Tag Archives: chemistry

Canadian Society for Chemistry honours Québec nanoscientist Federico Rosei

Dr. Federico Rosei’s name has graced this blog before, most recently in a June 15, 2010 posting about an organic nanoelectronics project. Late last week, Québec’s Institut national de la recherche scientifique (INRS) announced that Rosei will be honoured by the Canadian Society for Chemistry at  the 2014 Canadian Chemistry Conference (from the January 24, 2014 news release on EurekAlert),,

The Canadian Society for Chemistry (CSC) has bestowed its 2014 Award for Research Excellence in Materials Chemistry on Professor Federico Rosei, director of the INRS Énergie Matériaux Télécommunications research centre, in recognition of his exceptional contributions to the field. Professor Rosei will be honoured at the society’s annual conference, which will take place June 1 to 5, 2014, in Vancouver.

In conjunction with this honour, Federico Rosei has been invited to speak at this important scientific conference and to take part in a lecture tour of Canadian universities located outside major cities.

Professor Rosei has been widely honoured for his research on nanomaterial properties and their applications. He has received numerous awards and distinctions, including the 2013 Herzberg Medal from the Canadian Association of Physicists, the Brian Ives Lectureship Award from ASM Canada, the 2011 Rutherford Memorial Medal in Chemistry from the Royal Society of Canada, and the Alexander von Humboldt Foundation’s 2010 Friedrich Wilhelm Bessel Research Award. He is also a fellow of the American Association for the Advancement of Science; the Institute of Physics; the Royal Society of Chemistry; the Institute of Materials, Minerals and Mining; the Institute of Engineering and Technology; and the Institute of Nanotechnology in the U.K.; the Engineering Institute of Canada; and the Australian Institute of Physics. In addition, Professor Rosei is a Senior Member of the Institute of Electrical and Electronics Engineers (IEEE) and the Society for Photo-Image Engineers (SPIE), and a member of Sigma Xi (scientific research society) and the Global Young Academy.

Please join us in extending our congratulations to Professor Rosei!


The Canadian Society for Chemistry

The Canadian Society for Chemistry (CSC) is a not-for-profit professional association that unites chemistry students and professionals who work in industry, academia, and government. Recognized by the International Union of Pure and Applied Chemistry (IUPAC), the CSC awards annual prizes and scholarships in recognition of outstanding achievements in the chemical sciences.

About INRS

Institut national de recherche scientifique (INRS) is a graduate research and training university. As Canada’s leading university for research intensity in its class, INRS brings together some 150 professors and close to 700 students and postdoctoral fellows in its centres in Montreal, Quebec City, Laval, and Varennes. As active providers of fundamental research essential to the advancement of science in Quebec as well as internationally, INRS research teams also play a critical role in developing concrete solutions to problems that our society faces.

The French language version of the news release: de l’actualité le 23 janvier 2014, par Stéphanie Thibault (Note: Links have been removed from the excerpt),

Le professeur Federico Rosei du Centre Énergie Matériaux Télécommunications de l’INRS est récipiendaire du Prix d’excellence en chimie des matériaux 2014. La Société canadienne de chimie reconnaît ainsi sa contribution exceptionnelle dans ce domaine. Le professeur Rosei sera honoré lors du congrès annuel de la Société qui aura lieu du 1er au 5 juin 2014 à Vancouver.

À titre de lauréat, le professeur Rosei sera conférencier invité à cette importante rencontre scientifique et participera à une tournée de conférences qui l’amènera dans des universités canadiennes situées hors des grandes villes.

I have not found any specific details about Dr. Rosei’s upcoming chemistry lecture tour of universities.

