Tag Archives: Cientifica

Cientifica’s latest smart textiles and wearable electronics report

After publishing a report on wearable technology in May 2016 (see my June 2, 2016 posting), Cientifica has published another wearable technology report, this one is titled, Smart Textiles and Wearables: Markets, Applications and Technologies. Here’s more about the latest report from the report order page,

“Smart Textiles and Wearables: Markets, Applications and Technologies” examines the markets for textile based wearable technologies, the companies producing them and the enabling technologies. This is creating a 4th industrial revolution for the textiles and fashion industry worth over $130 billion by 2025.

Advances in fields such as nanotechnology, organic electronics (also known as plastic electronics) and conducting polymers are creating a range of textile–based technologies with the ability to sense and react to the world around them.  This includes monitoring biometric data such as heart rate, the environmental factors such as temperature and The presence of toxic gases producing real time feedback in the form of electrical stimuli, haptic feedback or changes in color.

The report identifies three distinct generations of textile wearable technologies.

First generation is where a sensor is attached to apparel and is the approach currently taken by major sportswear brands such as Adidas, Nike and Under Armour
Second generation products embed the sensor in the garment as demonstrated by products from Samsung, Alphabet, Ralph Lauren and Flex.
In third generation wearables the garment is the sensor and a growing number of companies including AdvanPro, Tamicare and BeBop sensors are making rapid progress in creating pressure, strain and temperature sensors.

Third generation wearables represent a significant opportunity for new and established textile companies to add significant value without having to directly compete with Apple, Samsung and Intel.

The report predicts that the key growth areas will be initially sports and wellbeing

followed by medical applications for patient monitoring. Technical textiles, fashion and entertainment will also be significant applications with the total market expected to rise to over $130 billion by 2025 with triple digit compound annual growth rates across many applications.

The rise of textile wearables also represents a significant opportunity for manufacturers of the advanced materials used in their manufacture. Toray, Panasonic, Covestro, DuPont and Toyobo are already suppling the necessary materials, while researchers are creating sensing and energy storage technologies, from flexible batteries to graphene supercapacitors which will power tomorrows wearables. The report details the latest advances and their applications.

This report is based on an extensive research study of the wearables and smart textile markets backed with over a decade of experience in identifying, predicting and sizing markets for nanotechnologies and smart textiles. Detailed market figures are given from 2016-2025, along with an analysis of the key opportunities, and illustrated with 139 figures and 6 tables.

The September 2016 report is organized differently and has a somewhat different focus from the report published in May 2016. Not having read either report, I’m guessing that while there might be a little repetition, you might better consider them to be companion volumes.

Here’s more from the September 2016 report’s table of contents which you can download from the order page (Note: The formatting has been changed),

