Tag Archives: chemistry

Licking your way to new ice cream: a physicist’s ice cream changes colour when licked

Bob Yirkas in a July 20, 2014 article for phys.org describes a new twist on ice cream,

Spanish physicist, engineer, professor and ice cream lover Manuel Linares has together with a couple of colleagues created an ice cream that changes colors when it’s licked—in a cone. Not content with the life of a physics professor, Linares signed up for training with Asociación Empresarial Nacional de Elaboradores Artesanos y Comerciantes de Helados y Horchatas—a craftsmen and businessmen association in Spain that offers mentored coursework.

Linares pursued what he has described as a “Masters Diploma in Creating Artisan Ice Cream.” Intrigued by the ice that changes color under fluorescent lights, created by Charlie Francis, Linares set his sights on figuring out a way to create a type of ice cream that would change color in response to temperature changes and acids found in the human mouth. He enlisted the assistance of a couple of unnamed buddies and they all got to work in a lab that Linares put together with his own funds. Linares has told the press that it took the three of them just one week to come up with the color changing ice cream. The final product, which reportedly has a similar taste to tutti-frutti, has been named Xamaleón.

Mariella Moon’s July 30, 2014 article for Engadget reveals more about Linares’ iice cream confection and his future plans,

He [Linares] calls it the Xamaleón, a play on the Spanish word for chameleon, and it originally starts as a periwinkle blue frozen treat until it’s spritzed with Linares’ “love elixir,” a super secret mixture he concocted himself. This mixture reacts to changes in temperature and saliva, causing the tutti-frutti-flavored ice cream to turn into purple, then into pink as you lick.

As unusual as it sounds, this is just the beginning of Linares’ foray into the color-changing ice cream business: he also plans to whip up ice cream that turns from white to pink, and another one that glows under ultraviolet light. You can only get a scoop of this chameleon ice cream from one [of] the creator’s shops in Spain right now, …

The earliest version of this story that I can find is a July 16, 2014 article by Carme Gasull for Cocinatis. You will need Spanish language skills to read it but luckily, this photograph included in the article speaks for itself,

Xamaleón [downloaded from http://www.cocinatis.com/comer/xamaleon-helado-que-cambia-color_2014071600015.html]

Xamaleón [downloaded from http://www.cocinatis.com/comer/xamaleon-helado-que-cambia-color_2014071600015.html]

This is Xamaleón’s pre-love elixir spritz periwinkle blue. You can find more pictures (and a video too) of the ice cream in various stages of its colourful transformation by following this posting’s links to other articles or, if you choose, to search, there’s a lot of material as this has been a very popular topic. BTW, July was National Ice Cream Month as per this July 1, 2014 posting by Anthony Selden for daily.com.

A dog’s intimate understanding of chemical communication: sniffing butts

The American Chemical Society (ACS) has made available a video which answers a question almost everyone has asked at one time or another, why do dogs sniff each other’s bottoms?

Here’s how a July 28, 2014 ACS news release describes this line of inquiry,

Here at Reactions, we ask the tough questions to get to the bottom of the biggest scientific quandaries. In that spirit, this week’s video explains why dogs sniff each other’s butts. It’s a somewhat silly question with a surprisingly complex answer. This behavior is just one of many interesting forms of chemical communication in the animal kingdom

Without more ado, the video,

You can find more videos in ACS’s Reactions series here. (This series was formerly known as Bitesize Science.)

Art (Lawren Harris and the Group of Seven), science (Raman spectroscopic examinations), and other collisions at the 2014 Canadian Chemistry Conference (part 4 of 4)

Cultural heritage and the importance of pigments and databases

Unlike Thom (Ian Thom, curator at the Vancouver Art Gallery), I believe that the testing was important. Knowing the spectra emitted by the pigments in Hurdy Gurdy and Autumn Harbour could help to set benchmarks for establishing the authenticity of the pigments used by artists (Harris and others) in the early part of Canada’s 20th century.

Europeans and Americans are more advanced in their use of technology as a tool in the process of authenticating, restoring, or conserving a piece of art. At the Chicago Institute of Art they identified the red pigment used in a Renoir painting as per my March 24, 2014 posting,

… The first item concerns research by Richard Van Duyne into the nature of the red paint used in one of Renoir’s paintings. A February 14, 2014 news item on Azonano describes some of the art conservation work that Van Duyne’s (nanoish) technology has made possible along with details about this most recent work,

Scientists are using powerful analytical and imaging tools to study artworks from all ages, delving deep below the surface to reveal the process and materials used by some of the world’s greatest artists.

Northwestern University chemist Richard P. Van Duyne, in collaboration with conservation scientists at the Art Institute of Chicago, has been using a scientific method he discovered nearly four decades ago to investigate masterpieces by Pierre-Auguste Renoir, Winslow Homer and Mary Cassatt.

Van Duyne recently identified the chemical components of paint, now partially faded, used by Renoir in his oil painting “Madame Léon Clapisson.” Van Duyne discovered the artist used carmine lake, a brilliant but light-sensitive red pigment, on this colorful canvas. The scientific investigation is the cornerstone of a new exhibition at the Art Institute of Chicago.

There are some similarities between the worlds of science (in this case, chemistry) and art (collectors,  institutions, curators, etc.). They are worlds where one must be very careful.

The scientists/chemists choose their words with precision while offering no certainties. Even the announcement for the discovery (by physicists) of the Higgs Boson is not described in absolute terms as I noted in my July 4, 2012 posting titled: Tears of joy as physicists announce they’re pretty sure they found the Higgs Boson. As the folks from ProsPect Scientific noted,

This is why the science must be tightly coupled with art expertise for an effective analysis.  We cannot do all of that for David [Robertson]. [He] wished to show a match between several pigments to support an interpretation that the ‘same’ paints were used. The availability of Hurdy Gurdy made this plausible because it offered a known benchmark that lessened our dependency on the databases and art-expertise. This is why Raman spectroscopy more often disproves authenticity (through pigment anachronisms). Even if all of the pigments analysed showed the same spectra we don’t know that many different painters didn’t buy the same brand of paint or that some other person didn’t take those same paints and use them for a different painting. Even if all pigments were different, that doesn’t mean Lawren Harris didn’t paint it, it just means different paints were used.