The conference where Dr. Rosei will be honoured is the 97th annual Canadian Chemistry Conference and Exhibition. It is being hosted by Simon Fraser University (SFU), located in the Vancouver region. While the conference programme is not yet in place there’s a hint as to what will be offered in the conference chair’s Welcome message,

On behalf of the Organizing Committee, I am delighted to welcome all the delegates and their guests to Vancouver, British Columbia, for the 97th Canadian Chemistry Conference and Exhibition that will take place from June 1 to 5, 2014. This is Canada’s largest annual event devoted to the science and practice of chemistry, and it will give participants a platform to exchange ideas, discover novel opportunities, reacquaint with colleagues, meet new friends, and broaden their knowledge. The conference will held at the new Vancouver Convention Centre, which is a spectacular, green-designed facility on the beautiful waterfront in downtown Vancouver.

The theme of the CSC 2014 Conference is “Chemistry from Sea to Sky”; it will broadly cover all disciplines of chemistry from fundamental research to “blue sky” applications, highlight global chemical scientific interactions and collaborations, and feature the unique location, culture and beautiful geography (the Coastal Mountains along the ocean’s edge of Howe Sound) of British Columbia and Vancouver.

We are pleased to have Professor Shankar Balasubramanian (University of Cambridge, UK) and Professor Klaus Müllen (Max Planck Institute for Polymer Research, Mainz, Germany) as the plenary speakers. In addition to divisional symposia, the scientific program also includes several jointly organized international symposia, featuring Canada and each of China, Germany, Japan, Korea, Switzerland and the USA. This new type of symposium at the CSC aims to highlight research interests of Canadians in an international context. Interactions between chemists and TRIUMF (the world’s largest cyclotron, based in Vancouver) will also be highlighted via a special “Nuclear and Radiochemistry” Divisional Program.

All of the members of the local Organizing Committee from Simon Fraser University wish you a superb conference experience and a memorable stay in Vancouver. Welcome to Vancouver! Bienvenue à Vancouver!

Zuo-Guang Ye, Conference Chair
Department of Chemistry
Simon Fraser University
Burnaby, British Columbia

Conference abstracts are being accepted until February 17, 2014 (according to the conference home page). Dr. Shankar Balasubramanian was last mentioned (one of several authors of a paper) here in a July 22, 2013 posting titled: Combining bacteriorhodopsin with semiconducting nanoparticles to generate hydrogen.

Science, Sir Arthur Conan Doyle, and Sherlock Holmes

GrrlScientist (Guardian science blogs) has written a review of a Sherlock Holmes book published last year in her Jan. 22, 2014 posting (Note: Links have been removed),

Breathless with anticipation, I breezed through a fun little treatise by James O’Brien, The Scientific Sherlock Holmes: Cracking the Case with Science and Forensics [Oxford University Press, 2013; ...]. This book is an absorbing and scholarly exploration of the history of the science and forensics described in the Sherlock Holmes stories, which were written more than 100 years ago by Scottish physician and writer, Sir Arthur Conan Doyle.

Written by an avid “Sherlockian” and emeritus chemistry professor from Missouri State University, this book shows that the fictional Sherlock Holmes characters, their stories and their crime-solving methods are all based in reality. …


I particularly enjoyed the history of using fingerprints to identify individuals, how fingerprint analysis became a science and how this new science inspired and informed the development of searchable databases containing millions of individual fingerprints. According to the author, this database provided investigators with the evidence — sometimes within seconds — necessary to resolve cases that had lingered for many years. Professor O’Brien also places fingerprint technology into its historical context, mentioning that fingerprints were recognised as unique identifiers as early as 3000 BC by the ancient Chinese and by the Babylonians in 2000 BC. …

The chapter on chemistry — Holmes’ first love — was, of course, quite good. Amongst the topics covered, the author examines the reference materials that were available during Holmes’s lifetime to specifically address the accusation by chemist and science fiction writer Isaac Asimov that Holmes was “a blundering chemist”. The author concludes that Holmes was neither as bad as Asimov argued, nor as good as originally claimed by Dr Watson, his crime-solving colleague …

While GrrlScientist enjoyed the book she does note this,

Overall, I thought this book was more heavily focused upon exploring the history of science and forensics than clarifying the details of Holmes’s scientific methodologies.