SMART TEXTILES AND WEARABLES:
MARKETS, APPLICATIONS AND
TECHNOLOGIES

Contents  1
List of Tables  4
List of Figures  4
Introduction  8
How to Use This Report  8
Wearable Technologies and the 4Th Industrial Revolution  9
The Evolution of Wearable Technologies  10
Defining Smart Textiles  15
Factors Affecting The Adoption of Smart Textiles for Wearables  18
Cost  18
Accuracy  18
On Shoring  19
Power management  19
Security and Privacy  20
Markets  21
Total Market Growth and CAGR  21
Market Growth By Application  21
Adding Value To Textiles Through Technology  27
How Nanomaterials Add Functionality and Value  31
Business Models  33
Applications  35
Sports and Wellbeing  35
1st Generation Technologies  35
Under Armour Healthbox Wearables  35
Adidas MiCoach  36
Sensoria  36
EMPA’s Long Term Research  39
2nd Generation Technologies  39
Google’s Project Jacquard  39
Samsung Creative Lab  43
Microsoft Collaborations  44
Intel Systems on a Chip  44
Flex (Formerly Flextronics) and MAS Holdings  45
Jiobit  46
Asensei Personal Trainer  47
OmSignal Smart Clothing  48
Ralph Lauren PoloTech  49
Hexoskin Performance Management  50
Jabil Circuit Textile Heart Monitoring  51
Stretch Sense Sensors  52
NTT Data and Toray  54
Goldwin Inc. and DoCoMo  55
SupaSpot Inc Smart Sensors  55
Wearable Experiments and Brand Marketing  56
Wearable Life Sciences Antelope  57
Textronics NuMetrex  59
3rd Generation Technologies  60
AdvanPro Pressure Sensing Shoes  60
Tamicare 3D printed Wearables with Integrated Sensors  62
AiQ Smart Clothing Stainless Steel Yarns  64
Flex Printed Inks And Conductive Yarns  66
Sensing Tech Conductive Inks  67
EHO Textiles Body Motion Monitoring  68
Bebop Sensors Washable E-Ink Sensors  70
Fraunhofer Institute for Silicate Research Piezolectric Polymer
Sensors  71
CLIM8 GEAR Heated Textiles  74
VTT Smart Clothing Human Thermal Model  74
ATTACH (Adaptive Textiles Technology with Active Cooling and Heating) 76
Energy Storage and Generation  78
Intelligent Textiles Military Uniforms  78
BAE Systems Broadsword Spine  79
Stretchable Batteries  80
LG Chem Cable Batteries  81
Supercapacitors  83
Swinburne Graphene Supercapacitors  83
MIT Niobium Nanowire Supercapacitors  83
Energy Harvesting  86
Kinetic  86
StretchSense Energy Harvesting Kit  86
NASA Environmental Sensing Fibers  86
Solar  87
Powertextiles  88
Sphelar Power Corp Solar Textiles  88
Ohmatex and Powerweave  89
Fashion  89
1st Generation Technologies  92
Cute Circuit LED Couture  92
MAKEFASHION LED Couture  94
2nd Generation Technologies  94
Covestro Luminous Clothing  94
3rd Generation Technologies  96
The Unseen Temperature Sensitive Dyes  96
Entertainment  98
Wearable Experiments Marketing  98
Key Technologies 100
Circuitry  100
Conductive Inks for Fabrics  100
Conductive Ink For Printing On Stretchable Fabrics  100
Creative Materials Conductive Inks And Adhesives  100
Dupont Stretchable Electronic Inks  101
Aluminium Inks From Alink Co  101
Conductive Fibres  102
Circuitex Silver Coated Nylon  102
Textronics Yarns and Fibres  102
Novonic Elastic Conductive Yarn  103
Copper Coated Polyacrylonitrile (PAN) Fibres  103
Printed electronics  105
Covestro TPU Films for Flexible Circuits  105
Sensors  107
Electrical  107
Hitoe  107
Cocomi  108
Panasonic Polymer Resin  109
Cardiac Monitoring  110
Mechanical  113
Strain  113
Textile-Based Weft Knitted Strain Sensors  113
Chain Mail Fabric for Smart Textiles  113
Nano-Treatment for Conductive Fiber/Sensors 115
Piezoceramic materials  116
Graphene-Based Woven Fabric  117
Pressure Sensing  117
LG Innotek Flexible Textile Pressure Sensors  117
Hong Kong Polytechnic University Pressure Sensing Fibers  119
Conductive Polymer Composite Coatings  122
Printed Textile Sensors To Track Movement  125
Environment  127
Photochromic Textiles  127
Temperature  127
Sefar PowerSens  127
Gasses & Chemicals  127
Textile Gas Sensors  127
Energy  130
Storage  130
Graphene Supercapacitors  130
Niobium Nanowire Supercapacitors  130
Stretchy supercapacitors  132
Energy Generation  133
StretchSense Energy Harvesting Kit  133
Piezoelectric Or Thermoelectric Coated Fibres  134
Optical  137
Light Emitting  137
University of Manchester Electroluminescent Inks and Yarns 137
Polyera Wove  138
Companies Mentioned  141
List of Tables
Table 1 CAGR by application  22
Table 2 Value of market by application 2016-25 (millions USD)  24
Table 3 % market share by application  26
Table 4 CAGR 2016-25 by application  26
Table 5 Technology-Enabled Market Growth in Textile by Sector (2016-22) 28
Table 6 Value of nanomaterials by sector 2016-22 ($ Millions)  33
List of Figures
Figure 1 The 4th Industrial Revolution (World Economic Forum)  9
Figure 2 Block Diagram of typical MEMS digital output motion sensor: ultra
