conference in Toronto, Canada

August 18 – 21, 2014 are the dates for the IEEE (Institute for Electrical and Electronics Engineers) 14th International Conference on Nanotechnology.  The deadline for submitting abstracts is March 15, 2014. Here’s a bit more about the conference, from the homepage,

IEEE Nano is one of the largest Nanotechnology conferences in the world, bringing together the brightest engineers and scientists through collaboration and the exchange of ideas.

IEEE Nano 2014 will provide researchers and others in the Nanotechnology field the ability to interact and advance their work through various speakers and workshop sessions.

Possible Topics for Papers

Environmental Health and Safety of Nanotechnology
Micro-to-nano-scale bridging
Modeling and Simulation
Nanobiology:
•Nanobiomedicine
•Nanobiosystems
•Applications of Biopolymer Nanoparticles for Drug Delivery
Nanoelectronics:
•Non-Carbon Based
•Carbon Based
•Circuits and Architecture
Nanofabrication and Nanoassemblies
Nanofluidics:
•Modeling and Theory
•Applications
Nanomagnetics
Nanomanufacturing
Nanomaterials:
•2-D Materials beyond Graphene
•Synthesis and Characterization
•Applications and Enabled Systems
Nanometrology and Nanocharacterization
Nanopackaging
Nano-optics, Nano-optoelectronics and Nano-photonics:
•Novel fabrication and integration approaches
•Optical Nano-devices
Nanorobotics and Nanomanipulation
Nanoscale Communication and Networks
Nanosensors and Actuators
Nanotechnology Enabled Energy
NEMS
NEMS/Applications

There is a conference Call For Papers webpage where you can get more information.

Invited speakers include,

John Polanyi
Professor
University of Toronto, Canada

John Polanyi, educated at Manchester University, England, was a postdoctoral fellow at Princeton University and at the National Research Council of Canada. He is a faculty member in the Department of Chemistry at the University of Toronto, a member of the Queen’s Privy Council for Canada (P.C.), and a Companion of the Order of Canada (C.C.). His awards include the 1986 Nobel Prize in Chemistry. He has written extensively on science policy, the control of armaments, peacekeeping and human rights.

Charles Lieber
Professor Charles M. Lieber
Mark Hyman Professor of Chemistry
Department of Chemistry and Chemical Biology
Harvard University

Charles M. Lieber is regarded as a leading chemist worldwide and recognized as a pioneer in the nanoscience and nanotechnology fields. He completed his doctoral studies at Stanford University and currently holds a joint appointment in the Department of Chemistry and Chemical Biology at Harvard University, as the Mark Hyman Professor of Chemistry, and the School of Engineering and Applied Sciences. Lieber is widely known for his contributions to the synthesis, understanding and assembly of nanoscale materials, as well as the founding of two nanotechnology companies: Nanosys and Vista Therapeutics.

Lieber’s achievements have been recognized by a large number of awards, including the Feynman Prize for Nanotechnology (2002), World Technology award in Materials (2003 and 2004) and the Wolf Prize in Chemistry (2012). He has published more than 350 papers in peer-reviewed journals and is the primary inventor on over 35 patents.

Arthur Carty
Professor & Executive Director [Waterloo Institute for Nanotechnology]
University of Waterloo, Canada

Arthur Carty has a PhD in inorganic chemistry from the University of Nottingham in the UK. He is currently the Executive Director of the Waterloo Institute for Nanotechnology and research professor in the Department of Chemistry at the University of Waterloo.

Previously, Dr. Carty served in Canada as the National Science Advisor to the Prime Minister and President of the National Research Council (Canada). He was awarded the Order of Canada and holds 14 honorary doctorates.

His research interests are focused on organometallic chemistry and new materials. [Dr. Carty is chair of The Expert Panel on the State of Canada’s Science Culture; an assessment being conducted by the Canadian Council of Academies as per my Feb. 22, 2013 posting and Dr. Carty is giving a Keynote lecture titled: ‘Small World, Large Impact: Driving a Materials Revolution Through Nanotechnology’ at the 2014 TAPPI (Technical Association for the Pulp, Paper, Packaging and Converting Industries) nanotechnology conference, June 23-26, 2014 in Vancouver, Canada as per my Nov. 14, 2013 posting.]