Matthew Hutson had this to say in his Jan. 11, 2013 book review for the Wall Street Journal,

Arthur Conan Doyle draws readers into the process of detection with what his biographer John Dickson Carr called “enigmatic clues.” Holmes signposts a piece of evidence as significant but doesn’t immediately reveal its use, leaving it as an exercise for the reader. “The creator of Sherlock Holmes invented it,” Carr wrote in 1949, “and nobody . . . has ever done it half so well.” In one of the most celebrated examples, Sherlock Holmes quizzes a client about the “curious incident of the dog in the night-time.” “The dog did nothing in the night-time,” the man says. “That was the curious incident,” remarks Holmes.

Holmes’s supreme rationality is of a piece with his interest in science. “The Scientific Sherlock Holmes,” by James O’Brien, an emeritus professor of chemistry at Missouri State University, explores the forensic methods and scientific content in the Holmes canon as well as his creator’s own scientific background. Born in 1859, Conan Doyle took to books at the encouragement of his mother. Frustrated by the rigidity of his Catholic schooling, he moved toward science. At 17, he began medical school in Edinburgh. There his mentor was Dr. Joseph Bell, a man with sharpened diagnostic abilities who would serve as a model for Holmes. In one instance, Bell gleaned that a woman who had come in with her child was from the town of Burntisland (her accent), had traveled via Iverleith Row (red clay on shoes), had another child (a too-large jacket on the one present) and worked at a linoleum factory (dermatitis on fingers).

Hutson knows a lot about Conan Doyle and, thankfully he’s not shy about sharing;. Although he does mention O’Brien’s book, he seems not all that interested in it,

Mr. O’Brien spends most of his slim book, a volume most suitable for those already fond of Sherlock and not afraid of section titles with catchy names like “Section 4.2,” exploring the various fields that Holmes draws on—principally chemistry, with a little biology and physics. We learn about the use of coal-tar derivatives and handwriting identification in both Holmes’s world and ours. Some techniques, such as fingerprinting, appeared in the stories even before they were widely adopted by real police.

His real passion seems to be about thought processes,

Another look at the cogs under the deerstalker is offered by “Mastermind: How to Think Like Sherlock Holmes,” by Maria Konnikova, a psychology graduate student at Columbia University. Following Holmes’s metaphor of the “brain attic,” she describes how Holmes stocks his attic (observation), explores it (creativity), navigates it (deduction) and maintains it (continuing education and practice). In the process, she lays out the habits of mind—both the techniques Holmes employs and the errors he avoids—that we might usefully emulate.

If you want to get a feel for how James (Jim) O’Brien, the author of ‘Scientific Sherlock Holmes: Cracking the Case with Science and Forensics’ writes,  you can check out his Jan. 25, 2013 posting about his book on the Huffington Post.

Single-element quasicrystal created in laboratory for the first time

There’s a background story which gives this breakthrough a fabulous aspect but, first, here’s the research breakthrough from a Dec. 24, 2013 news item on Nanowerk (Note: A link has been removed),

A research group led by Assistant Professor Kazuki Nozawa and Professor Yasushi Ishii from the Department of Physics, Faculty of Science and Engineering, Chuo University, Chief Researcher Masahiko Shimoda from the National Institute for Materials Science (NIMS) and Professor An-Pang Tsai from the Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, succeeded for the first time in the world in fabricating a three-dimensional structure of a quasicrystal composed of a single element, through joint research with a group led by Dr. Hem Raj Sharma from the University of Liverpool, the United Kingdom.