low-power high performance 3-axis “femto” accelerometer used in
fitness tracking devices.  11
Figure 3 Interior of Fitbit Flex device (from iFixit)  11
Figure 4 Internal layout of Fitbit Flex. Red is the main CPU, orange is the
BTLE chip, blue is a charger, yellow is the accelerometer (from iFixit)  11
Figure 5 Intel’s Curie processor stretches the definition of ‘wearable’  12
Figure 6 Typical Textile Based Wearable System Components  13
Figure 7 The Chromat Aeros Sports Bra “powered by Intel, inspired by wind, air and flight.”  14
Figure 8 The Evolution of Smart textiles  15
Figure 9 Goldwin’s C2fit IN-pulse sportswear using Toray’s Hitoe  16
Figure 10 Sensoglove reads grip pressure for golfers  16
Figure 11 Textile Based Wearables Growth 2016-25(USD Millions)  21
Figure 12 Total market for textile based wearables 2016-25 (USD Millions)  22
Figure 13 Health and Sports Market Size 2016-20 (USD Millions)  23
Figure 14 Health and Sports Market Size 2016-25 (USD Millions)  23
Figure 15 Critical steps for obtaining FDA medical device approval  25
Figure 16 Market split between wellbeing and medical 2016-25  26
Figure 17 Current World Textile Market by Sector (2016)  27
Figure 18 The Global Textile Market By Sector ($ Millions)  27
Figure 19 Compound Annual Growth Rates (CAGR) by Sector (2016-25)  28
Figure 20 The Global Textile Market in 2022  29
Figure 21 The Global Textile Market in 2025  30
Figure 22 Textile Market Evolution (2012-2025)  30
Figure 23 Total Value of Nanomaterials in Textiles 2012-2022 ($ Millions)  31
Figure 24 Value of Nanomaterials in Textiles by Sector 2016-2025 ($ Millions) 32
Figure 25 Adidas miCoach Connect Heart Rate Monitor  36
Figure 26 Sensoria’s Hear[t] Rate Monitoring Garments . 37
Figure 27 Flexible components used in Google’s Project Jacquard  40
Figure 28 Google and Levi’s Smart Jacket  41
Figure 29 Embedded electronics Google’s Project Jacquard  42
Figure 30 Samsung’s WELT ‘smart’ belt  43
Figure 31 Samsung Body Compass at CES16  44
Figure 32 Lumo Run washable motion sensor  45
Figure 33 OMSignal’s Smart Bra  49
Figure 34 PoloTech Shirt from Ralph Lauren  50
Figure 35 Hexoskin Data Acquisition and Processing  51
Figure 36 Peak+™ Hear[t] Rate Monitoring Garment  52
Figure 37 StretchSense CEO Ben O’Brien, with a fabric stretch sensor  53
Figure 38 C3fit Pulse from Goldwin Inc  55
Figure 39 The Antelope Tank-Top  58
Figure 40 Sportswear with integrated sensors from Textronix  60
Figure 41 AdvanPro’s pressure sensing insoles  61
Figure 42 AdvanPro’s pressure sensing textile  62
Figure 43 Tamicare 3D Printing Sensors and Apparel  63
Figure 44 Smart clothing using stainless steel yarns and textile sensors from AiQ  65
Figure 45 EHO Smart Sock  69
Figure 46 BeBop Smart Car Seat Sensor  71
Figure 47 Non-transparent printed sensors from Fraunhofer ISC  73
Figure 48 Clim8 Intelligent Heat Regulating Shirt  74
Figure 49 Temperature regulating smart fabric printed at UC San Diego  76
Figure 50 Intelligent Textiles Ltd smart uniform  79
Figure 51 BAE Systems Broadsword Spine  80
Figure 52 LG Chem cable-shaped lithium-ion battery powers an LED display even when twisted and strained  81
Figure 53 Supercapacitor yarn made of niobium nanowires  84
Figure 54 Sphelar Textile  89
Figure 55 Sphelar Textile Solar Cells  89
Figure 56 Katy Perry wears Cute Circuit in 2010  91
Figure 57 Cute Circuit K Dress  93
Figure 58 MAKEFASHION runway at the Brother’s “Back to Business” conference, Nashville 2016  94
Figure 59 Covestro material with LEDs are positioned on formable films made from thermoplastic polyurethane (TPU).  95
Figure 60 Unseen headpiece, made of 4000 conductive Swarovski stones, changes color to correspond with localized brain activity  96
Figure 61 Eighthsense a coded couture piece.  97
Figure 62 Durex Fundawear  98
Figure 63 Printed fabric sensors from the University of Tokyo  100
Figure 64 Tony Kanaan’s shirt with electrically conductive nano-fibers  107
Figure 65 Panasonic stretchable resin technology  109
Figure 66 Nanoflex moniroring system  111
Figure 67 Knitted strain sensors  113
Figure 68 Chain Mail Fabric for Smart Textiles  114
Figure 69 Electroplated Fabric  115
Figure 70 LG Innotek flexible textile pressure sensors  118
Figure 71 Smart Footwear installed with fabric sensors. (Credit: Image courtesy of The Hong Kong Polytechnic University)  120
Figure 72 SOFTCEPTOR™ textile strain sensors  122
Figure 73 conductive polymer composite coating for pressure sensing  123
Figure 74 Fraunhofer ISC_ printed sensor  125
Figure 75 The graphene-coated yarn sensor. (Image: ETRI)  128
Figure 76 Supercapacitor yarn made of niobium nanowires  131
Figure 77 StretchSense Energy Harvesting Kit  134
Figure 78 Energy harvesting textiles at the University of Southampton  135
Figure 79 Polyera Wove Flexible Screen  139