In short they proved that one of the pigments used in Autumn Harbour was also used in the authenticated Harris, Hurdy Gurdy, and the other pigment was in use at that time (early 20th century) in Canada. It doesn’t prove it’s a Harris painting but, unlike the Pollock painting where they found an anachronistic pigment, it doesn’t disprove Robertson’s contention.

To contrast the two worlds, the art world seems to revel in secrecy for its own sake while the world of science (chemistry) will suggest, hint, or hedge but never state certainties. The ProSpect* Scientific representative commented on authentication, art institutions, and databases,

We know that some art institutions are extremely cautious about any claims towards authentication, and they decline to be cited in anything other than the work they directly undertake. (One director of a well known US art institution said to me that they pointedly do not authenticate works, she offered advice on how to conduct the analysis but declined any reference to her institution.) We cannot comment on any of the business plans of any of our customers but the customers we have that use Raman spectroscopy on paintings generally build databases from their collected studies as a vital tool to their own ongoing work collecting and preserving works of art.

We don’t know of anyone with a database particular to pigments used by Canadian artists and neither did David R. We don’t know that any organization is developing such a database.The database we used is a mineral database (as pigments in the early 20th century were pre-synthetic this database contains some of the things commonly used in pigments at that time) There are databases available for many things:  many are for sale, some are protected intellectual property. We don’t have immediate access to a pigments database. Some of our art institution/museum customers are developing their own but often these are not publicly available. Raman spectroscopy is new on the scene relative to other techniques like IR and X-Ray analysis and the databases of Raman spectra are less mature.

ProSpect Scientific provided two papers which illustrate either the chemists’ approach to testing and art (RAMAN VIBRATIONAL STUDY OF PIGMENTS WITH PATRIMONIAL INTEREST FOR THE CHILEAN CULTURAL HERITAGE) and/or the art world’s approach (GENUINE OR FAKE: A MICRO-RAMAN SPECTROSCOPY STUDY OF AN ABSTRACT PAINTING ATTRIBUTED TO VASILY KANDINSKY [PDF]).

Canadian cultural heritage

Whether or not Autumn Harbour is a Lawren Harris painting may turn out to be less important than establishing a means for better authenticating, restoring, and conserving Canadian cultural heritage. (In a June 13, 2014 telephone conversation, David Robertson claims he will forward the summary version of the data from the tests to the Canadian Conservation Institute once it is received.)

If you think about it, Canadians are defined by the arts and by research. While our neighbours to the south went through a revolutionary war to declare independence, Canadians have declared independence through the visual and literary arts and the scientific research and implementation of technology (transportation and communication in the 19th and 20th centuries).

Thank you to both Tony Ma and David Robertson.

Finally, Happy Canada Day on July 1, 2014!

Part 1

Part 2

Part 3

* ‘ProsPect’ changed to ‘ProSpect’ on June 30, 2014.

ETA July 14, 2014 at 1300 hours PDT: There is now an addendum to this series, which features a reply from the Canadian Conservation Institute to a query about art pigments used by Canadian artists and access to a database of information about them.

Lawren Harris (Group of Seven), art authentication, and the Canadian Conservation Insitute (addendum to four-part series)

Art (Lawren Harris and the Group of Seven), science (Raman spectroscopic examinations), and other collisions at the 2014 Canadian Chemistry Conference (part 3 of 4)

Dramatic headlines (again)

Ignoring the results entirely, Metro News Vancouver, which favours the use of the word ‘fraud’, featured it in the headline of a second article about the testing, “Alleged Group of Seven work a fraud: VAG curator” by Thandi Fletcher (June 5, 2014 print issue); happily the online version of Fletcher’s story has had its headline changed to the more accurate: “Alleged Group of Seven painting not an authentic Lawren Harris, says Vancouver Art Gallery curator.” Fletcher’s article was updated after its initial publication with some additional text (it is worth checking out the online version even if you’re already seen the print version). There had been a second Vancouver Metro article on the testing of the authenticated painting by Nick Wells but that in common, with his June 4, 2014 article about the first test, “A fraud or a find?” is no longer available online. Note: Standard mainstream media practice is that the writer with the byline for the article is not usually the author of the article’s headline.

There are two points to be made here. First, Robertson has not attempted to represent ‘Autumn Harbour’ as an authentic Lawren Harris painting other than in a misguided headline for his 2011 news release.  From Robertson’s July 26, 2011 news release (published by Reuters and published by Market Wired) where he crossed a line by stating that Autumn Harbour is a Harris in his headline (to my knowledge the only time he’s done so),

Lost Lawren Harris Found in Bala, Ontario

Unknown 24×36 in. Canvas Piques a Storm of Controversy

VANCOUVER, BRITISH COLUMBIA–(Marketwire – July 26, 2011) -
Was Autumn Harbour painted by Lawren Harris in the fall of 1912? That summer Lawren Harris was 26 years old and had proven himself as an accomplished and professional painter. He had met J.E.H. MacDonald in November of 1911. They became fast friends and would go on to form the Group of Seven in 1920 but now in the summer of 1912 they were off on a sketching expedition to Mattawa and Temiscaming along the Quebec-Ontario border. Harris had seen the wilderness of the northern United States and Europe but this was potentially his first trip outside the confines of an urban Toronto environment into the Canadian wilderness.

By all accounts he was overwhelmed by what he saw and struggled to find new meaning in his talents that would capture these scenes in oil and canvas. There are only two small works credited to this period, archived in the McMichael gallery in Kleinburg, Ontario. Dennis Reid, Assistant Curator of the National Gallery of Canada stated in 1970 about this period: “Both Harris and (J.E.H.) MacDonald explored new approaches to handling of colour and overall design in these canvases. Harris in particular was experimenting with new methods of paint handling, and Jackson pointed out the interest of the other painters in these efforts, referring to the technique affectionately as ‘Tomato Soup’.” For most authorities the summer and fall of 1912 are simply called his ‘lost period’ because it was common for Harris to destroy, abandon or give away works that did not meet his standards. The other trait common to Harris works, is the lack of a signature and some that are signed were signed on his behalf. The most common proxy signatory was Betsy Harris, his second wife who signed canvases on his behalf when he could no longer do so.