William Milne
Professor
University of Cambridge, UK

Bill Milne FREng,FIET,FIMMM has been Head of Electrical Engineering at Cambridge University since 1999 and Director of the Centre for Advanced Photonics and Electronics (CAPE) since 2005. In 1996 he was appointed to the ‘‘1944 Chair in Electrical Engineering’’. He obtained his BSc from St Andrews University in Scotland in 1970 and then went on to read for a PhD in Electronic Materials at Imperial College London. He was awarded his PhD and DIC in 1973 and, in 2003, a D.Eng (Honoris Causa) from University of Waterloo, Canada. He was elected a Fellow of The Royal Academy of Engineering in 2006. He was awarded the J.J. Thomson medal from the IET in 2008 and the NANOSMAT prize in 2010 for excellence in nanotechnology. His research interests include large area Si and carbon based electronics, graphene, carbon nanotubes and thin film materials. Most recently he has been investigating MEMS, SAW and FBAR devices and SOI based micro heaters for ( bio) sensing applications. He has published/presented ~ 800 papers in these areas, of which ~ 150 were invited. He co-founded Cambridge Nanoinstruments with 3 colleagues from the Department and this was bought out by Aixtron in 2008 and in 2009 co-founded Cambridge CMOS Sensors with Julian Gardner from Warwick Univ. and Florin Udrea from Cambridge Univ.

Shuit-Tong Lee
Institute of Functional Nano & Soft Materials (FUNSOM)
Collaboration Innovation Center of Suzhou Nano Science and Technology
College of Nano Science and Technology (CNST)
Soochow University, China
Email: apannale@suda.edu.c

Prof. Lee is the member (academician) of Chinese Academy of Sciences and the fellow of TWAS (the academy of sciences for the developing world). He is a distinguished scientist in material science and engineering. Prof. Lee is the Founding Director of Functional Nano & Soft Materials Laboratory (FUNSOM) and Director of the College of Chemistry, Chemical Engineering and Materials Science at Soochow University. He is also a Chair Professor of Materials Science and Founding Director of the Center of Super-Diamond and Advanced Films (COSDAF) at City University of Hong Kong and the Founding Director of Nano-Organic Photoelectronic Laboratory at the Technical Institute of Physics and Chemistry, CAS. He was the Senior Research Scientist and Project Manager at the Research Laboratories of Eastman Kodak Company in the US before he joined City University of Hong Kong in 1994. He won the Humboldt Senior Research Award (Germany) in 2001 and a Croucher Senior Research Fellowship from the Croucher Foundation (HK) in 2002 for the studies of “Nucleation and growth of diamond and new carbon based materials” and “Oxide assisted growth and applications of semiconducting nanowires”, respectively. He also won the National Natural Science Award of PRC (second class) in 2003 and 2005 for the above research achievements. Recently, he was awarded the 2008 Prize for Scientific and Technological Progress of Ho Leung Ho Lee Foundation. Prof. Lee’s research work has resulted in more than 650 peer-reviewed publications in prestigious chemistry, physics and materials science journals, 6 book chapters and over 20 US patents, among them 5 papers were published in Science and Nature (London) and some others were selected as cover papers. His papers have more than 10,000 citations by others, which is ranked within world top 25 in the materials science field according to ESI and ISI citation database.

Sergej Fatikow
Full Professor, Dr.-Ing. habil.
Head, Division for Microrobotics & Control Engineering (AMiR)
University of Oldenburg, Germany

Professor Sergej Fatikow studied electrical engineering and computer science at the Ufa Aviation Technical University in Russia, where he received his doctoral degree in 1988 with work on fuzzy control of complex non-linear systems. After that he worked until 1990 as a lecturer at the same university. During his work in Russia he published over 30 papers and successfully applied for over 50 patents in intelligent control and mechatronics. In 1990 he moved to the Institute for Process Control and Robotics at the University of Karlsruhe in Germany, where he worked as a postdoctoral scientific researcher and since 1994 as Head of the research group “Microrobotics and Micromechatronics”. He became an assistant professor in 1996 and qualified for a full faculty position by habilitation at the University of Karlsruhe in 1999. In 2000 he accepted a faculty position at the University of Kassel, Germany. A year later, he was invited to establish a new Division for Microrobotics and Control Engineering (AMiR) at the University of Oldenburg, Germany. Since 2001 he is a full professor in the Department of Computing Science and Head of AMiR. His research interests include micro- and nanorobotics, automated robot-based nanohandling in SEM, AFM-based nanohandling, sensor feedback at nanoscale, and neuro-fuzzy robot control. He is author of three books on microsystem technology, microrobotics and microassembly, robot-based nanohandling, and automation at nanoscale, published by Springer in 1997, Teubner in 2000, and Springer in 2008. Since 1990 he published over 100 book chapters and journal papers and over 200 conference papers. Prof. Fatikow is Founding Chair of the International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO) and Europe- Chair of IEEE-RAS Technical Committee on Micro/Nano Robotics and Automation.