If you compare that with the table of contents for the May 2016 report in my June 2, 2016 posting, you can see the difference.

Here’s one last tidbit, a Sept. 15, 2016 news item on phys.org highlights another wearable technology report,

Wearable tech, which was seeing sizzling sales growth a year ago [2015], is cooling this year amid consumer hesitation over new devices, a survey showed Thursday [Sept. 15, 2016].

The research firm IDC said it expects global sales of wearables to grow some 29.4 percent to some 103 million units in 2016.

That follows 171 percent growth in 2015, fueled by the launch of the Apple Watch and a variety of fitness bands.

“It is increasingly becoming more obvious that consumers are not willing to deal with technical pain points that have to date been associated with many wearable devices,” said IDC analyst Ryan Reith.

So-called basic wearables—including fitness bands and other devices that do not run third party applications—will make up the lion’s share of the market with some 80.7 million units shipped this year, according to IDC.

According to IDC, it seems that the short term does not promise the explosive growth of the previous year but that new generations of wearable technology, according to both IDC and Cientifica, offer considerable promise for the market.

Europe’s search for raw materials and hopes for nanotechnology-enabled solutions

A Feb. 27, 2015 news item on Nanowerk highlights the concerns over the availability of raw materials and European efforts to address those concerns,

Critical raw materials’ are crucial to many European industries but they are vulnerable to scarcity and supply disruption. As such, it is vital that Europe develops strategies for meeting the demand for raw materials. One such strategy is finding methods or substances that can replace the raw materials that we currently use. With this in mind, four EU projects working on substitution in catalysis, electronics and photonics presented their work at the Third Innovation Network Workshop on substitution of Critical Raw Materials hosted by the CRM_INNONET project in Brussels earlier this month [February 2015].

A Feb. 26, 2015 CORDIS press release, which originated the news item, goes on to describe four European Union projects working on nanotechnology-enabled solutions,

NOVACAM

NOVACAM, a coordinated Japan-EU project, aims to develop catalysts using non-critical elements designed to unlock the potential of biomass into a viable energy and chemical feedstock source.

The project is using a ‘catalyst by design’ approach for the development of next generation catalysts (nanoscale inorganic catalysts), as NOVACAM project coordinator Prof. Emiel Hensen from Eindhoven University of Technology in the Netherlands explained. Launched in September 2013, the project is developing catalysts which incorporate non-critical metals to catalyse the conversion of lignocellulose into industrial chemical feedstocks and bio-fuels. The first part of the project has been to develop the principle chemistry while the second part is to demonstrate proof of process. Prof. Hensen predicts that perhaps only two of three concepts will survive to this phase.

The project has already made significant progress in glucose and ethanol conversion, according to Prof. Hensen, and has produced some important scientific publications. The consortium is working with and industrial advisory board comprising Shell in the EU and Nippon Shokubai in Japan.

FREECATS

The FREECATS project, presented by project coordinator Prof. Magnus Rønning from the Norwegian University of Science and Technology, has been working over the past three years to develop new metal-free catalysts. These would be either in the form of bulk nanomaterials or in hierarchically organised structures – both of which would be capable of replacing traditional noble metal-based catalysts in catalytic transformations of strategic importance.

Prof. Magnus Rønning explained that the application of the new materials could eliminate the need for the use for platinum group metals (PGM) and rare earth metals – in both cases Europe is very reliant on other countries for these materials. Over the course of its research, FREECATS targeted three areas in particular – fuel cells, the production of light olefins and water and wastewater purification.

By working to replace the platinum in fuel cells, the project is supporting the EU’s aim of replacing the internal combustion engine by 2050. However, as Prof. Rønning noted, while platinum has been optimized for use over several decades, the materials FREECATS are using are new and thus come with their new challenges which the project is addressing.

HARFIR

Prof. Atsufumi Hirohata of the University of York in the United Kingdom, project coordinator of HARFIR, described how the project aims to discover an antiferromagnetic alloy that does not contain the rare metal Iridium. Iridium is becoming more and more widely used in numerous spin electronic storage devices, including read heads in hard disk drives. The world supply depends on Platinum ore that comes mainly from South Africa. The situation is much worse than for other rare earth elements as the price has been shooting up over recent years, according to Prof. Hirohata.

The HARFIR team, divided between Europe and Japan, aims to replace Iridium alloys with Heusler alloys. The EU team, led by Prof. Hirohata, has been working on the preparation of polycrystalline and epitaxial thin films of Heusler Alloys, with the material design led by theoretical calculations. The Japanese team, led by Prof. Koki Takanashi at Tohoku University, is meanwhile working on the preparation of epitaxial thin films, measurements of fundamental properties and structural/magnetic characterisation by neutron and synchrotron x-ray beams.

