Tag Archives: China

Wearable solar panels with perovskite

There was a bit of a flutter online in late July 2014 about solar cell research and perovskite, a material that could replace silicon therefore making solar cells more affordable, which hopefully would lead to greater adoption of the technology. Happily, the publishers of the study seem to have reissued their news release (h/t Aug. 11, 2014 news item on Nanwerk).

From the Wiley online press release Nr. 29/2014,

Textile solar cells are an ideal power source for small electronic devices incorporated into clothing. In the journal Angewandte Chemie, Chinese scientists have now introduced novel solar cells in the form of fibers that can be woven into a textile. The flexible, coaxial cells are based on a perovskite material and carbon nanotubes; they stand out due to their excellent energy conversion efficiency of 3.3 % and their low production cost.

The dilemma for solar cells: they are either inexpensive and inefficient, or they have a reasonable efficiency and are very expensive. One solution may come from solar cells made of perovskite materials, which are less expensive than silicon and do not require any expensive additives. Perovskites are materials with a special crystal structure that is like that of perovskite, a calcium titanate. These structures are often semiconductors and absorb light relatively efficiently. Most importantly, they can move electrons excited by light for long distances within the crystal lattice before they return to their energetic ground state and take up a solid position – a property that is very important in solar cells.

A team led by Hisheng Peng at Fudan University in Shanghai has now developed perovskite solar cells in the form of flexible fibers that can be woven into electronic textiles. Their production process is relatively simple and inexpensive because it uses a solution-based process to build up the layers.

The anode is a fine stainless steel wire coated with a compact n-semiconducting titanium dioxide layer. A layer of porous nanocrystalline titanium dioxide is deposited on top of this. This provides a large surface area for the subsequent deposition of the perovskite material CH3NH3PbI3. This is followed by a layer made of a special organic material. Finally a transparent layer of aligned carbon nanotubes is continuously wound over the whole thing to act as the cathode. The resulting fiber is so fine and flexible that it can be woven into textiles.

The perovskite layer absorbs light, that excites electrons and sets them free, causing a charge separation between the electrons and the formally positively charged “holes” The electrons enter the conducting band of the compact titanium dioxide layer and move to the anode. The “holes” are captured by the organic layer. The large surface area and the high electrical conductivity of the carbon nanotube cathode aid in the rapid conduction of the charges with high photoelectric currents. The fiber solar cell can attain an energy conversion efficiency of 3.3 %, exceeding that of all previous coaxial fiber solar cells made with either dyes or polymers.

Here’s an image used in the press release illustrating the new fiber,

[downloaded from http://www.wiley-vch.de/vch/journals/2002/press/201429press.pdf]

[downloaded from http://www.wiley-vch.de/vch/journals/2002/press/201429press.pdf]

Here’s a link to and a citation for the paper,

Integrating Perovskite Solar Cells into a Flexible Fiber by Longbin Qiu, Jue Deng, Xin Lu, Zhibin Yang, and Prof. Huisheng Peng. Angewandte Chemie International Edition DOI: 10.1002/anie.201404973 Article first published online: 22 JUL 2014

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

I found a second item about perovskite and solar cells in a May 16, 2014 article by Vicki Marshall for Chemistry World which discussed some research in the UK (Note: Links have been removed),

A lead-free and non-toxic alternative to current perovskite solar-cell technology has been reported by researchers in the UK: tin halide perovskite solar cells. They are also cheaper to manufacture than the silicon solar cells currently dominating the market.

Nakita Noel, part of Henry Snaith’s research team at the University of Oxford, describes how perovskite materials have caused a bit of a whirlwind since they came out in 2009: ‘Everybody that’s working in the solar community is looking to beat silicon.’ Despite the high efficiency of conventional crystalline silicon solar cells (around 20%), high production and installation costs decrease their economic feasibility and widespread use.

The challenge to find a cheaper alternative led to the development of perovskite-based solar cells, as organic–inorganic metal trihalide perovskites have both abundant and cheap starting materials. However, the presence of lead in some semiconductors could create toxicology issues in the future. As Noel puts it ‘every conference you present at somebody is bound to put up their hand and ask “What about the lead – isn’t this toxic?”’

Brian Hardin, co-founder of PLANT PV, US, and an expert in new materials for photovoltaic cells, says the study ‘should be considered a seminal work on alternative perovskites and is extremely valuable to the field as they look to better understand how changes in chemistry affect solar cell performance and stability.’

Here’s a link to and a citation for the UK researchers’ paper,

Lead-free organic–inorganic tin halide perovskites for photovoltaic applications by Nakita K. Noel, Samuel D. Stranks, Antonio Abate, Christian Wehrenfennig, Simone Guarnera, Amir-Abbas Haghighirad, Aditya Sadhana, Giles E. Eperon, Sandeep K. Pathak, Michael B. Johnston, Annamaria Petrozza, Laura M. Herza, and Henry J. Snaith. Energy Environ. Sci., 2014, Advance Article DOI: 10.1039/C4EE01076K First published online 01 May 2014

This article was open access until June 27, 2014 but now it is behind a paywall.

I notice there’s no mention of lead in the materials describing the research paper from the Chinese scientists. Perhaps they were working with lead-free materials.

Metaphors in a brief overview of the nanomedicine scene circa August 2014

An Aug. 1, 2014 article by Guizhi Zhu (University of Florida), Lei Mei ((Hunan University; China), and Weihong Tan (University of Florida) for The Scientist provides an overview of the latest and greatest regarding nanomedicine while underscoring the persistence of certain medical metaphors. This overview features a prediction and a relatively benign (pun intended) metaphor,

Both the academic community and the pharmaceutical industry are making increasing investments of time and money in nanotherapeutics. Nearly 50 biomedical products incorporating nanoparticles are already on the market, and many more are moving through the pipeline, with dozens in Phase 2 or Phase 3 clinical trials. Drugmakers are well on their way to realizing the prediction of Christopher Guiffre, chief business officer at the Cambridge, Massachusetts–based nanotherapeutics company Cerulean Pharma, who last November forecast, “Five years from now every pharma will have a nano program.”