The Dec. 2, 2013 National Institute for Materials Science (NIMS; Japan) press release, which originated the news item, describes quasicrystals and the reasons why this particular achievement is such a breakthrough,

Quasicrystals are substances discovered in 1984 by Dr. Dan Shechtman (who was awarded the Nobel Prize in Chemistry in 2011). [emphasis mine] To date, quasicrystals have been found in more than one hundred kinds of alloy, polymer and nanoparticle systems. However, a quasicrystal composed of a single element has not been found yet. Quasicrystals have a beautiful crystalline structure which is closely related to the golden ratio, called a quasiperiodic structure. This structure is made of a pentagonal or decagonal atomic arrangement that is not found in ordinary periodic crystals (see the reference illustrations). Due to the complexity of the crystalline structure and chemical composition, much about quasicrystals is still veiled in mystery, including the mechanism for stabilizing a quasiperiodic structure and the novel properties of this unique type of crystalline structure. For these reasons, efforts have been made for a long time in the quest for a chemically simple type of quasicrystal composed only of a single element. The joint research group has recently succeeded in growing a crystal of lead with a quasiperiodic structure which is modeled on the structure of a substrate quasicrystal, by vapor-depositing lead atoms on the quasicrystal substrate of an existing alloy made of silver (Ag), indium (In) and ytterbium (Yb). Success using this approach had been reported for fabricating a single-element quasiperiodic film consisting of a single atomic layer (two-dimensional structure), but there had been no successful case of fabricating a single-element quasiperiodic structure consisting of multiple atomic layers (three-dimensional structure). This recent success by the joint research group is a significant step forward toward achieving single-element quasicrystals. It is also expected to lead to advancement in various fields, such as finding properties unique to quasiperiodic structures that cannot be found in periodic crystals and elucidating the mechanism of stabilization of quasiperiodic structures.

Here’s an image illustrating the researchers’ achievement,

Illustrations of the deposition structure of lead. The Tsai cluster in the substrate quasicrystal which is near the surface of the substrate is cut at the point where it contacts the surface. While lead usually has a face-centered cubic structure, it is deposited on the quasicrystal substrate in a manner that it recovers Tsai clusters which are cut near the surface of the substrate. This indicates that a crystal of lead is grown with the same structure as the structure of the quasicrystal substrate. (Courtesy National Institute for Materials Science, Japan)

Illustrations of the deposition structure of lead. The Tsai cluster in the substrate quasicrystal which is near the surface of the substrate is cut at the point where it contacts the surface. While lead usually has a face-centered cubic structure, it is deposited on the quasicrystal substrate in a manner that it recovers Tsai clusters which are cut near the surface of the substrate. This indicates that a crystal of lead is grown with the same structure as the structure of the quasicrystal substrate. (Courtesy National Institute for Materials Science, Japan)

I suggested earlier that this achievement has a fabulous quality and the Daniel Schechtman backstory is the reason. The winner of the 2011 Nobel Prize for Chemistry, Schechtman was reviled for years within his scientific community as Ian Sample notes in his Oct. 5, 2011 article on the announcement of Schechtman’s Nobel win written for the Guardian newspaper (Note: A link has been removed),

A scientist whose work was so controversial he was ridiculed and asked to leave his research group has won the Nobel Prize in Chemistry.

Daniel Shechtman, 70, a researcher at Technion-Israel Institute of Technology in Haifa, received the award for discovering seemingly impossible crystal structures in frozen gobbets of metal that resembled the beautiful patterns seen in Islamic mosaics.

Images of the metals showed their atoms were arranged in a way that broke well-establised rules of how crystals formed, a finding that fundamentally altered how chemists view solid matter.

On the morning of 8 April 1982, Shechtman saw something quite different while gazing at electron microscope images of a rapidly cooled metal alloy. The atoms were packed in a pattern that could not be repeated. Shechtman said to himself in Hebrew, “Eyn chaya kazo,” which means “There can be no such creature.”

The bizarre structures are now known as “quasicrystals” and have been seen in a wide variety of materials. Their uneven structure means they do not have obvious cleavage planes, making them particularly hard.

In an interview this year with the Israeli newspaper, Haaretz, Shechtman said: “People just laughed at me.” He recalled how Linus Pauling, a colossus of science and a double Nobel laureate, mounted a frightening “crusade” against him. After telling Shechtman to go back and read a crystallography textbook, the head of his research group asked him to leave for “bringing disgrace” on the team. “I felt rejected,” Shachtman said.