One of the biggest challenges has been that Heusler alloys have a relatively complicated atomic structure. In terms of HARFIR’s work, if any atomic disordering at the edge of nanopillar devices, the magnetic properties that are needed are lost. The team is exploring solutions to this challenge.

IRENA

Prof. of Esko Kauppinen Aalto University in Finland closed off the first session of the morning with his presentation of the IRENA project. Launched in September 2013, the project will run until mid 2017 working towards the aim of developing high performance materials, specifically metallic and semiconducting single-walled carbon nanotube (SWCNT) thin films to completely eliminate the use of the critical metals in electron devices. The ultimate aim is to replace Indium in transparent conducting films, and Indium and Gallium as a semiconductor in thin film field effect transistors (TFTs).

The IRENA team is developing an alternative that is flexible, transparent and stretchable so that it can meet the demands of the electronics of the future – including the possibility to print electronics.

IRENA involves three partners from Europe and three from Japan. The team has expertise in nanotube synthesis, thin film manufacturing and flexible device manufacturing, modelling of nanotube growth and thin film charge transport processes, and the project has benefitted from exchanges of team members between institutions. One of the key achievements so far is that the project has succeeded in using a nanotube thin film for the first time as the both the electrode and hole blocking layer in an organic solar cell.

You’ll note that Japan is a partner in all of these projects. In all probability, these initiatives have something to do with rare earths which are used in much of today’s electronics technology and Japan is sorely lacking in those materials. China, by comparison, has dominated the rare earths export industry and here’s an excerpt from my Nov. 1, 2013 posting where I outline the situation (which I suspect hasn’t changed much since),

As for the short supply mentioned in the first line of the news item, the world’s largest exporter of rare earth elements at 90% of the market, China, recently announced a cap according to a Sept. 6, 2013 article by David Stanway for Reuters. The Chinese government appears to be curtailing exports as part of an ongoing, multi-year strategy. Here’s how Cientifica‘s (an emerging technologies consultancy, etc.) white paper (Simply No Substitute?) about critical materials published in 2012 (?), described the situation,

Despite their name, REE are not that rare in the Earth’s crust. What has happened in the past decade is that REE exports from China undercut prices elsewhere, leading to the closure of mines such as the Mountain Pass REE mine in California. Once China had acquired a dominant market position, prices began to rise. But this situation will likely ease. The US will probably begin REE production from the Mountain Pass mine later in 2012, and mines in other countries are expected to start operation soon as well.

Nevertheless, owing to their broad range of uses REE will continue to exert pressures on their supply – especially for countries without notable REE deposits. This highlights two aspects of importance for strategic materials: actual rarity and strategic supply issues such as these seen for REE. Although strategic and diplomatic supply issues may have easier solutions, their consideration for manufacturing industries will almost be the same – a shortage of crucial supply lines.

Furthermore, as the example of REE shows, the identification of long-term supply problems can often be difficult, and not every government has the same strategic foresight that the Chinese demonstrated. And as new technologies emerge, new elements may see an unexpected, sudden demand in supply. (pp. 16-17)

Meanwhile, in response to China’s decision to cap its 2013 REE exports, the Russian government announced a $1B investment to 2018 in rare earth production,, according to a Sept. 10, 2013 article by Polina Devitt for Reuters.

I’m not sure you’ll be able to access Tim Harper’s white paper as he is now an independent, serial entrepreneur. I most recently mentioned him in relation to his articles (on Azonano) about the nanotechnology scene in a Feb. 12, 2015 posting where you’ll also find contact details for him.

FrogHeart and 2014: acknowledging active colleagues and saying good-bye to defunct blogs and hello to the new

It’s been quite the year. In Feb. 2014, TED offered me free livestreaming of the event in Vancouver. In March/April 2014, Google tweaked its search function and sometime in September 2014 I decided to publish two pieces per day rather than three with the consequence that the visit numbers for this blog are lower than they might otherwise have been. More about statistics and traffic to this blog will be in the post I usually publish just the new year has started.

On other fronts, I taught two courses (Bioelectronics and Nanotechnology, the next big idea) this year for Simon Fraser University (Vancouver, Canada) in its Continuing Studies (aka Lifelong Learning) programmes. I also attended a World Congress on Alternatives to Animal Testing in the Life Sciences in Prague. The trip, sponsored by SEURAT-1 (Safety Evaluation Ultimately Replacing Animal Testing), will result in a total of five stories, the first having been recently (Dec. 26, 2014) published. I’m currently preparing a submission for the International Symposium on Electronic Arts being held in Vancouver in August 2015 based on a project I have embarked upon, ‘Steep’. Focused on gold nanoparticles, the project is Raewyn Turner‘s (an artist from New Zealand) brainchild. She has kindly opened up the project in such a way that I too can contribute. There are two other members of the Steep project, Brian Harris, an electrical designer, who works closely with Raewyn on a number of arts projects and there’s Mark Wiesner as our science consultant. Wiesner is a professor of civil and environmental engineering,at Duke University in North Carolina.