Technologies that enable improved cancer detection are constantly racing against the diseases they aim to diagnose, and when survival depends on early intervention, losing this race can be fatal. [emphasis mine] While detecting cancer biomarkers is the key to early diagnosis, the number of bona fide biomarkers that reliably reveal the presence of cancerous cells is low. To overcome this challenge, researchers are developing functional nanomaterials for more sensitive detection of intracellular metabolites, tumor cell–membrane proteins, and even cancer cells that are circulating in the bloodstream. (See “Fighting Cancer with Nanomedicine,” The Scientist, April 2014.)

So, the first metaphor ‘racing’ gives the reader a sense of urgency, the next ones, including “fighting cancer’, provoke a somewhat different state of mind,

Eye on the target

The prototype of targeted drug delivery can be traced back to the concept of a “magic bullet,” proposed by chemotherapy pioneer and 1908 Nobel laureate Paul Ehrlich. [emphasis mine] E[hrlich envisioned a drug that could selectively target a disease-causing organism or diseased cells, leaving healthy tissue unharmed. A century later, researchers are developing many types of nanoscale “magic bullets” that can specifically deliver drugs into target cells or tissues.

It would seem we might be in a state of war as you 'fight cancer' with your 'eyes on the target' as you 'shoot magic bullets' in time to celebrate the 100th anniversary of the start to World War I.

Kostas Kostarelos wrote a Nov. 29, 2013 posting for the Guardian Science Blogs where he (professor of nanomedicine at the University of Manchester and director of the university's Nanomedicine Lab) discussed war metaphors in medicine and possible unintended consequences (Note: A link has been removed). Here's his discussion about the metaphors,

Almost every night I have watched the news these past few months my senses have been assaulted by unpleasant, at times distressing, images of war: missiles, killings and chemical bombs in Syria, Kenya, the USA. I wake up the next morning, trying to forget what I watched the night before, and going to work with our researchers to develop the next potential high-tech cure for cancer, thinking: "does what we do matter at all … ?"

So I was intrigued by an article that will be published in one of the scientific journals in our field entitled: "Nanomedicine metaphors: from war to care". The next lab meeting we had was very awkward, because I was constantly thinking that indeed a lot of the words we were using to communicate our science were directly imported from the language of war. Targeting, stealth nanoparticle, smart bomb, elimination, triggered release, cell death. I struggled to find alternative language.

...

... Hollywood analogies and simplistic interpretations about "good" and "bad" may be inaccurate, but they do seem appropriate and convincing.

I must say, however, that even in pathology, modern medicine increasingly considers the disease to be part of our body, often leading to successful treatment not by "eradication" and "elimination" but by holistic management of a chronic condition. The case of HIV therapeutics is perhaps the brightest example of such revisionist thinking, which has transformed the disease from a "death sentence" in the early years after its discovery to a nonlethal chronic infection today.

Kostarelos then contrasts the less warlike 'modern medicine' metaphors with nanomedicine,

In nanomedicine, which is the application of nanotechnologies and nanomaterials to design medical treatments, the war imagery is even more prevalent. Two of the most clinically successful and intensively studied technologies that operate at the nanoscale are "stealth" and "targeted" medicines. "Stealth" refers to a hydrophilic (water-loving) shield built around a molecule or nanoparticle, made from polymers, that minimises its recognition by the body's defence mechanisms. "Targeting" refers to the specific binding of certain molecules (such as antibodies, peptides and others) to receptors (or other proteins) present only at the surface of diseased cells. The literature in nanomedicine is abundant with both "stealthing", "targeting" and combinations thereof.

Kostarelos then asks this question,

The question I keep asking myself since I read the article about war metaphors in nanomedicine has been whether we are using terminology in a simplistic, single-minded manner that could stifle creative and out-of-the-box thinking.

Intriguing unintended consequences, yes?

Getting back to The Scientist article, which I found quite informative and interesting, its 'war metaphors' seem to extend even to some of the artwork accompanying the article,

[downloaded from http://www.the-scientist.com/?articles.view/articleNo/40598/title/Nanomedicine/]

[downloaded from http://www.the-scientist.com/?articles.view/articleNo/40598/title/Nanomedicine/]

Is that a capsule or a bullet? Regardless, this * article provides a good overview of the research.

* The word ‘a’ was removed on Aug. 8, 2014.

Things falling apart: both a Nigerian novel and research at the Massachusetts Intitute of Technology

First the Nigerian novel ‘Things Fall Apart‘ (from its Wikipedia entry; Note: Links have been removed),

Things Fall Apart is an English-language novel by Nigerian author Chinua Achebe published in 1958 by William Heinemann Ltd in the UK; in 1962, it was also the first work published in Heinemann’s African Writers Series. Things Fall Apart is seen as the archetypal modern African novel in English, one of the first to receive global critical acclaim. It is a staple book in schools throughout Africa and is widely read and studied in English-speaking countries around the world. The title of the novel comes from William Butler Yeats’ poem “The Second Coming”.[1]

For those unfamiliar with the Yeats poem, this is the relevant passage (from Wikipedia entry for The Second Coming),

Turning and turning in the widening gyre
The falcon cannot hear the falconer;
Things fall apart; the centre cannot hold;
Mere anarchy is loosed upon the world,
The blood-dimmed tide is loosed, and everywhere
The ceremony of innocence is drowned;
The best lack all conviction, while the worst
Are full of passionate intensity.