So the question remains. Can an unsigned 24×36 in. canvas dated to 1900-1920 that was found in a curio shop in Bala, Ontario be a long lost Lawren Harris? When pictures were shown to Charles C. Hill, Curator of Canadian Art, National Gallery of Canada, he replied: “The canvas looks like no Harris I have ever seen…” A similar reply also came from Ian Thom, Head Curator for the Vancouver Art Gallery: “I do not believe that your work can be connected with Harris in any way.” [emphases mine] Yet the evidence still persists. The best example resides within the National Art Gallery. A 1919, 50.5 X 42.5 in. oil on rough canvas shows Harris’s style of under painting, broad brush strokes and stilled composition. Shacks, painted in 1919 and acquired the Gallery in 1920 is an exact technique clone of Autumn Harbour. For a list of comparisons styles with known Harris works and a full list of the collected evidence please consult www.1912lawrenharris.ca/ and see for yourself.

If Robertson was intent on perpetrating a fraud, why would he include the negative opinions from the curators or attempt to authenticate his purported Harris? The 2011 website is no longer available but Robertson has established another website, http://autumnharbour.ca/.

It’s not a crime (fraud) to have strong or fervent beliefs. After all, Robertson was the person who contacted ProSpect* Scientific to arrange for a test.

Second, Ian Thom, the VAG curator did not call ‘Autumn Harbour’ or David Robertson, a fraud. From the updated  June 5, 2014 article sporting a new headline by Thandi Fletcher,

“I do not believe that the painting … is in fact a Lawren Harris,” said Ian Thom, senior curator at the Vancouver Art Gallery, “It’s that simple.”

It seems Thom feels as strongly as Robertson does; it’s just that Thom holds an opposing opinion.

Monetary value was mentioned earlier as an incentive for Robertson’s drive to prove the authenticity of his painting, from the updated June 5, 2014 article with the new headline by Thandi Fletcher,

Still, Robertson, who has carried out his own research on the painting, said he is convinced the piece is an authentic Harris. If it were, he said it would be worth at least $3 million. [emphasis mine]

“You don’t have to have a signature on the canvas to recognize brushstroke style,” he said.

Note: In a June 13, 2014 telephone conversation, Robertson used the figure of $1M to denote his valuation of Autumn Harbour and claimed a degree in Geography with a minor in Fine Arts from the University of Waterloo. He also expressed the hope that Autumn Harbour would prove to be a* Rosetta Stone of sorts for art pigments used in the early part of the 20th century.

As for the owner of Hurdy Gurdy and the drama that preceded its test on June 4, 2014, Fletcher had this in her updated and newly titled article,

Robertson said the painting’s owner, local Vancouver businessman Tony Ma, had promised to bring the Harris original to the chemistry conference but pulled out after art curator Thom told him not to participate.

While Thom acknowledged that Ma did ask for his advice, he said he didn’t tell him to pull out of the conference.

“It was more along the lines of, ‘If I were you, I wouldn’t do it, because I don’t think it’s going to accomplish anything,’” said Thom, adding that the final decision is up to Ma. [emphasis mine]

A request for comment from Ma was not returned Wednesday [June 5, 2014].

Thom, who already examined Robertson’s painting a year ago [in 2013? then, how is he quoted in a 2011 news release?], said he has no doubt Harris did not paint it.

“The subject matter is wrong, the handling of the paint is wrong, and the type of canvas is wrong,” he said, adding that many other art experts agree with him.

Part 1

Part 2

Part 4

* ‘ProsPect’ changed to ‘ProSpect’ on June 30, 2014. Minor grammatical change made to sentence: ‘He also expressed the hope that Autumn Harbour would prove to a be of Rosetta Stone of sorts for art pigments used in the early part of the 20th century.’ to ‘He also expressed the hope that Autumn Harbour would prove to be a* Rosetta Stone of sorts for art pigments used in the early part of the 20th century.’ on July 2, 2014.

ETA July 14, 2014 at 1300 hours PDT: There is now an addendum to this series, which features a reply from the Canadian Conservation Institute to a query about art pigments used by Canadian artists and access to a database of information about them.

Lawren Harris (Group of Seven), art authentication, and the Canadian Conservation Insitute (addendum to four-part series)

Art (Lawren Harris and the Group of Seven), science (Raman spectroscopic examinations), and other collisions at the 2014 Canadian Chemistry Conference (part 2 of 4)

Testing the sample and Raman fingerprints

The first stage of the June 3, 2010 test of David Robertson’s Autumn Harbour, required taking a tiny sample from the painting,. These samples are usually a fleck of a few microns (millionths of an inch), which can then be tested to ensure the lasers are set at the correct level assuring no danger of damage to the painting. (Robertson extracted the sample himself prior to arriving at the conference. He did not allow anyone else to touch his purported Harris before, during, or after the test.)

Here’s how ProSpect* Scientific describes the ‘rehearsal’ test on the paint chip,

Tests on this chip were done simply to ensure we knew what power levels were safe for use on the painting.  While David R stated he believed the painting was oil on canvas without lacquer, we were not entirely certain of that.  Lacquer tends to be easier to burn than oil pigments and so we wanted to work with this chip just to be entirely certain there was no risk to the painting itself.

The preliminary (rehearsal) test resulted in a line graph that showed the frequencies of the various pigments in the test sample. Titanium dioxide, for example, was detected and its frequency (spectra) reflected on the graph.

I found this example of a line graph representing the spectra (fingerprint) for a molecule of an ultramarine (blue) pigment along with a general explanation of a Raman ‘fingerprint’. There is no indication as to where the ultramarine pigment was obtained. From the  WebExhibits.org website featuring a section on Pigments through the Ages and a webpage on Spectroscopy,

raman-ArtPigment

Ultramarine [downloaded from http://www.webexhibits.org/pigments/intro/spectroscopy.html]

Raman spectra consist of sharp bands whose position and height are characteristic of the specific molecule in the sample. Each line of the spectrum corresponds to a specific vibrational mode of the chemical bonds in the molecule. Since each type of molecule has its own Raman spectrum, this can be used to characterize molecular structure and identify chemical compounds.