There is one other thing which you may have noticed, I placed a ‘Donate’ button on the blog early in 2014.

Acknowledgements, good-byes, and hellos

Dexter Johnson on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website) remains a constant in the nano sector of the blogosphere where he provides his incisive opinions and context for the nano scene.

David Bruggeman on his Pasco Phronesis blog offers valuable insight into the US science policy scene along with a lively calendar of art/science events and an accounting of the science and technology guests on late night US television.

Andrew Maynard archived his 2020 Science blog in July 2014 but he does continue writing and communication science as director of the University of Michigan Risk Science Center. Notably, Andrew continues to write, along with other contributors, on the Risk Without Borders blog at the University of Michigan.

Sadly, Cientifica, a emerging technologies business consultancy, where Tim Harper published a number of valuable white papers, reports, and blog postings is no longer with us. Happily, Tim continues with an eponymous website where he blogs and communicates about various business interests, “I’m currently involved in graphene, nanotechnology, construction, heating, and biosensing, working for a UK public company, as well as organisations ranging from MIT [Massachusetts Institute of Technology] to the World Economic Forum.” Glad to you’re back to blogging Tim. I missed your business savvy approach and occasional cheekiness!

I was delighted to learn of a new nano blog, NanoScéal, this year and relieved to see they’re hanging in. Their approach is curatorial where they present a week of selected nano stories. I don’t think a lot of people realize how much work a curatorial approach requires. Bravo!

Sir Martyn Poliakoff and the Periodic Table of Videos

Just as I was wondering what happened to the Periodic Table of Videos (my April 25, 2011 post offers a description of the project) Grrl Scientist on the Guardian science blog network offers information about one of the moving forces behind the project, Martyn Poliakoff in a Dec. 31, 2014 post,

This morning [Dec. 31, 2014], I was most pleased to learn that Martyn Poliakoff, professor of chemistry at the University of Nottingham, was awarded a bachelor knighthood by the Queen. So pleased was I that I struggled out of bed (badly wrecked back), my teeth gritted, so I could share this news with you.

Now Professor Poliakoff — who now is more properly known as Professor SIR Martyn Poliakoff — was awarded one of the highest civilian honours in the land, and his continued online presence has played a significant role in this.

“I think it may be the first time that YouTube has been mentioned when somebody has got a knighthood, and so I feel really quite proud about that. And I also really want to thank you YouTube viewers who have made this possible through your enthusiasm for chemistry.”

As for the Periodic Table of Videos, the series continues past the 118 elements currently identified to a include discussions on molecules.

Science Borealis, the Canadian science blog aggregator, which I helped to organize (albeit desultorily), celebrated its first full year of operation. Congratulations to all those who worked to make this project such a success that it welcomed its 100th blog earlier this year. From a Sept. 24, 2014 news item on Yahoo (Note: Links have been removed),

This week the Science Borealis team celebrated the addition of the 100th blog to its roster of Canadian science blog sites! As was recently noted in the Council of Canadian Academies report on Science Culture, science blogging in Canada is a rapidly growing means of science communication. Our digital milestone is one of many initiatives that are bringing to fruition the vision of a rich Canadian online science communication community.

The honour of being syndicated as the 100th blog goes to Spider Bytes, by Catherine Scott, an MSc [Master of Science] student at Simon Fraser University in Burnaby, British Columbia. …

As always, it’s been a pleasure and privilege writing and publishing this blog. Thank you all for your support whether it comes in the form of reading it, commenting, tweeting,  subscribing, and/or deciding to publish your own blog. May you have a wonderful and rewarding 2015!

Cientifica pivots with graphene

I’m not sure when Cientifica moved its business focus from a consultancy on emerging technologies as per my Aug. 9, 2013 posting highlighting a then recent report,; scroll down 1/2 way,

Cientifica (a business consultancy focusing on emerging technologies) has released its Graphene Opportunity Report, from the report’s webpage (Note: Links have been removed),

A decade ago when we published the first edition of the Nanotechnology Opportunity Report, there were predictions of untold riches for early investors, the replacement of all manufacturing as we know it, and the mythical trillion-dollar market.

Cientifica went against the grain by predicting that it would be hard for anyone to make money from nanomaterials, and that the real value would be in the applications.

Cientifica’s latest news release (June 13, 2014) announces an agreement with Perpetuus Carbon Group and a commitment to commercialize applications for graphene,

13 June 2014

Cientifica PLC

(“Cientifica” or the “Company”)

Development Agreement with Perpetuus Carbon Group

Cientifica PLC, the AIM listed company focused on applications of graphene, has entered into a collaboration with Perpetuus Carbon Group (“Perpetuus”), a world leader in the production of nano surface modified graphenes.