The other ‘Things fall apart’ item, although it’s an investigation into ‘how things fall apart’, is mentioned in an Aug. 4, 2014 news item on Nanowerk,

Materials that are firmly bonded together with epoxy and other tough adhesives are ubiquitous in modern life — from crowns on teeth to modern composites used in construction. Yet it has proved remarkably difficult to study how these bonds fracture and fail, and how to make them more resistant to such failures.

Now researchers at MIT [Massachusetts Institute of Technology] have found a way to study these bonding failures directly, revealing the crucial role of moisture in setting the stage for failure. Their findings are published in the journal Proceedings of the National Academy of Science in a paper by MIT professors of civil and environmental engineering Oral Buyukozturk and Markus Buehler; research associate Kurt Broderick of MIT’s Microsystems Technology Laboratories; and doctoral student Denvid Lau, who has since joined the faculty at the City University of Hong Kong.

An Aug. 4, 2014 MIT news release written by David Chandler (also on EurekAlert), which originated the news item, provides an unexpectedly fascinating discussion of bonding, interfaces, and infrastructure,

“The bonding problem is a general problem that is encountered in many disciplines, especially in medicine and dentistry,” says Buyukozturk, whose research has focused on infrastructure, where such problems are also of great importance. “The interface between a base material and epoxy, for example, really controls the properties. If the interface is weak, you lose the entire system.”

“The composite may be made of a strong and durable material bonded to another strong and durable material,” Buyukozturk adds, “but where you bond them doesn’t necessarily have to be strong and durable.”

Besides dental implants and joint replacements, such bonding is also critical in construction materials such as fiber-reinforced polymers and reinforced concrete. But while such materials are widespread, understanding how they fail is not simple.

There are standard methods for testing the strength of materials and how they may fail structurally, but bonded surfaces are more difficult to model. “When we are concerned with deterioration of this interface when it is degraded by moisture, classical methods can’t handle that,” Buyukozturk says. “The way to approach it is to look at the molecular level.”

When such systems are exposed to moisture, “it initiates new molecules at the interface,” Buyukozturk says, “and that interferes with the bonding mechanism. How do you assess how weak the interface becomes when it is affected? We came up with an innovative method to assess the interface weakening as a result of exposure to environmental effects.”

The team used a combination of molecular simulations and laboratory tests in its assessment. The modeling was based on fundamental principles of molecular interactions, not on empirical data, Buyukozturk says.

In the laboratory tests, Buyukozturk and his colleagues controlled the residual stresses in a metal layer that was bonded and then forcibly removed. “We validated the method, and showed that moisture has a degrading effect,” he says.

The findings could lead to exploration of new ways to prevent moisture from reaching into the bonded layer, perhaps using better sealants. “Moisture is the No. 1 enemy,” Buyukozturk says.

“I think this is going to be an important step toward assessment of the bonding, and enable us to design more durable composites,” he adds. “It gives a quantitative knowledge of the interface” — for example, predicting that under specific conditions, a given bonded material will lose 30 percent of its strength.

Interface problems are universal, Buyukozturk says, occurring in many areas besides biomedicine and construction. “They occur in mechanical devices, in aircraft, electrical equipment, in the packaging of electronic components,” he says. “We feel this will have very broad applications.”

Bonded composite materials are beginning to be widely used in airplane manufacturing; often these composites are then bonded to traditional materials, like aluminum. “We have not had enough experience to prove the durability of these composite systems is going to be there after 20 years,” Buyukozturk says.

Here’s a link to and a citation for the research paper,

A robust nanoscale experimental quantification of fracture energy in a bilayer material system by Denvid Lau, Kurt Broderick, Markus J. Buehler, and Oral Büyüköztürk. PNAS, doi: 10.1073/pnas.1402893111 published August 5, 2014

This paper is behind a paywall.

Boron as a ‘buckyball’ or borospherene

First there was the borophene (like graphene but using boron rather than carbon) announcement from Brown University in my Jan. 28, 214 posting and now US (Brown University again) and Chinese researchers have developed a boron ‘buckyball’. Coincidentally, this announcement comes just after the 2014 World Cup final (July 13, 2014). Representations of buckyballs always resemble soccer balls. (Note: Germany won.)

From a July 14, 2014 news item on Azonano,

The discovery 30 years ago of soccer-ball-shaped carbon molecules called buckyballs helped to spur an explosion of nanotechnology research. Now, there appears to be a new ball on the pitch.

Researchers from Brown University, Shanxi University and Tsinghua University in China have shown that a cluster of 40 boron atoms forms a hollow molecular cage similar to a carbon buckyball. It’s the first experimental evidence that a boron cage structure—previously only a matter of speculation—does indeed exist.

“This is the first time that a boron cage has been observed experimentally,” said Lai-Sheng Wang, a professor of chemistry at Brown who led the team that made the discovery. “As a chemist, finding new molecules and structures is always exciting. The fact that boron has the capacity to form this kind of structure is very interesting.”

The researchers have provided an illustration of their borospherene,

The carbon buckyball has a boron cousin. A cluster for 40 boron atoms forms a hollow cage-like molecule. Courtesy Brown University

The carbon buckyball has a boron cousin. A cluster for 40 boron atoms forms a hollow cage-like molecule. Courtesy Brown University

A July 9, 2104 Brown University news release (also on EurekAlert), which originated the news item, describes the borosphene’s predecessor, the carbon buckyball, and provides more details about this new molecule,

Carbon buckyballs are made of 60 carbon atoms arranged in pentagons and hexagons to form a sphere — like a soccer ball. Their discovery in 1985 was soon followed by discoveries of other hollow carbon structures including carbon nanotubes. Another famous carbon nanomaterial — a one-atom-thick sheet called graphene — followed shortly after.