Most people don’t realize that the chemical signature (spectra) for pigment can change over time with new pigments being introduced. Finding a pigment that was on the market from 1970 onwards in a painting by Jackson Pollock who died in 1956 suggests strongly that the painting couldn’t have come from Pollock’s hand. (See Michael Shnayerson’s May 2012 article, A Question of Provenance, in Vanity Fair for more about the Pollock painting. The article details the fall of a fabled New York art gallery that had been in business prior to the US Civil War.)

The ability to identify a pigment’s molecular fingerprint means that an examination by Raman spectroscopy can be part of an authentication, a restoration, or a conservation process. Here is how a representative from ProSpect Scientific describes the process,

Raman spectroscopy is non-destructive (when conducted at the proper power levels) and identifies the molecular components in the pigments, allowing characterization of the pigments for proper restoration or validation by comparison with other pigments of the same place/time. It is valuable to art institutions and conservators because it can do this.  In most cases of authentication Raman spectroscopy is one of many tools used and not the first in line. A painting would be first viewed by art experts for technique, format etc, then most often analysed with IR or X-Ray, then perhaps Raman spectroscopy. It is impossible to use Raman spectroscopy to prove authenticity as paint pigments are usually not unique to any particular painter.  Most often Raman spectroscopy is used by conservators to determine proper pigments for appropriate restoration.  Sometimes Raman will tell us that the pigment isn’t from the time/era the painting is purported to be from (anachronisms).

Autumn Harbour test

Getting back to the June 3, 2014 tests, once the levels were set then it was time to examine Autumn Harbour itself to determine the spectra for the various pigments.  ProSpect Scientific has provided an explanation of the process,

This spectrometer was equipped with an extension that allowed delivery of the laser and collection of the scattered light at a point other than directly under the microscope. We could also have used a flexible fibre optic probe for this, but this device is slightly more efficient. This allowed us to position the delivery/collection point for the light just above the painting at the spot we wished to test. For this test, we don’t sweep across the surface, we test a small pinpoint that we feel is a pigment of the target colour.

We only use one laser at a time. The system is built so we can easily select one laser or another, depending on what we wish to look at. Some researchers have 3 or 4 lasers in their system because different lasers provide a better/worse raman spectrum depending on the nature of the sample. In this case we principally used the 785nm laser as it is better for samples that exhibit fluorescence at visible wavelengths. 532nm is a visible wavelength.  For samples that didn’t produce good signal we tried the 532nm laser as it produces better signal to noise than 785nm, generally speaking. I believe the usable results in our case were obtained with the 785nm laser.

The graphed Raman spectra shows peaks for the frequency of scattered light that we collect from the laser-illuminated sample (when shining a laser on a sample the vast majority of light is scattered in the same frequency of the laser, but a very small amount is scattered at different frequencies unique to the molecules in the sample). Those frequencies correspond to and identify molecules in the sample. We use a database (on the computer attached to the spectrometer) to pattern match the spectra to identify the constituents.

One would have thought ‘game over’ at this point. According to some informal sources, Canada has a very small (almost nonexistent) data bank of information about pigments used in its important paintings. For example, the federal government’s Canadian Conservation Institute (CCI) has a very small database of pigments and nothing from Lawren Harris paintings [See the CCI's response in this addendum], so the chances that David Robertson would have been able to find a record of pigments used by Lawren Harris roughly in the same time period that Autumn Harbour seems to have been painted are not good.

Everything changes

In a stunning turn of events and despite the lack of enthusiasm from Vancouver Art Gallery (VAG) curator, Ian Thom, on Wednesday, June 4, 2014 the owner of the authenticated Harris, Hurdy Gurdy, relented and brought the painting in for tests.

Here’s what the folks from ProSpect Scientific had to say about the comparison,

Many pigments were evaluated. Good spectra were obtained for blue and white. The blue pigment matched on both paintings, the white didn’t match. We didn’t get useful Raman spectra from other pigments. We had limited time, with more time we might fine tune and get more data.

One might be tempted to say that the results were 50/50 with one matching and the other not, The response from the representative of ProSpect Scientific is more measured,

We noted that the mineral used in the pigment was the same.  Beyond that is interpretation:  Richard offered the view that lapis-lazuli was a typical and characteristic component for blue in that time period (early 1900′s).   We saw different molecules in the whites used in the two paintings, and Richard offered that both were characteristic of the early 1900′s.

Part 1

Part 3

Part 4

* ‘ProsPect’ changed to ‘ProSpect’ on June 30, 2014.

ETA July 14, 2014 at 1300 hours PDT: There is now an addendum to this series, which features a reply from the Canadian Conservation Institute to a query about art pigments used by Canadian artists and access to a database of information about them.

Lawren Harris (Group of Seven), art authentication, and the Canadian Conservation Insitute (addendum to four-part series)

 

Art (Lawren Harris and the Group of Seven), science (Raman spectroscopic examinations), and other collisions at the 2014 Canadian Chemistry Conference (part 1 of 4)

One wouldn’t expect the 97th Canadian Chemistry Conference held in Vancouver, Canada from  June 1 – 5, 2014 to be an emotional rollercoaster. One would be wrong. Chemists and members of the art scene are not only different from thee and me, they are different from each other.

Setting the scene

It started with a May 30, 2014 Simon Fraser University (SFU) news release,

During the conference, ProSpect Scientific has arranged for an examination of two Canadian oil paintings; one is an original Lawren Harris (Group of Seven) titled “Hurdy Gurdy” while the other is a painting called “Autumn Harbour” that bears many of Harris’s painting techniques. It was found in Bala, Ontario, an area that was known to have been frequented by Harris.

Using Raman Spectroscopy equipment manufactured by Renishaw (Canada), Dr. Richard Bormett will determine whether the paint from both works of art was painted from the same tube of paint.

As it turns out, the news release got it somewhat wrong. Raman spectroscopy testing does not make it possible to* determine whether the paints came from the same tube, the same batch, or even the same brand. Nonetheless, it is an important tool for art authentication, restoration and/or conservation and both paintings were scheduled for testing on Tuesday, June 3, 2014. But that was not to be.

The owner of the authenticated Harris (Hurdy Gurdy) rescinded permission. No one was sure why but the publication of a June 2, 2014 article by Nick Wells for Metro News Vancouver probably didn’t help in a situation that was already somewhat fraught. The print version of the Wells article titled, “A fraud or a find?” showed only one painting “Hurdy Gurdy” and for anyone reading quickly, it might have seemed that the Hurdy Gurdy painting was the one that could be “a fraud or a find.”