It takes a lot to persevere when most, if not all, of your colleagues are mocking and rejecting your work so bravo to Schechtman! And,bravo to the Japan-UK project researchers who have persevered to help solve at least part of a complex problem requiring that our basic notions of matter be rethought.

I encourage you to read Sample’s article in its entirety as it is well written and I’ve excerpted only bits of the story as it relates to a point I’m making in this post, i.e., perseverance in the face of extreme resistance.

‘Facebook for molecules’ tackles linguistic issues

As the amount of information about chemicals and molecules continues to explode, scientists at the US National Institute of Standards and Technology (NIST) have devised a type of ‘Facebook for molecules’ which should make the process of searching through the data much easier according to a July 18, 2013 news item on ScienceDaily,

Social media has expanded to reach an unlikely new target: molecules. Scientists at the National Institute of Standards and Technology (NIST) have created networks of molecular data similar to Facebook’s recently debuted graph search feature. While graph search would allow Facebook users to find all their New York-living, beer-drinking buddies in one quick search, the NIST-designed networks could help scientists rapidly sift through enormous chemical and biological data sets to find substances with specific properties, for example all 5-ring chemicals with an affinity for enzyme A. The search approach could help speed up the development of new drugs and designer materials.

There are vocabulary issues associated with creating a search function (from the news item),

Molecules don’t maintain their own online profiles, so a key challenge for the NIST research team was to develop a standard language for scientists to describe their research subjects. For example, one research group may describe a material’s properties as glassy while another team might use the word vitreous, even though the two words have the same meaning, explained Ursula Kattner, a researcher in the Materials Science and Engineering Division at NIST.

One approach to the problem could be to define a standard set of words, but NIST scientists opted for a more flexible approach that could evolve with time. The search language they developed is similar to Indo-European languages like Sanskrit and Latin, which use short roots to build words based on a set of rules, said Talapady Bhat, a research chemist at NIST who has been leading the effort to develop a shared vocabulary for NIST’s scientific databases. He gives the example of the Sanskrit word “yoga,” which is based on the roots “Y(uj),” which means to join, “O,” which means creator, God, or brain, and “Ga,” which means motion or initiation. Similarly, scientists could take the three simple root words “red,” “laser,” and “light,” and combine them into a single compound word “red-laser-light” that conveys a new concept. Using the root and rule-based approach will mean that scientists who know the roots can figure out the meaning of unfamiliar terms, and it also gives scientists flexibility to develop easily understandable new terms in the future.

The NIST team has already applied their root-based vocabulary rules to the chemical structures in PubChem, a “monstrous database” of millions of compounds and chemical substances, to the world wide protein data bank (PDB), and to specific NIST-based databases, said John Elliot, a biophysicist and another member of the team. While the scientific databases haven’t reached a Facebook-like level of more than a billion users, they are actively used by many scientists in the NIST community and beyond.

You can read more about the issues associated with getting precise search results on ScienceDaily and you may be able to access an abstract of the researchers’ (Talapady Bhat , John Elliott, Carelyn Campbell, Ursula Kattner, Shir Boger, Anne Plant)  Challenges and Solutions for Enabling Facebook like Graph-search on Small and Macro-molecular Structural Data presentation (I keep getting an error) which was given at the 2013 American Crystallographic Association (ACA) meeting.

Chemistry of opera

Kate Yandell has written a thoroughly fascinating article about opera and chemistry (Atoms and Arias) for the Mar. 23, 2013 issue of The Scientist,

In a paper published earlier this year (January 14) in the Journal of Chemical Education, André [João Paulo André], who is now a professor at the University of Minho in Portugal, described his strategy for exploring the links between chemistry and opera for educational purposes.