After buckyballs, scientists wondered if other elements might form these odd hollow structures. One candidate was boron, carbon’s neighbor on the periodic table. But because boron has one less electron than carbon, it can’t form the same 60-atom structure found in the buckyball. The missing electrons would cause the cluster to collapse on itself. If a boron cage existed, it would have to have a different number of atoms.

Wang and his research group have been studying boron chemistry for years. In a paper published earlier this year, Wang and his colleagues showed that clusters of 36 boron atoms form one-atom-thick disks, which might be stitched together to form an analog to graphene, dubbed borophene. Wang’s preliminary work suggested that there was also something special about boron clusters with 40 atoms. They seemed to be abnormally stable compared to other boron clusters.

Figuring out what that 40-atom cluster actually looks like required a combination of experimental work and modeling using high-powered supercomputers.

On the computer, Wang’s colleagues modeled over 10,000 possible arrangements of 40 boron atoms bonded to each other. The computer simulations estimate not only the shapes of the structures, but also estimate the electron binding energy for each structure — a measure of how tightly a molecule holds its electrons. The spectrum of binding energies serves as a unique fingerprint of each potential structure.

The next step is to test the actual binding energies of boron clusters in the lab to see if they match any of the theoretical structures generated by the computer. To do that, Wang and his colleagues used a technique called photoelectron spectroscopy.

Chunks of bulk boron are zapped with a laser to create vapor of boron atoms. A jet of helium then freezes the vapor into tiny clusters of atoms. The clusters of 40 atoms were isolated by weight then zapped with a second laser, which knocks an electron out of the cluster. The ejected electron flies down a long tube Wang calls his “electron racetrack.” The speed at which the electrons fly down the racetrack is used to determine the cluster’s electron binding energy spectrum — its structural fingerprint.

The experiments showed that 40-atom-clusters form two structures with distinct binding spectra. Those spectra turned out to be a dead-on match with the spectra for two structures generated by the computer models. One was a semi-flat molecule and the other was the buckyball-like spherical cage.

“The experimental sighting of a binding spectrum that matched our models was of paramount importance,” Wang said. “The experiment gives us these very specific signatures, and those signatures fit our models.”

The borospherene molecule isn’t quite as spherical as its carbon cousin. Rather than a series of five- and six-membered rings formed by carbon, borospherene consists of 48 triangles, four seven-sided rings and two six-membered rings. Several atoms stick out a bit from the others, making the surface of borospherene somewhat less smooth than a buckyball.

As for possible uses for borospherene, it’s a little too early to tell, Wang says. One possibility, he points out, could be hydrogen storage. Because of the electron deficiency of boron, borospherene would likely bond well with hydrogen. So tiny boron cages could serve as safe houses for hydrogen molecules.

But for now, Wang is enjoying the discovery.

“For us, just to be the first to have observed this, that’s a pretty big deal,” Wang said. “Of course if it turns out to be useful that would be great, but we don’t know yet. Hopefully this initial finding will stimulate further interest in boron clusters and new ideas to synthesize them in bulk quantities.”

The theoretical modeling was done with a group led by Prof. Si-Dian Li from Shanxi University and a group led by Prof. Jun Li from Tsinghua University. The work was supported by the U.S. National Science Foundation (CHE-1263745) and the National Natural Science Foundation of China.

Here’s a link to and a citation for the paper,

Observation of an all-boron fullerene by Hua-Jin Zhai, Ya-Fan Zhao, Wei-Li Li, Qiang Chen, Hui Bai, Han-Shi Hu, Zachary A. Piazza, Wen-Juan Tian, Hai-Gang Lu, Yan-Bo Wu, Yue-Wen Mu, Guang-Feng Wei, Zhi-Pan Liu, Jun Li, Si-Dian Li, & Lai-Sheng Wang. Nature Chemistry (2014) doi:10.1038/nchem.1999 Published online 13 July 2014

This paper is behind a paywall.

Bringing the Nanoworld Together Workshop in Beijing, China, Sept. 24 – 25, 2014

The speakers currently confirmed for the ‘Bringing the Nanoworld Together Workshop organized by Oxford Instruments are from the UK, China, Canada, the US, and the Netherlands as per a July 2, 2014 news item on Nanowerk (Note: A link has been removed),

‘Bringing the Nanoworld Together’ is an event organised by Oxford Instruments to share the expertise of scientists in the field of Nanotechnology. It will be hosted at the IOS-CAS [Institute of Semiconductors-Chinese Academy of Sciences] Beijing.

Starting with half day plenary sessions on 2D materials with guest plenary speaker Dr Aravind Vijayaraghavan from the National Graphene Institute in Manchester, UK, and on Quantum Information Processing with guest plenary speaker Prof David Cory from the Institute for Quantum Computing, University of Waterloo, Canada, Oxford Instruments’ seminar at the IOP in Beijing from 24-25th September [2014] promises to discuss cutting edge nanotechnology solutions for multiple applications.

A July 1, 2014 Oxford Instruments press release, which originated the news item, describes the sessions and provides more details about the speakers,

Two parallel sessions will focus on thin film processing, & materials characterisation, surface science and cryogenic environments and a wide range of topics will be covered within each technical area. These sessions will include guest international and Chinese speakers from renowned research institutions, speakers from the host institute, and technical experts from Oxford Instruments. This will also present an excellent opportunity for networking between all participants.