Cientifica is focusing on investment in a number of specific areas ranging from energy efficiency to health, with the aim of bringing a number of significant applications enabled by graphene to market in the near term.

The objective of the collaboration is to bring together technology, market demand and finance, with a view to placing the UK at the forefront of the commercialisation of graphene. It also creates an integrated value chain spanning graphene production to consumer and industrial applications.

Perpetuus will provide technical support to Cientifica’s planned product development with the aim of reducing the time to market by combining the technical and market expertise of both companies. A number of graphene-enabled products, including infrared heating technology will be on display at the 2nd Annual Graphene Supply, Application and Commercialisation Conference in Manchester, 13 June 2014.

The patented infrared heating technology on display, involving flat panel heaters makes use of graphene to emit infrared light at wave-lengths precisely tailored for maximum comfort and minimum energy use. The graphene enabled technology allows users to maintain the same levels of comfort, whilst using up to 70% less energy than conventional heaters.

Perpetuus supplies graphenes that have been produced in a dry, environmentally friendly manner, unlike many other graphene suppliers who use acids and surfactants, which leaves behind toxic by-products. Perpetuus’ proprietary technology allows it to populate a variety of chemical groups onto and within the nano structure of graphenes to a customer’s precise specification and deliver in kilos and tonnes.

Tim Harper, CEO of Cientifica PLC, explained: “We are focused on a number of specific areas and have identified a number of graphene-enabled applications where, as products move from prototype to market we need a partner that can supply us and our future partners material in a ready for use form, and in significant quantities to meet customer demand. We needed to find a company that can supply tonnes rather than grams per week, of consistent quality materials at competitive prices.

“By partnering with Perpetuus we believe we will be able to quickly incorporate the appropriate functionalised graphene material into our future products which we believe will allow us to significantly bring forward the launch of a number of products.”

Ian Walters of Perpetuus commented: “Many of the proposed applications of graphene are long term, and taking products to market over such long timescales can be challenging. Cientifica’s focus on identifying near term real-world applications of graphene, backed with intellectual property will help to create a quickly expanding market for Perpetuus’ applications and products.”

Further announcements will be made in due course.

There is additional information about both companies in the ‘About” section of the news release,

About Cientifica

Cientifica PLC is an AIM listed company that is focused on acquiring and building businesses making use of emerging technologies and advanced materials such as graphene. [emphasis mine] These are typically businesses at an early stage where the technology has been proven but not scaled up to meet market demand.

Emerging technologies are ones that:

Arise from new knowledge, or the innovative application of existing knowledge;

Lead to the rapid development of new capabilities;Â
Are projected to have significant systemic and long-lasting economic, social and political impacts;

Create new opportunities for and challenges to addressing global issues; andÂ
Have the potential to disrupt or create entire industries.Â

About Perpetuus

For any company to be successful in the commercialisation of graphene materials they need to offer ALL the following features to a customer:–

Functionalisation by implanting a variety of chemical groups onto and within graphenes to nano surface modify graphene, to a customer’s specification.

Consistent high quality graphemes.Â
Commercial quantities.Â
Competitive pricing.Â
Immediate availability in kilos and quick delivery of tonnes rather than grams.Â
An environmentally friendly production process (this will become more relevant as the industry expands).
Environmental impact studies and life cycle analysis on all outputs and byproducts.Â
Comprehensive and reliable characterisation data.Â
Manageable, transportable, user friendly.Â
Presented in stacks. (Graphenes as single layers are invisible and cannot be packaged or handled).

Perpetuus offers all the above to its customers.

Perpetuus, a British company, is not aware of any other business in the world which can offer the full range of these goods and services to its customers.

About Graphene

Graphene is pure carbon in the form of a very thin, nearly transparent sheet, one atom thick. It is remarkably strong for its very low weight (100 times stronger than steel) and it conducts heat and electricity with great efficiency. It can be produced by separating atomic layers of graphite or by depositing graphene directly onto a substrate from a vapour.

The AIM listing mentioned in the Cientifica news release refers to the London Stock Exchange. From the AIM webpage on the London Stock Exchanged website,

AIM is the most successful growth market in the world. Since its launch in 1995, over 3,000 companies from across the globe have chosen to join AIM. Powering the companies of tomorrow, AIM continues to help smaller and growing companies raise the capital they need for expansion.

You can find the Cientifica website here.