The dramatically titled article no longer seems to be online but there is one (also bylined by Nick Wells) dated June 1, 2014 titled, Chemists in Vancouver to use lasers to verify Group of Seven painting. It features (assuming it is still available online) images of both paintings, the purported Harris (Autumn Harbour) and the authenticated Harris (Hurdy Gurdy),

"Autumn Harbour" [downloaded from http://metronews.ca/news/vancouver/1051693/chemists-in-vancouver-to-use-lasers-to-verify-group-of-seven-painting/]

“Autumn Harbour” [downloaded from http://metronews.ca/news/vancouver/1051693/chemists-in-vancouver-to-use-lasers-to-verify-group-of-seven-painting/]

Heffel Fine Art Auction

Lawren Harris’‚ Hurdy Gurdy, a depiction of Toronto’s Ward district is shown in this handout image. [downloaded from http://metronews.ca/news/vancouver/1051693/chemists-in-vancouver-to-use-lasers-to-verify-group-of-seven-painting/]

David Robertson who owns the purported Harris (Autumn Harbour) and is an outsider vis à vis the Canadian art world, has been trying to convince people for years that the painting he found in Bala, Ontario is a “Lawren Harris” painting. For anyone unfamiliar with the “Group of Seven” of which Lawren Harris was a founding member, this group is legendary to many Canadians and is the single most recognized name in Canadian art history (although some might argue that status for Emily Carr and/or Tom Thomson; both of whom have been, on occasion, honorarily included in the Group).  Robertson’s incentive to prove “Autumn Harbour” is a Harris could be described as monetary and/or prestige-oriented and/or a desire to make history.

The owner of the authenticated Harris “Hurdy Gurdy” could also be described as an outsider of sorts [unconfirmed at the time of publication; a June 26, 2014 query is outstanding], gaining entry to that select group of people who own a ‘Group of Seven’ painting at a record-setting price in 2012 with the purchase of a piece that has a provenance as close to unimpeachable as you can get. From a Nov. 22, 2012 news item on CBC (Canadian Broadcasting Corporation) news online,

Hurdy Gurdy, one of the finest urban landscapes ever painted by Lawren Harris, sold for $1,082,250, a price that includes a 17 per cent buyer’s premium. The pre-sale estimate suggested it could go for $400,000 to $600,000 including the premium.

The Group of Seven founder kept the impressionistic painting of a former Toronto district known as the Ward in his own collection before bequeathing it to his daughter. It has remained in the family ever since.

Occasionally, Harris “would come and say, ‘I need to borrow this back for an exhibition,’ and sometimes she wouldn’t see [the paintings] again,” Heffel vice-president Robert Heffel said. “Harris asked to have this painting back for a show…and she said ‘No, dad. Not this one.’ It was a painting that was very, very dear to her.”

It had been a coup to get access to an authenticated Harris for comparison testing so Hurdy Gurdy’s absence was a major disappointment. Nonetheless, Robertson went through with the scheduled June 3, 2014 testing of his ‘Autumn Harbour’.

Chemistry, spectroscopy, the Raman system, and the experts

Primarily focused on a technical process, the chemists (from ProSpect* Scientific and Renishaw) were unprepared for the drama and excitement that anyone associated with the Canadian art scene might have predicted.  From the chemists’ perspective, it was an opportunity to examine a fabled piece of Canadian art (Hurdy Gurdy) and, possibly, play a minor role in making Canadian art history.

The technique the chemists used to examine the purported Harris, Autumn Harbour, is called Raman spectroscopy and its beginnings as a practical technique date back to the 1920s. (You can get more details about Raman spectroscopy in this Wikiipedia entry then will be given here after the spectroscopy description.)

Spectroscopy (borrowing heavily from this Wikipedia entry) is the process where one studies the interaction between matter and radiated energy and which can be measured as frequencies and/or wavelengths. Raman spectroscopy systems can be used to examine radiated energy with low frequency emissions as per this description in the Raman spectroscopy Wikipedia entry,

Raman spectroscopy (/ˈrɑːmən/; named after Sir C. V. Raman) is a spectroscopic technique used to observe vibrational, rotational, and other low-frequency modes in a system.[1] It relies on inelastic scattering, or Raman scattering, of monochromatic light, usually from a laser in the visible, near infrared, or near ultraviolet range. The laser light interacts with molecular vibrations, phonons or other excitations in the system, resulting in the energy of the laser photons being shifted up or down.

The reason for using Raman spectroscopy for art authentication, conservation, and/or restoration purposes is that the technique, as noted earlier, can specify the specific chemical composition of the pigments used to create the painting. It is a technique used in many fields as a representative from ProSpect Scientific notes,

Raman spectroscopy is a vital tool for minerologists, forensic investigators, surface science development, nanotechnology research, pharmaceutical research and other applications.  Most graduate level university labs have this technology today, as do many government and industry researchers.  Raman spectroscopy is now increasingly available in single purpose hand held units that can identify the presence of a small number of target substances with ease-of-use appropriate for field work by law enforcers, first responders or researchers in the field.

About the chemists and ProSpect Scientific and Renishaw

There were two technical experts attending the June 3, 2014 test for the purported Harris painting, Autumn Harbour, Dr. Richard Bormett of Renishaw and Dr. Kelly Akers of ProSpect Scientific.

Dr. Kelly Akers founded ProSpect Scientific in 1996. Her company represents Renishaw Raman spectroscopy systems for the most part although other products are also represented throughout North America. Akers’ company is located in Orangeville, Ontario. Renishaw, a company based in the UK. offers a wide line of products including Raman spectroscopes. (There is a Renishaw Canada Ltd., headquartered in Mississauga, Ontario, representing products other than Raman spectroscopes.)

ProSpect Scientific runs Raman spectroscopy workshops, at the Canadian Chemistry Conferences as a regular occurrence, often in conjunction with Renishaw’s Bormett,. David Robertson, on learning the company would be at the 2014 Canadian Chemistry Conference in Vancouver, contacted Akers and arranged to have his purported Harris and Hurdy Gurdy, the authenticated Harris, tested at the conference.