Confirmed speakers include the following, but more will be announced soon:

Dr. Aravind Vijayaraghavan, National Graphene Institute, Manchester, UK
Prof David Cory, Institute for Quantum Computing, University of Waterloo, Canada
Prof Guoxing Miao, Institute for Quantum Computing, University of Waterloo, Canada
Prof. HE Ke, Tsinghua University, Institute of Physics, CAS, China
Dr. WANG Xiaodong, Institute of Semiconductors, CAS, China
Prof Erwin Kessels, Tue Eindhoven, Netherlands
Prof. ZENG Yi, Institute of Semiconductor, CAS, China
Prof Robert Klie, University of Illinois Chicago, USA
Prof. Xinran WANG, Nanjing University, China
Prof. Zhihai CHENG, National Centre for Nanoscience and Technology, China
Prof. Yeliang WANG, Institute of Physics, CAS, China

The thin film processing sessions will review latest etch and deposition technological advances, including: ALD, Magnetron Sputtering, ICP PECVD, Nanoscale Etch, MEMS, MBE and more.

Materials characterisation, Surface Science and Cryogenic Environment sessions will cover multiple topics and technologies including: Ultra high vacuum SPM, Cryo free low temperature solutions, XPS/ESCA, an introduction to atomic force microscopy (AFM) and applications such as nanomechanics, In-situ heating and tensile characterisation using EBSD, Measuring Layer thicknesses and compositions using EDS, Nanomanipulation and fabrication within the SEM / FIB.

The host of last year’s Nanotechnology Tools seminar in India, Prof. Rudra Pratap, Chairperson at the Centre for Nano Science and Engineering, Indian Institute of Science, IISC Bangalore commented, “This seminar has been extremely well organised with competent speakers covering a variety of processes and tools for nanofabrication. It is great to have practitioners of the art give talks and provide tips and solutions based on their experience, something that cannot be found in text books.”

“This workshop is a great opportunity for a wide range of scientists in research and manufacturing to discover practical aspects of many new and established processes, technologies and applications, directly from renowned scientists and a leading manufacturer with over 50 years in the industry”, comments Mark Sefton, Sector Head of Oxford Instruments NanoSolutions, “Delegates appreciate the informal workshop atmosphere of these events, encouraging delegates to participate through open discussion and sharing their questions and experiences.”

This seminar is free of charge but prior booking is essential.

You can register on the Oxford Instruments website’s Bringing the Nanoworld Together Workshop webpage,

Ferroelectric switching in the lung, heart, and arteries

A June 23, 2014 University of Washington (state) news release (also on EurekAlert) describes how the human body (and other biological tissue) is capable of generating ferroelectricity,

University of Washington researchers have shown that a favorable electrical property is present in a type of protein found in organs that repeatedly stretch and retract, such as the lungs, heart and arteries. These findings are the first that clearly track this phenomenon, called ferroelectricity, occurring at the molecular level in biological tissues.

The news release gives a brief description of ferroelectricity and describes the research team’s latest work with biological tissues,

Ferroelectricity is a response to an electric field in which a molecule switches from having a positive to a negative charge. This switching process in synthetic materials serves as a way to power computer memory chips, display screens and sensors. This property only recently has been discovered in animal tissues and researchers think it may help build and support healthy connective tissues in mammals.

A research team led by Li first discovered ferroelectric properties in biological tissues in 2012, then in 2013 found that glucose can suppress this property in the body’s connective tissues, wherever the protein elastin is present. But while ferroelectricity is a proven entity in synthetic materials and has long been thought to be important in biological functions, its actual existence in biology hasn’t been firmly established.

This study proves that ferroelectric switching happens in the biological protein elastin. When the researchers looked at the base structures within the protein, they saw similar behavior to the unit cells of solid-state materials, where ferroelectricity is well understood.

“When we looked at the smallest structural unit of the biological tissue and how it was organized into a larger protein fiber, we then were able to see similarities to the classic ferroelectric model found in solids,” Li said.

The researchers wanted to establish a more concrete, precise way of verifying ferroelectricity in biological tissues. They used small samples of elastin taken from a pig’s aorta and poled the tissues using an electric field at high temperatures. They then measured the current with the poling field removed and found that the current switched direction when the poling electric field was switched, a sign of ferroelectricity.

They did the same thing at room temperature using a laser as the heat source, and the current also switched directions.

Then, the researchers tested for this behavior on the smallest-possible unit of elastin, called tropoelastin, and again observed the phenomenon. They concluded that this switching property is “intrinsic” to the molecular make-up of elastin.

The next step is to understand the biological and physiological significance of this property, Li said. One hypothesis is that if ferroelectricity helps elastin stay flexible and functional in the body, a lack of it could directly affect the hardening of arteries.

“We may be able to use this as a very sensitive technique to detect the initiation of the hardening process at a very early stage when no other imaging technique will be able to see it,” Li said.

The team also is looking at whether this property plays a role in normal biological functions, perhaps in regulating the growth of tissue.

Co-authors are Pradeep Sharma at the University of Houston, Yanhang Zhang at Boston University, and collaborators at Nanjing University and the Chinese Academy of Sciences.

Here’s a link to and a citation for the research paper,

Ferroelectric switching of elastin by Yuanming Liu, Hong-Ling Cai, Matthew Zelisko, Yunjie Wang, Jinglan Sun, Fei Yan, Feiyue Ma, Peiqi Wang, Qian Nataly Chen, Hairong Zheng, Xiangjian Meng, Pradeep Sharma, Yanhang Zhang, and Jiangyu Li. Proceedings of the National Academy of Sciences (PNAS) doi: 10.1073/pnas.1402909111

This paper is behind a paywall.