According to André, the pairing is a natural one, as opera actually chronicled the heady, early days of chemical discovery. Joseph Haydn’s Der Apotheker (also known as Lo Speziale) and Gaetano Donizetti’s one-act opera, Il Campanello, for example, both featured pharmacists as main characters. In 1768, as Joseph Priestley, Antoine Lavoisier, and Carl Wilhelm Scheele, who would eventually discover oxygen, were immersed in their chemical labors, Haydn debuted Der Apotheker, a story about competition and love that plays out in the pharmacy. “There was something in the air. Chemistry was coming to be called a modern science,” Andé says. Il Campanello was first performed publicly in 1836, a time when many natural compounds were being isolated. It includes songs about long, complicated prescriptions. These “apothecary operas” illustrate the cultural pull chemistry used to have.

The researcher’s paper, published in the Journal of Chemical Education, has received worldwide interest. Meanwhile, Yandell’s article inspired this Mar. 24, 2013 posting on Les Vérités Scientifiques,

La constatation que nous livre l’auteur constitue-t-elle une surprise ? Non, car il en est de l’Opéra comme il en est de toute d’autre production artistique, littérature, peinture, musique : la mise en évidence d’une interpénétration entre l’actualité de  la science et l’art. Chaque époque de la société se reflète dans ce que choisissent d’exprimer ses différents acteurs ce qui permet de regarder efficacement derrière soi (cf l’exposition L’ange du bizarre. Le romantisme noir de Goya à Max Ernst au musée d’Orsay).

This is going to be a rough (very) translation and any errors are entirely mine,

The relationship between opera and chemistry should not be a surprise since opera like all the other artistic enterprises such as literature, painting, music always reflect the social and scientific interests of their own epochs as we can see in various venues, e.g. L’ange du bizarre: the dark romanticism of artists ranging from Goya to Max Ernst at the musée d’Orsay [in Paris].

As Yandell’s article notes others have observed a relationship between opera and chemistry (Links have been removed),

Jorge Calado, a retired Portuguese chemistry professor and an opera critic for the Portuguese newspaper Expresso, saw André’s talk and helped edit the Journal of Chemical Education paper. …

Calado published a book in Portuguese in 2011 whose title translates to Let There be Light! A History of Chemistry Through Everything, in which he tells the story of chemistry’s early roots through the lens of the arts and humanities, including opera.

He says that André’s paper made him want to write his own follow-up paper, and that he could think of even more examples of operas with connections to chemistry—from Jacques Offenbach’s Le Docteur Ox (1877), based on a story by science fiction writer Jules Verne, to John Adams’ Doctor Atomic (2005), which chronicles the creation of the atom bomb in Los Alamos.

Aside from the fact that it’s well worth reading, Yandell’s article is studded with opera videos that enhance the opera/chemistry relationships being described.

Here’s a link to and a citation for the research article,

Opera and Poison: A Secret and Enjoyable Approach To Teaching and Learning Chemistry by João Paulo André. J. Chem. Educ., 2013, 90 (3), pp 352–357 DOI: 10.1021/ed300445b
Publication Date (Web): January 14, 2013
Copyright © 2013 The American Chemical Society and Division of Chemical Education, Inc.

This article is behind a paywall.

The Feb. 14, 2013 posting on the Smithsonian blog offers a little more information about the project,

Any good opera needs a dramatic twist, and death by poison and potions fits the bill. When a team of chemists took a closer look at the formulas behind these concoctions in 20 operas, they found 25 different natural and synthetic chemical materials featured. The researchers suggest that teachers use these poison plots to engage students with chemistry, and while opera isn’t exactly an easy sell with most teenagers, learning about death by deadly nightshade probably ranks higher for most than memorizing yet another chemical formula.

The Smithsonian posting also offers a few tidbits from beyond the article’s paywall.