Seiji Samukawa
Distinguished Professor
Innovative Energy Research Center, Institute of Fluid Science, Tohoku University
World Premier International Center Initiative, Advanced Institute for Materials Research, Tohoku University, Sendai, Japan

Dr. Seiji Samukawa received a BSc in 1981 from the Faculty of Technology of Keio University and joined NEC Corporation the same year. At NEC Microelectronics Research Laboratories, he was the lead researcher of a group performing fundamental research on advanced plasma etching processes for technology under 0.1 μm. While there, he received the Ishiguro Award—given by NEC’s R&D Group and Semiconductor Business Group— for his work in applying a damage-free plasma etching process to a mass-production line. After spending several years in the business world, however, he returned to Keio University, obtaining a PhD in engineering in 1992. Since 2000, he has served as professor at the Institute of Fluid Science at Tohoku University and developed ultra-low-damage microfabrication techniques that tap into the essential nature of nanomaterials and developed innovative nanodevices. He is also carrying out pioneering, creative research on bio-template technologies, which are based on a completely new concept of treating the super-molecules of living organisms. His motto when conducting research is to “always aim toward eventual practical realization.”

In recognition of his excellent achievements outlined above, he has been elected as a Distinguished Professor of Tohoku University and has been a Fellow of the Japan Society of Applied Physics since 2008 and a Fellow of the American Vacuum Society since 2009. His significant scientific achievements earned him the Outstanding Paper Award at the International Conference on Micro and Nanotechnology (1997), Best Review Paper Award (2001), Japanese Journal of Applied Physics (JJAP) Editorial Contribution Award (2003), Plasma Electronics Award (2004), Fellow Award (2008), JJAP Paper Award (2008) from the Japan Society of Applied Physics, Distinguished Graduate Award (2005) from Keio University, Ichimura Award (2008) from the New Technology Development Foundation, Commendation for Science and Technology from the Minister of Education, Culture, Sports, Science and Technology (2009), Fellow Award of American Vacuum Society (2009), Plasma Electronics Award from the Japan Society of Applied Physics (2010), Best Paper Award from the Japan Society of Applied Physics (2010), and Plasma Prize from the Plasma Science and Technology Division of American Vacuum Society (2010).

Haixia (Alice) Zhang
Professor
Institute of Microelectronics
Peking University, China

Haixia(Alice) Zhang, Professor, Institute of Microelectronics, Peking Universituy. She was served on the general chair of IEEE NEMS 2013 Conference, the organizing chair of Transducers’11. As the founder of the International Contest of Applications in Network of things (iCAN), she organized this world-wide event since 2007. She was elected the director of Integrated Micro/Nano System Engineering Center in 2006, the deputy secretary-general of Chinese Society of Micro-Nano Technology in 2005, the Co-chair of Chinese International NEMS Network (CINN) and serves as the chair of IEEE NTC Beijing Chapter. At 2006, Dr. Zhang won National Invention Award of Science & Technology. Her research fields include MEMS Design and Fabrication Technology, SiC MEMS and Micro Energy Technology.

Alice’s Wonderlab: http://www.ime.pku.edu.cn/alice

I wonder if the organizers will be including an Open Forum as they did at the 13th IEEE nanotechnology conference in China. It sounds a little more dynamic and fun than any of the sessions currently listed for the Toronto conference but these things are sometimes best organized in a relatively spontaneous fashion rather than as one of the more formal conference events (from the 13th conference Open Forum),

This Open Forum will be run like a Rump Session to have a lively discussion of various topics of interest to the IEEE Nanotechnology Community. The key to the success of this Forum is participation from the audience with their own opinions and comments on any Nanotechnology subject or issue they can think of. We expect the session to be lively, interesting, controversial, opinionated and more. Here are some topics or issues to think about:

  1. When are we ever going to have a large scale impact of nanotechnology ? Shouldn’t we be afraid that the stakeholders (Tax payers, Politicians) are going to run out of patience ?
  2. Is there a killer app or apps on the horizon ?
  3. Is there a future for carbon nanotubes in electronics ? It has been 15 years + now….
  4. Is there a future for graphene in electronics ?
  5. Is there a future for graphene in anything ? Or will it just run its course on every application people did previously for carbon nanotubes ?
  6. As engineers, are we doing anything different from the physicists/chemists ? Looks like we are also chasing the same old : trying to publish in Nature, Science, and other similar journals with huge impact factor ? Are we prepared adequately to play in someone else’s game ? Should we even be doing it ?
  7. As engineers, aren’t we supposed to come up with working widgets closer to manufacturing ?
  8. As engineers, are we going to take responsibility for the commercial future of nanotechnology as has been done in all previous success stories ?

This list is by no means exhaustive. Please come up with your own questions/issues and speak up at the session.

Good luck with your abstract.