Bormett, based in Chicago, Illinois, is Renishaw’s business manager for the Spectroscopy Products Division in North America (Canada, US, & Mexico).  His expertise as a spectroscopist has led him to work with many customers throughout the Americas and, as such, has worked with several art institutions and museums on important and valuable artifacts.  He has wide empirical knowledge of Raman spectra for many things, including pigments, but does not claim expertise in art or art authentication. You can hear him speak at a 2013 US Library of Congress panel discussion titled, “Advances in Raman Spectroscopy for Analysis of Cultural Heritage Materials,” part of the Library of Congress’s Topics in Preservation Series (TOPS), here on the Library of Congress website or here on YouTube. The discussion runs some 130 minutes.

Bormett has a PhD in analytical chemistry from the University of Pittsburgh. Akers has a PhD in physical chemistry from the University of Toronto and is well known in the Raman spectroscopy field having published in many refereed journals including “Science” and the “Journal of Physical Chemistry.”  She expanded her knowledge of industrial applications of Raman spectroscopy substantive post doctoral work in Devon, Alberta at the CANMET Laboratory (Natural Resources Canada).

About Renishaw InVia Reflex Raman Spectrometers

The Raman spectroscopy system used for the examination, a Renishaw InVia Reflex Raman Spectrometer, had

  • two lasers (using 785nm [nanometres] and 532nm lasers for this application),
  • two cameras,
    (ProSpect Scientific provided this description of the cameras: The system has one CCD [Charged Coupled Device] camera that collects the scattered laser light to produce Raman spectra [very sensitive and expensive]. The system also has a viewing camera mounted on the microscope to allow the user to visually see what the target spot on the sample looks like. This camera shows on the computer what is visible through the eyepieces of the microscope.)
  • a microscope,
  • and a computer with a screen,

all of which fit on a tabletop, albeit a rather large one.

For anyone unfamiliar with the term CCD (charged coupled device), it is a sensor used in cameras to capture light and convert it to digital data for capture by the camera. (You can find out more here at TechTerms.com on the CCD webpage.)

Part 2

Part 3

Part 4

* ‘to’ added to sentence on June 27, 2014 at 1340 hours (PDT). ‘ProsPect’ corrected to ‘ProSpect’ on June 30, 2014.

ETA July 14, 2014 at 1300 hours PDT: There is now an addendum to this series, which features a reply from the Canadian Conservation Institute to a query about art pigments used by Canadian artists and access to a database of information about them.

Lawren Harris (Group of Seven), art authentication, and the Canadian Conservation Insitute (addendum to four-part series)

Canadian Society for Chemistry honours Québec nanoscientist Federico Rosei

Dr. Federico Rosei’s name has graced this blog before, most recently in a June 15, 2010 posting about an organic nanoelectronics project. Late last week, Québec’s Institut national de la recherche scientifique (INRS) announced that Rosei will be honoured by the Canadian Society for Chemistry at  the 2014 Canadian Chemistry Conference (from the January 24, 2014 news release on EurekAlert),,

The Canadian Society for Chemistry (CSC) has bestowed its 2014 Award for Research Excellence in Materials Chemistry on Professor Federico Rosei, director of the INRS Énergie Matériaux Télécommunications research centre, in recognition of his exceptional contributions to the field. Professor Rosei will be honoured at the society’s annual conference, which will take place June 1 to 5, 2014, in Vancouver.

In conjunction with this honour, Federico Rosei has been invited to speak at this important scientific conference and to take part in a lecture tour of Canadian universities located outside major cities.

Professor Rosei has been widely honoured for his research on nanomaterial properties and their applications. He has received numerous awards and distinctions, including the 2013 Herzberg Medal from the Canadian Association of Physicists, the Brian Ives Lectureship Award from ASM Canada, the 2011 Rutherford Memorial Medal in Chemistry from the Royal Society of Canada, and the Alexander von Humboldt Foundation’s 2010 Friedrich Wilhelm Bessel Research Award. He is also a fellow of the American Association for the Advancement of Science; the Institute of Physics; the Royal Society of Chemistry; the Institute of Materials, Minerals and Mining; the Institute of Engineering and Technology; and the Institute of Nanotechnology in the U.K.; the Engineering Institute of Canada; and the Australian Institute of Physics. In addition, Professor Rosei is a Senior Member of the Institute of Electrical and Electronics Engineers (IEEE) and the Society for Photo-Image Engineers (SPIE), and a member of Sigma Xi (scientific research society) and the Global Young Academy.

Please join us in extending our congratulations to Professor Rosei!

###

The Canadian Society for Chemistry

The Canadian Society for Chemistry (CSC) is a not-for-profit professional association that unites chemistry students and professionals who work in industry, academia, and government. Recognized by the International Union of Pure and Applied Chemistry (IUPAC), the CSC awards annual prizes and scholarships in recognition of outstanding achievements in the chemical sciences.

About INRS

Institut national de recherche scientifique (INRS) is a graduate research and training university. As Canada’s leading university for research intensity in its class, INRS brings together some 150 professors and close to 700 students and postdoctoral fellows in its centres in Montreal, Quebec City, Laval, and Varennes. As active providers of fundamental research essential to the advancement of science in Quebec as well as internationally, INRS research teams also play a critical role in developing concrete solutions to problems that our society faces.

The French language version of the news release: de l’actualité le 23 janvier 2014, par Stéphanie Thibault (Note: Links have been removed from the excerpt),

Le professeur Federico Rosei du Centre Énergie Matériaux Télécommunications de l’INRS est récipiendaire du Prix d’excellence en chimie des matériaux 2014. La Société canadienne de chimie reconnaît ainsi sa contribution exceptionnelle dans ce domaine. Le professeur Rosei sera honoré lors du congrès annuel de la Société qui aura lieu du 1er au 5 juin 2014 à Vancouver.

À titre de lauréat, le professeur Rosei sera conférencier invité à cette importante rencontre scientifique et participera à une tournée de conférences qui l’amènera dans des universités canadiennes situées hors des grandes villes.

I have not found any specific details about Dr. Rosei’s upcoming chemistry lecture tour of universities.