I believe this is a case where a few people independently had similar ideas as there is a professor in Germany who has also combined chemistry and opera although he has turned to performance. Professor Dr. Gerald Linti, at Heidelberg University has been staging musical chemistry experiments since 2004 if I’ve properly understood the German on his Special Events webpage,

  • Lange Nacht im Schloss (März 2004)

  “Chemie und Oper für Jedermann: Tannhäuser”

More recently (2009), Linti produced a Puccini night as part of his ongoing Chemistry and Opera series,

Under the title “Turandot’s Three Chemical Riddles” Gerald Linti, professor at Heidelberg University’s Institute of Inorganic Chemistry, and his students will be giving another demonstration of their legendary skill in the musical staging of chemical experiments at 6 p.m. on 26 June 2009.

He seems to have followed that up with a 2011 opera night at a conference titled, Modeling Molecular Properties, according to an Oct. 11, 2011 article by Sarah Miller for Chemistry Views,

The first day concluded with the spectacular “Chemistry and Opera” arranged by Professor Gerald Linti, University of Heidelberg. This demonstrated the beauty and fun of chemistry as Linti told the story of a Chinese Princess while his assistants performed chemistry experiments in time to live opera.

This sounds like a restaging of ‘Turandot’s Three Chemical Riddles’ from 2009. Here’s one of the images which illustrates Miller’s article,

[Downloaded from: http://www.chemistryviews.org/details/ezine/1371029/Modeling_Molecular_Properties_and_Opera.html]

[Downloaded from: http://www.chemistryviews.org/details/ezine/1371029/Modeling_Molecular_Properties_and_Opera.html]

Maybe it’s time for a new ‘chemistry’ opera. Any takers?

Citizen science = crowdsourced science?

Deirdre Lockwood’s Nov. 12, 2012 article (Crowdsourcing Chemistry) for Chemical & Engineering News (C&EN) offers a good overview of the various citizen science projects and organizations while using the terms citizen science and crowdsourcing science interchangeably. For me, it’s  a ‘poodles and dogs’ situation; all poodles are dogs but not all dogs are poodles.

Here are two examples from the article,

Although the public has participated in scientific research since at least the first Audubon Christmas Bird Count of 1900, so-called citizen science has gained momentum in the past decade through funding, enthusiasm, and technology. This trend is dominated by projects in biology, but chemists are getting on board, too. NSF’s funding of citizen-science projects has grown from a handful each year in the early 2000s to at least 25 per year today.

Online gaming project Foldit has attracted many participants to find the lowest-energy configuration of proteins. Foldit players recently solved the structure of a retroviral protease that had long stumped structural biologists (Nat. Struct. Mol. Biol., DOI: 10.1038/nsmb.2119).

There’s a difference between going out and counting birds (citizen science) and 50,000 or more people solving a problem in biology (citizen science and crowdsourcing science). In the first instance, you’re gathering data for the scientist and in the second instance, you’re gathering, analyzing, and solving a science problem alongside the scientists. There is, of course, a great big grey zone but if you’re looking to participate in projects, the distinction may be useful to you. Do take a look at Lockwood’s article as she mentions some very exciting projects.

H/T to the Nov. 14, 2012 news item about Lockwood’s article on phys.org.

Take control of a 17th century scientific genius (Newton, Galileo, Keppler, Liebniz, or Kircher) in The New Science board game

Thank you to David Bruggeman (Pasco Phronesis) for the Sept. 16, 2012 posting (by way of Twitter and @JeanLucPiquant) about The New Science Game currently listed on the Kickstarter crowdfunding site. From the description of The New Science board game on Kickstarter,

The New Science gives you control of one of five legendary geniuses from the scientific revolution in a race to research, successfully experiment on, and finally publish some of the critical early advances that shaped modern science.

This fun, fast, easy-to-learn worker placement game for 2-5 players is ideal for casual and serious gamers alike. The rules are easy to learn and teach, but the many layers of shifting strategy make each game a new challenge that tests your mind and gets your competitive juices flowing.

Each scientist has their own unique strengths and weaknesses. No two scientists play the same way, so each time you try someone new it provides a different and satisfying play experience. Your scientist’s mat also serves as a player aid, repeating all of the key technology information from the game board for your easy reference.