I think this is a new practice. There is a paragraph on the significance of this work (follow the link to the paper),

Ferroelectricity has long been speculated to have important biological functions, although its very existence in biology has never been firmly established. Here, we present, to our knowledge, the first macroscopic observation of ferroelectric switching in a biological system, and we elucidate the origin and mechanism underpinning ferroelectric switching of elastin. It is discovered that the polarization in elastin is intrinsic at the monomer level, analogous to the unit cell level polarization in classical perovskite ferroelectrics. Our findings settle a long-standing question on ferroelectric switching in biology and establish ferroelectricity as an important biophysical property of proteins. We believe this is a critical first step toward resolving its physiological significance and pathological implications.

Touchie-feelie comes to the big screen (42 inches) in Amdolla/Cima NanoTech deal

If it’s been your dream to experience a really big touchscreen, you will be thrilled with this news. From a May 28, 2014 news item on Azonano (Note: A link has been removed),

Cima NanoTech, a smart nanomaterials company specializing in high performance transparent conductive films, announced today the industry’s first ultra responsive, non-ITO film-based, 42-inch projected capacitive multi-touch module for large format touch applications.

The module was built by Amdolla Group, a leader in advanced touch module manufacturing, using Cima NanoTech’s highly conductive, silver nanoparticle-based, SANTE® FS200 touch films. This product is targeted at applications including self-service kiosks, interactive tabletops, widescreen interactive digital signage, interactive flat panel displays, and other applications that require fast response, large size touch screens.

The Cima NanoTech May 28, 2014 news release (found on BusinessWire.com), which originated the news item, describes the technology in more detail,

With a scan rate of 150hz for 10-point multi-touch, rivaling the response time of smartphones and tablets, this jointly developed product dramatically increases the speed of large format touch displays. Unlike optical and infrared touch solutions, this module does not have a raised bezel for a smooth cover glass. In addition, the random conductive mesh pattern formed by SANTE® nanoparticle technology eliminates moiré, a challenge for traditional metal mesh technologies, thus enabling touch screens with better display quality.

“Our goal is to offer our customers a high performance, cost competitive and easy-to-implement solutions, and we’ve done it,” said Jon Brodd, CEO, Cima NanoTech. “Together with touch panel manufacturer, Amdolla, we are confident in creating a large format touch experience that is engaging and intuitive, and we expect to see this product on shelves by Q4 2014.”

SANTE® FS200 touch films are manufactured via a wide width roll-to-roll wet coating process. The high-throughput, high-yield manufacturing makes SANTE® nanoparticle technology a cost competitive solution for large format touch screens. Cima NanoTech also has the production capabilities to scale up to wider width touch films for screen sizes above 42”, further expanding the possibilities for innovative touch-enabled surfaces.

“The high response rate and excellent multi-point accuracy of the 42” touch module makes it a superior product in the industry, and we are very excited to be working with Cima NanoTech to commercialize this product,” commented Vance Zhang, General Manager, Amdolla Group. “We are also working to scale up to 55’’ screen sizes and larger.”

Here’s a little more about both companies from the news release (Note: Links have been removed),

 About Cima NanoTech

Cima NanoTech is a smart nanomaterials company delivering high performance, next-generation transparent conductors. The company developed its proprietary SANTE® nanoparticle technology, a silver nanoparticle conductive coating that self-assembles into a random mesh-like network when coated onto a substrate. SANTE® nanoparticle technology enables transparent conductors in a multitude of markets from large-format multi-touch displays to capacitive sensors, transparent and moldable EMI shielding, transparent heaters, transparent antennas, OLED lighting, electrochromic, and other flexible applications. Cima NanoTech has business development centers in the U.S., Singapore, Israel, Japan, Korea, Taiwan and China. For more information, visit www.cimananotech.com.

“Cima NanoTech” and “SANTE” are registered trademarks of Cima NanoTech, Inc., registered in the U.S. and other countries.

About Amdolla Group

Founded in Shenzhen, China, Amdolla Group specializes in joint-design, joint-development, manufacturing, assembly and after-sales services to global computer, communication and consumer electronics leaders. The company leverages its advanced manufacturing technology and experienced technical team to provide total solutions to its customers, including Apple, Intel, Lenovo, Huawei, TCL, and many others. Visit www.amdolla.com.cn or e-mail [email protected]

It looks like we’re a step closer to whole-body touchscreens.

China and Israel make big nanotechnology plans

A recently launched $300M China-Israel project seems to signal a new intimacy in relations between the two countries. From a May 25, 2014 article by Ruthie Blum for Israel21c.org,

The launch of a $300 million joint research project between Tel Aviv University and Tsinghua University in Beijing has the academic communities and political echelons in both countries buzzing.

The opening of the XIN Center was announced at Tel Aviv University in mid-May amid great fanfare. The name is a play on words; “xin” means “new” in Chinese, and in English the “X” coupled with the “in” can stand for cross-innovation, cross-intelligence and/or cross-ingenuity.

The endeavor, to be funded by government and private sources, will initially focus on nanotechnology, with an emphasis on medical and optics applications, and later branch out into fields such as biotech and energy.

So far, nearly a third of the money has been raised for the project, which will involve recruiting research fellows from among the best and brightest of the graduate students of both universities to work in tandem (and fly back and forth) to develop products for eventual commercialization.

To raise the rest of the money, an investment fund is being established by Infinity Group, Israel’s largest investment firm, to seed ventures initiated by XIN fellows.

According to Blum, the deal is the outcome of a trip,

The idea for the ambitious program began inauspiciously, during a trip by Israeli scientists to meet with their counterparts in China.

“The project started bottom-up in Beijing,” said Klafter [TAU President Joseph Klafter]. “We fell in love with one another.”