The conference where Dr. Rosei will be honoured is the 97th annual Canadian Chemistry Conference and Exhibition. It is being hosted by Simon Fraser University (SFU), located in the Vancouver region. While the conference programme is not yet in place there’s a hint as to what will be offered in the conference chair’s Welcome message,

On behalf of the Organizing Committee, I am delighted to welcome all the delegates and their guests to Vancouver, British Columbia, for the 97th Canadian Chemistry Conference and Exhibition that will take place from June 1 to 5, 2014. This is Canada’s largest annual event devoted to the science and practice of chemistry, and it will give participants a platform to exchange ideas, discover novel opportunities, reacquaint with colleagues, meet new friends, and broaden their knowledge. The conference will held at the new Vancouver Convention Centre, which is a spectacular, green-designed facility on the beautiful waterfront in downtown Vancouver.

The theme of the CSC 2014 Conference is “Chemistry from Sea to Sky”; it will broadly cover all disciplines of chemistry from fundamental research to “blue sky” applications, highlight global chemical scientific interactions and collaborations, and feature the unique location, culture and beautiful geography (the Coastal Mountains along the ocean’s edge of Howe Sound) of British Columbia and Vancouver.

We are pleased to have Professor Shankar Balasubramanian (University of Cambridge, UK) and Professor Klaus Müllen (Max Planck Institute for Polymer Research, Mainz, Germany) as the plenary speakers. In addition to divisional symposia, the scientific program also includes several jointly organized international symposia, featuring Canada and each of China, Germany, Japan, Korea, Switzerland and the USA. This new type of symposium at the CSC aims to highlight research interests of Canadians in an international context. Interactions between chemists and TRIUMF (the world’s largest cyclotron, based in Vancouver) will also be highlighted via a special “Nuclear and Radiochemistry” Divisional Program.

All of the members of the local Organizing Committee from Simon Fraser University wish you a superb conference experience and a memorable stay in Vancouver. Welcome to Vancouver! Bienvenue à Vancouver!

Zuo-Guang Ye, Conference Chair
Department of Chemistry
Simon Fraser University
Burnaby, British Columbia

Conference abstracts are being accepted until February 17, 2014 (according to the conference home page). Dr. Shankar Balasubramanian was last mentioned (one of several authors of a paper) here in a July 22, 2013 posting titled: Combining bacteriorhodopsin with semiconducting nanoparticles to generate hydrogen.

Science, Sir Arthur Conan Doyle, and Sherlock Holmes

GrrlScientist (Guardian science blogs) has written a review of a Sherlock Holmes book published last year in her Jan. 22, 2014 posting (Note: Links have been removed),

Breathless with anticipation, I breezed through a fun little treatise by James O’Brien, The Scientific Sherlock Holmes: Cracking the Case with Science and Forensics [Oxford University Press, 2013; ...]. This book is an absorbing and scholarly exploration of the history of the science and forensics described in the Sherlock Holmes stories, which were written more than 100 years ago by Scottish physician and writer, Sir Arthur Conan Doyle.

Written by an avid “Sherlockian” and emeritus chemistry professor from Missouri State University, this book shows that the fictional Sherlock Holmes characters, their stories and their crime-solving methods are all based in reality. …

….

I particularly enjoyed the history of using fingerprints to identify individuals, how fingerprint analysis became a science and how this new science inspired and informed the development of searchable databases containing millions of individual fingerprints. According to the author, this database provided investigators with the evidence — sometimes within seconds — necessary to resolve cases that had lingered for many years. Professor O’Brien also places fingerprint technology into its historical context, mentioning that fingerprints were recognised as unique identifiers as early as 3000 BC by the ancient Chinese and by the Babylonians in 2000 BC. …

The chapter on chemistry — Holmes’ first love — was, of course, quite good. Amongst the topics covered, the author examines the reference materials that were available during Holmes’s lifetime to specifically address the accusation by chemist and science fiction writer Isaac Asimov that Holmes was “a blundering chemist”. The author concludes that Holmes was neither as bad as Asimov argued, nor as good as originally claimed by Dr Watson, his crime-solving colleague …

While GrrlScientist enjoyed the book she does note this,

Overall, I thought this book was more heavily focused upon exploring the history of science and forensics than clarifying the details of Holmes’s scientific methodologies.

Matthew Hutson had this to say in his Jan. 11, 2013 book review for the Wall Street Journal,

Arthur Conan Doyle draws readers into the process of detection with what his biographer John Dickson Carr called “enigmatic clues.” Holmes signposts a piece of evidence as significant but doesn’t immediately reveal its use, leaving it as an exercise for the reader. “The creator of Sherlock Holmes invented it,” Carr wrote in 1949, “and nobody . . . has ever done it half so well.” In one of the most celebrated examples, Sherlock Holmes quizzes a client about the “curious incident of the dog in the night-time.” “The dog did nothing in the night-time,” the man says. “That was the curious incident,” remarks Holmes.

Holmes’s supreme rationality is of a piece with his interest in science. “The Scientific Sherlock Holmes,” by James O’Brien, an emeritus professor of chemistry at Missouri State University, explores the forensic methods and scientific content in the Holmes canon as well as his creator’s own scientific background. Born in 1859, Conan Doyle took to books at the encouragement of his mother. Frustrated by the rigidity of his Catholic schooling, he moved toward science. At 17, he began medical school in Edinburgh. There his mentor was Dr. Joseph Bell, a man with sharpened diagnostic abilities who would serve as a model for Holmes. In one instance, Bell gleaned that a woman who had come in with her child was from the town of Burntisland (her accent), had traveled via Iverleith Row (red clay on shoes), had another child (a too-large jacket on the one present) and worked at a linoleum factory (dermatitis on fingers).

Hutson knows a lot about Conan Doyle and, thankfully he’s not shy about sharing;. Although he does mention O’Brien’s book, he seems not all that interested in it,

Mr. O’Brien spends most of his slim book, a volume most suitable for those already fond of Sherlock and not afraid of section titles with catchy names like “Section 4.2,” exploring the various fields that Holmes draws on—principally chemistry, with a little biology and physics. We learn about the use of coal-tar derivatives and handwriting identification in both Holmes’s world and ours. Some techniques, such as fingerprinting, appeared in the stories even before they were widely adopted by real police.