The “five legendary geniuses’ are Isaac Newton, Galileo Galilei, Johannes Kepler, Gottfried Liebniz, and Athanasius Kircher. The Kickstarter campaign to take control of the five has raised $5,058 US of the $16,000 requested and it ends on Oct. 17, 2012.

The game is listed on boardgamegeek.com with additional details such as this,

Designer: Dirk Knemeyer

Artist: Heiko Günther

Publisher: Conquistador Games

# of players: 2-5

User suggested ages: 12 and up


Players control one of the great scientists during the 17th century Scientific Revolution in Europe. Use your limited time and energy to make discoveries, test hypotheses, publish papers, correspond with other famous scientists, hire assistants into your laboratory and network with other people who can help your progress. ‘emphasis mine] Discoveries follow historical tech trees in the key sciences of the age: Astronomy, Mathematics, Physics, Biology and Chemistry. The scientist who accumulates the most prestige will be appointed the first President of the Royal Society.

The activities listed in the game description “make discoveries, test hypotheses,” etc. must sound very familiar to a contemporary scientist.

There’s also an explanatory video as seen on the Kickstarter campaign page and embedded here below,

David notes this about game quality in his Sept. 16, 2012 posting (Note: I have removed a link),

The game was heavily tested by the folks at Game Salute, and comes with the kind of quality details you might expect from games like Ticket to Ride or the various version of Catan.  If you’re interested in getting a copy of the game, it will run $49 U.S., plus shipping for destinations outside the U.S.  See the Kickstarter page for more details.

You can find out more about Conquistador Games here.

Grow Christmas tree, grow Christmas tree

I found a delightful item posted by GrrlScientist this morning (Dec. 8, 2011) on the Guardian science blogs,

The holidays are stampeding down upon us. Everyone is excited and busy. But maybe you wish to take a little time to do something special with your family? Here’s a sweet little kitchen science project that you can do: grow your own snow-covered Christmas tree through the wonders of chemistry!

Here’s a video demonstrating this Christmassy home project,

You can find this video and others here on Steve Spangler’s YouTube Channel. You can also find a full set of written instructions for the ‘Magic Crystal Tree’  here on Steve Spangler’s website.

Qualitative and quantitative understanding of nanostructures by University of BC researchers

It’s not the sexiest research (no nanobots, no self-cleaning windows, no textiles with colours never seen before on fabrics, no heating up a tumour to destroy it, etc.)  I’ve come across but developing a model that predicts a nanostructure’s optical properties is likely to prove valuable. According to the University of British Columbia Chemistry Department researchers the models could be useful with the “design of tailored nano-structures, and be of utility in a wide range of fields, including the remote sensing of atmospheric pollutants and the study of cosmic dust formation.”

From the March 24, 2011 news item on Nanowerk,

Now research published this week by UBC chemists indicates that the optical properties of more complex non-conducting nano-structures can be predicted based on an understanding of the simple nano-objects that make them up. Those optical properties in turn give researchers and engineers an understanding of the particle’s structure.

“Engineering complex nano-structures with particular infrared responses typically involves hugely complex calculations and is a bit hit and miss,” says Thomas Preston, a researcher with the UBC Department of Chemistry.

“Our solution is a relatively simple model that could help guide us in more efficiently engineering nano-materials with the properties we want, and help us understand the properties of these small particles that play an important role in so many processes.”

The findings were published this week in the Proceedings of the National Academy of Sciences (“Vibron and phonon hybridization in dielectric nanostructures”).

“For example, the properties of a more complex particle made up of a cavity and a core structure can be understood as a hybrid of the individual pieces that make it up,” says UBC Professor Ruth Signorell, an expert on the characterization of molecular nano-particles and aerosols and co-author of the study.

The experiment also tested the model against CO2 aerosols with a cubic shape, which play a role in cloud formation on Mars.

The paper, Vibron and phonon hybridization in dielectric nanostructures, is behind a Proceedings of the National Academy of Sciences paywall but an abstract is available here.