… language is not the main gap between the Israeli and Chinese students. As both Hanein [Prof. Yael Hanein, head of the Tel Aviv University Center for Nanoscience and Nanotechnology] and Jining [Tsinghua University President Chen Jining]  pointed out, it is the cultural differences that are the most pronounced – and also a positive contrast that can be mutually beneficial.

“The Israelis are less obedient than the Chinese,” observed Hanein.

“The Israelis challenge authority,” said Jining. “And the Chinese bring harmony. The two groups learn from each other and create a balance.”

Jining added that though Tsinghua University collaborates with other academic institutions around the world, “This is the first that is so in-depth. We see it as a vehicle for nurturing future leaders of innovation – for cultivating and training a new generation of entrepreneurs.”

Israel’s Prime Minister, Binyamin (Benjamin) Netanyahu provides an economic perspective,

“China is Israel’s largest trading partner in Asia and fast becoming perhaps Israel’s largest trading partner, period, as we move into the future,” Netanyahu said during a meeting with Vice Premier Yandong at his office in Jerusalem following the XIN launch in Tel Aviv.

There are more details in a May 20, 2014 article written by Niv Elis & Victoria Kezr for the Jerusalem Post,

The first round, which will focus only on nano-technology, will recruit only seven advanced degree students from Tel Aviv University and 14 in China this summer.

While governments are pitching in some money for the $300m. price tag, the universities will seek private donations for the rest.

Israel’s Infinity group set up $16m. fund, comprising investors from Chinese industries and Tsinghua University alumni to help foot the bill.

The Jerusalem Post article mentions this opening, which took place on the same day,

Also on Monday [May 19, 2014], students and delegates from across the globe gathered to see Vice Premier of The People’s Republic of China Lui Yandong speak at the inauguration of the Confucius Institute at the Hebrew University of Jerusalem.

Confucius Institutes have been established at universities around the world by the Chinese Ministry of Education to promote the learning of Mandarin Chinese and Chinese culture.

This is the second such institute, following the founding of Tel Aviv University’s Confucius Institute in 2007.

“The institute in Tel Aviv is for basic Chinese teaching. Here in the Hebrew University they have East Asian studies and they’ll be cooperation with that. Here there’ll be advanced study of Chinese history and culture,” said 21-year-old student Noa Yang, who not only helped organize the event but also sang during the ceremony.

Both the XIN Center and the new Confucius Institute are part of a much larger initiative according to the Jerusalem Post article,

The initiatives are the latest in a wave of cooperative agreements between Israel and China, not just in education, but also politics and business.

In September [2013], Technion-Israel Institute of Technology in Haifa received a $130m. grant from the Li Ka Shing Foundation to build an academy called the Technion Guangdong Institute of Technology as a joint venture with China’s Shantou University.

Blum’s article mentions yet another project, an agricultural technology incubator (Note: A link has been removed),

More recently, as ISRAEL21c reported in early May, a joint-venture agricultural technology incubator is slated to be built in Anhui Province, China. It will operate under the auspices of Trendlines Agtech, a specialized investment unit of Israel’s Trendlines Group, which supports early-stage, promising medical and agricultural technology companies in Israel.

These kinds of cooperative efforts are part of a comprehensive plan by Prime Minister Benjamin Netanyahu to strengthen economic and technological ties with the People’s Republic. It was the impetus for his trip to China last year [2013].

Both these articles indicate that China and Israel are, as noted in the beginning of this post, developing more intimate relations both cultural and economic.

ETA May 28, 2014: JTA.org published a May 28, 2014 news item about a new Israel-China publication (Note: Links have been removed),

Introducing the Times of Israel Chinese on Wednesday [May 28, 2014], Times of Israel founding editor David Horovitz said in a column that it “focuses on the evolving high-tech and innovation areas of the Israeli-Chinese relationship.”

He added, “It also dips into Israeli culture and society, giving Chinese readers insights into Israel beyond the spheres of business and high-tech.”

You can find Times of Israel Chinese here but you will need Chinese language reading skills to fully appreciate it.

Competition, collaboration, and a smaller budget: the US nano community responds

Before getting to the competition, collaboration, and budget mentioned in the head for this posting, I’m supplying some background information.

Within the context of a May 20, 2014 ‘National Nanotechnology Initiative’ hearing before the U.S. House of Representatives Subcommittee on Research and Technology, Committee on Science, Space, and Technology, the US General Accountability Office (GAO) presented a 22 pp. précis (PDF; titled: NANOMANUFACTURING AND U.S. COMPETITIVENESS; Challenges and Opportunities) of its 125 pp. (PDF version report titled: Nanomanufacturing: Emergence and Implications for U.S. Competitiveness, the Environment, and Human Health).

Having already commented on the full report itself in a Feb. 10, 2014 posting, I’m pointing you to Dexter Johnson’s May 21, 2014 post on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website) where he discusses the précis from the perspective of someone who was consulted by the US GAO when they were writing the full report (Note: Links have been removed),

I was interviewed extensively by two GAO economists for the accompanying [full] report “Nanomanufacturing: Emergence and Implications for U.S. Competitiveness, the Environment, and Human Health,” where I shared background information on research I helped compile and write on global government funding of nanotechnology.

While I acknowledge that the experts who were consulted for this report are more likely the source for its views than I am, I was pleased to see the report reflect many of my own opinions. Most notable among these is bridging the funding gap in the middle stages of the manufacturing-innovation process, which is placed at the top of the report’s list of challenges.

While I am in agreement with much of the report’s findings, it suffers from a fundamental misconception in seeing nanotechnology’s development as a kind of race between countries. [emphases mine]

(I encourage you to read the full text of Dexter’s comments as he offers more than a simple comment about competition.)