His real passion seems to be about thought processes,

Another look at the cogs under the deerstalker is offered by “Mastermind: How to Think Like Sherlock Holmes,” by Maria Konnikova, a psychology graduate student at Columbia University. Following Holmes’s metaphor of the “brain attic,” she describes how Holmes stocks his attic (observation), explores it (creativity), navigates it (deduction) and maintains it (continuing education and practice). In the process, she lays out the habits of mind—both the techniques Holmes employs and the errors he avoids—that we might usefully emulate.

If you want to get a feel for how James (Jim) O’Brien, the author of ‘Scientific Sherlock Holmes: Cracking the Case with Science and Forensics’ writes,  you can check out his Jan. 25, 2013 posting about his book on the Huffington Post.

Single-element quasicrystal created in laboratory for the first time

There’s a background story which gives this breakthrough a fabulous aspect but, first, here’s the research breakthrough from a Dec. 24, 2013 news item on Nanowerk (Note: A link has been removed),

A research group led by Assistant Professor Kazuki Nozawa and Professor Yasushi Ishii from the Department of Physics, Faculty of Science and Engineering, Chuo University, Chief Researcher Masahiko Shimoda from the National Institute for Materials Science (NIMS) and Professor An-Pang Tsai from the Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, succeeded for the first time in the world in fabricating a three-dimensional structure of a quasicrystal composed of a single element, through joint research with a group led by Dr. Hem Raj Sharma from the University of Liverpool, the United Kingdom.

The Dec. 2, 2013 National Institute for Materials Science (NIMS; Japan) press release, which originated the news item, describes quasicrystals and the reasons why this particular achievement is such a breakthrough,

Quasicrystals are substances discovered in 1984 by Dr. Dan Shechtman (who was awarded the Nobel Prize in Chemistry in 2011). [emphasis mine] To date, quasicrystals have been found in more than one hundred kinds of alloy, polymer and nanoparticle systems. However, a quasicrystal composed of a single element has not been found yet. Quasicrystals have a beautiful crystalline structure which is closely related to the golden ratio, called a quasiperiodic structure. This structure is made of a pentagonal or decagonal atomic arrangement that is not found in ordinary periodic crystals (see the reference illustrations). Due to the complexity of the crystalline structure and chemical composition, much about quasicrystals is still veiled in mystery, including the mechanism for stabilizing a quasiperiodic structure and the novel properties of this unique type of crystalline structure. For these reasons, efforts have been made for a long time in the quest for a chemically simple type of quasicrystal composed only of a single element. The joint research group has recently succeeded in growing a crystal of lead with a quasiperiodic structure which is modeled on the structure of a substrate quasicrystal, by vapor-depositing lead atoms on the quasicrystal substrate of an existing alloy made of silver (Ag), indium (In) and ytterbium (Yb). Success using this approach had been reported for fabricating a single-element quasiperiodic film consisting of a single atomic layer (two-dimensional structure), but there had been no successful case of fabricating a single-element quasiperiodic structure consisting of multiple atomic layers (three-dimensional structure). This recent success by the joint research group is a significant step forward toward achieving single-element quasicrystals. It is also expected to lead to advancement in various fields, such as finding properties unique to quasiperiodic structures that cannot be found in periodic crystals and elucidating the mechanism of stabilization of quasiperiodic structures.

Here’s an image illustrating the researchers’ achievement,

Illustrations of the deposition structure of lead. The Tsai cluster in the substrate quasicrystal which is near the surface of the substrate is cut at the point where it contacts the surface. While lead usually has a face-centered cubic structure, it is deposited on the quasicrystal substrate in a manner that it recovers Tsai clusters which are cut near the surface of the substrate. This indicates that a crystal of lead is grown with the same structure as the structure of the quasicrystal substrate. (Courtesy National Institute for Materials Science, Japan)

Illustrations of the deposition structure of lead. The Tsai cluster in the substrate quasicrystal which is near the surface of the substrate is cut at the point where it contacts the surface. While lead usually has a face-centered cubic structure, it is deposited on the quasicrystal substrate in a manner that it recovers Tsai clusters which are cut near the surface of the substrate. This indicates that a crystal of lead is grown with the same structure as the structure of the quasicrystal substrate. (Courtesy National Institute for Materials Science, Japan)

I suggested earlier that this achievement has a fabulous quality and the Daniel Schechtman backstory is the reason. The winner of the 2011 Nobel Prize for Chemistry, Schechtman was reviled for years within his scientific community as Ian Sample notes in his Oct. 5, 2011 article on the announcement of Schechtman’s Nobel win written for the Guardian newspaper (Note: A link has been removed),

A scientist whose work was so controversial he was ridiculed and asked to leave his research group has won the Nobel Prize in Chemistry.

Daniel Shechtman, 70, a researcher at Technion-Israel Institute of Technology in Haifa, received the award for discovering seemingly impossible crystal structures in frozen gobbets of metal that resembled the beautiful patterns seen in Islamic mosaics.

Images of the metals showed their atoms were arranged in a way that broke well-establised rules of how crystals formed, a finding that fundamentally altered how chemists view solid matter.

On the morning of 8 April 1982, Shechtman saw something quite different while gazing at electron microscope images of a rapidly cooled metal alloy. The atoms were packed in a pattern that could not be repeated. Shechtman said to himself in Hebrew, “Eyn chaya kazo,” which means “There can be no such creature.”

The bizarre structures are now known as “quasicrystals” and have been seen in a wide variety of materials. Their uneven structure means they do not have obvious cleavage planes, making them particularly hard.

In an interview this year with the Israeli newspaper, Haaretz, Shechtman said: “People just laughed at me.” He recalled how Linus Pauling, a colossus of science and a double Nobel laureate, mounted a frightening “crusade” against him. After telling Shechtman to go back and read a crystallography textbook, the head of his research group asked him to leave for “bringing disgrace” on the team. “I felt rejected,” Shachtman said.

It takes a lot to persevere when most, if not all, of your colleagues are mocking and rejecting your work so bravo to Schechtman! And,bravo to the Japan-UK project researchers who have persevered to help solve at least part of a complex problem requiring that our basic notions of matter be rethought.

I encourage you to read Sample’s article in its entirety as it is well written and I’ve excerpted only bits of the story as it relates to a point I’m making in this post, i.e., perseverance in the face of extreme resistance.