Carrying on from this notion of a ‘nanotechnology race’, at least one publication focused on that aspect. From the May 20, 2014 article by Ryan Abbott for CourthouseNews.com,

Nanotech Could Keep U.S. Ahead of China

WASHINGTON (CN) – Four of the nation’s leading nanotechnology scientists told a U.S. House of Representatives panel Tuesday that a little tweaking could go a long way in keeping the United States ahead of China and others in the industry.

The hearing focused on the status of the National Nanotechnology Initiative, a federal program launched in 2001 for the advancement of nanotechnology.

As I noted earlier, the hearing was focused on the National Nanotechnology Initiative (NNI) and all of its efforts. It’s quite intriguing to see what gets emphasized in media reports and, in this case, the dearth of media reports.

I have one more tidbit, the testimony from Lloyd Whitman, Interim Director of the National Nanotechnology Coordination Office and Deputy Director of the Center for Nanoscale Science and Technology, National Institute of Standards and Technology. The testimony is in a May 21, 2014 news item on insurancenewsnet.com,

Testimony by Lloyd Whitman, Interim Director of the National Nanotechnology Coordination Office and Deputy Director of the Center for Nanoscale Science and Technology, National Institute of Standards and Technology

Chairman Bucshon, Ranking Member Lipinski, and Members of the Committee, it is my distinct privilege to be here with you today to discuss nanotechnology and the role of the National Nanotechnology Initiative in promoting its development for the benefit of the United States.

Highlights of the National Nanotechnology Initiative

Our current Federal research and development program in nanotechnology is strong. The NNI agencies continue to further the NNI’s goals of (1) advancing nanotechnology R&D, (2) fostering nanotechnology commercialization, (3) developing and maintaining the U.S. workforce and infrastructure, and (4) supporting the responsible and safe development of nanotechnology. …

,,,

The sustained, strategic Federal investment in nanotechnology R&D combined with strong private sector investments in the commercialization of nanotechnology-enabled products has made the United States the global leader in nanotechnology. The most recent (2012) NNAP report analyzed a wide variety of sources and metrics and concluded that “… in large part as a result of the NNI the United States is today… the global leader in this exciting and economically promising field of research and technological development.” n10 A recent report on nanomanufacturing by Congress’s own Government Accountability Office (GAO) arrived at a similar conclusion, again drawing on a wide variety of sources and stakeholder inputs. n11 As discussed in the GAO report, nanomanufacturing and commercialization are key to capturing the value of Federal R&D investments for the benefit of the U.S. economy. The United States leads the world by one important measure of commercial activity in nanotechnology: According to one estimate, n12 U.S. companies invested $4.1 billion in nanotechnology R&D in 2012, far more than investments by companies in any other country.  …

There’s cognitive dissonance at work here as Dexter notes in his own way,

… somewhat ironically, the [GAO] report suggests that one of the ways forward is more international cooperation, at least in the development of international standards. And in fact, one of the report’s key sources of information, Mihail Roco, has made it clear that international cooperation in nanotechnology research is the way forward.

It seems to me that much of the testimony and at least some of the anxiety about being left behind can be traced to a decreased 2015 budget allotment for nanotechnology (mentioned here in a March 31, 2014 posting [US National Nanotechnology Initiative’s 2015 budget request shows a decrease of $200M]).

One can also infer a certain anxiety from a recent presentation by Barbara Herr Harthorn, head of UCSB’s [University of California at Santa Barbara) Center for Nanotechnology in Society (CNS). She was at a February 2014 meeting of the Presidential Commission for the Study of Bioethical Issues (mentioned in parts one and two [the more substantive description of the meeting which also features a Canadian academic from the genomics community] of my recent series on “Brains, prostheses, nanotechnology, and human enhancement”). II noted in part five of the series what seems to be a shift towards brain research as a likely beneficiary of the public engagement work accomplished under NNI auspices and, in the case of the Canadian academic, the genomics effort.

The Americans are not the only ones feeling competitive as this tweet from Richard Jones, Pro-Vice Chancellor for Research and Innovation at Sheffield University (UK), physicist, and author of Soft Machines, suggests,

May 18

The UK has fewer than 1% of world patents on graphene, despite it being discovered here, according to the FT –

I recall reading a report a few years back which noted that experts in China were concerned about falling behind internationally in their research efforts. These anxieties are not new, CP Snow’s book and lecture The Two Cultures (1959) also referenced concerns in the UK about scientific progress and being left behind.

Competition/collaboration is an age-old conundrum and about as ancient as anxieties of being left behind. The question now is how are we all going to resolve these issues this time?

ETA May 28, 2014: The American Institute of Physics (AIP) has produced a summary of the May 20, 2014 hearing as part of their FYI: The AIP Bulletin of Science Policy News, May 27, 2014 (no. 93).

Apply to be a nursemaid for Giant Panda cubs in China (it’s a paid job)

This comes from a May 20, 2014 article by Eve Nagy for Fast Company,

It pays less than most starting teachers’ salaries and has tougher odds than a position at Google, but don’t let that deter you from applying for this best of all the jobs: the Giant Panda Protection and Research Center in China’s Sichuan province has launched a worldwide search for panda cub caretakers.

You can get more details in a May 12, 2014 news item on ChinaDaily.com,

“Your work has only one mission: spending 365 days with the pandas and sharing in their joys and sorrows,” organizers said.

Applicants should be at least 22 years old and have some basic knowledge of pandas. They should also have good writing skills and the ability to take pictures, according to the recruiters’ requirements.

The campaign will also recruit eight panda observers for a free three-day trip to the Bifengxia base.

People can apply for the job at fun.sohu.com. Recruiting drives will also be held in Shanghai, Chengdu and Guangzhou and will last until July 15 [2014].

You will need to be able to read Chinese or get very lucky when applying at fun.sohu.com.