A H/T to a June 13, 2014 news item written from the Perpetuus perspective on Azom.com for leading me to the company’s website, more or less. (I’m finding the search algorithms being used by Google, Yahoo, and others verge on the useless these days. )  Getting back to the Perpetuus Carbon Group, I’ve not been able to find that website but Pertpetuus Carbon Technologies can be found here. You can find out more about the 2nd Annual Graphene Supply Application and Commercialisation Conference here. (it’s mentioned in the news release).

Finally, good luck to Cientifica and Perpetuus on their new venture.

Advice on marketing nano from a process engineering perspective

Robert Ferris, PhD, is writing a series of posts about the ‘Process Engineering of Nanotechnology’ on the Emerson Process Experts blog. Before getting to his marketing post, I’m going to briefly discuss his Jan. 4, 2014 posting (the first in this business-oriented series) which offers a good primer on the topic of nanotechnology although I do have a proviso, Ferris’ posts should be read with some caution,

I contribute [sic]  the knowledge gap to the fact that most of the writing out there is written by science-brains and first-adopters. Previous authors focus on the technology and potentials of bench-top scale innovation. This is great for the fellow science-brain but useless to the general population. I can say this because I am one of those science-brains.

The unfortunate truth is that most people do not understand nanotechnology nor care about the science behind it. They only care if the new product is better than the last. Nanotechnology is not a value proposition. So, the articles written do not focus on what the general population cares about. Instead, people are confused by nanotechnology and as a result are unsure of how it can be used.

I think Ferris means ‘attribute’ rather than ‘contribute’ and I infer from the evidence provided by the error that he (in common with me) does not have a copy editor. BTW, my worst was finding three errors in one of my sentences (sigh) weeks after after I’d published. At any rate, I’m suggesting caution not due to this error but to passages such as this (Note: Links have been removed),

Nanotechnology is not new; in fact, it was used as far back as the 16th century in stain glass windows. Also, nanotechnology is already being used in products today, ranging from consumer goods to food processing. Don’t be surprised if you didn’t know, a lot of companies do not publicize the fact that they use nanotechnology.

Strictly speaking the first sentence is problematic since Ferris is describing ‘accidental’ nanotechnology. The artisans weren’t purposefully creating gold nanoparticles to get that particular shade of red in the glass as opposed to what we’re doing today and I think that’s a significant difference. (Dexter Johnson on his Nanoclast blog for the IEEE [Institute of Electrical and Electronics Engineers] has been very clear that these previous forays (Damascus steel, the Lycurgus Cup) cannot be described as nanotechnology since they were unintended.) As for the rest of the excerpt, it’s all quite true.

Ferris’ Feb. 11, 2014 post tackles marketing,

… While companies and products can miss growth targets for any number of reasons, one of the more common failures for nanotechnology-enabled products is improper marketing. Most would agree that marketing is as much art as science but marketing of nanotechnology-enabled products can be particularly tricky.

True again and he’s about to focus on one aspect of marketing,

Companies that develop nanotechnology-enabled products tend to fall into two camps—those that use nanotechnology as a differentiator in their marketing materials and those that do not. In the 5 P’s of marketing (Product, Place, Price, Promotion, and People), we are contrasting how each company approaches product marketing.

Product marketing focuses on communicating how that product meets a customer need. To do this, the marketing material must differentiate from other potential solutions. The question is, does nanotechnology serves as a differentiating value proposition for the customer?

As I understand it, communicating about the product and value propositions would fall under Promotion while decisions about what features to offer, physical design elements, etc. would fall under Product. Still, Ferris goes on to make some good points with his example of selling a nano-manufactured valve,

A local salesperson calls you up to see what you think. As a customer, you ask a simple question, “Why should we buy this new valve over the one we have been using for years?” What will you think if the sales-person answers, “Because it is based on nanotechnology!”? Answering this way does not address your pain points or satisfy your concerns over the risks of purchasing a new product.

My main difficulty with Ferris’ marketing post is a lack of clarity. He never distinguishes between business-to-business (B2B) marketing and business to consumer (B2C) marketing. There are differences, for example, consumers may not have the scientific or technical training to understand the more involved aspects of the product but a business may have someone on staff who can and could respond negatively to a lack of technical/scientific information.

I agree with Ferris on many points but I do feel he might address the issue of selling technology. He uses L’Oréal as an example of a company selling nanotechnology-enabled products  which they do but their product is beauty. The company’s  nanotechnology-enabled products are simply a means of doing that. By contrast a company like IBM sells technology and a component or product that’s nanotechnology-enabled may require a little or a lot of education depending on the component/product and the customer.

For anyone who’s interested in marketing nanotechnology-enabled and products based on other emerging technologies, I recommend reading Geoffrey A. Moore’s book, Crossing the Chasm. His examples are dated as this written about the ‘computer revolution’ but I think the basis principles still hold. As for Ferris’ postings, there’s good information but you may want to check out other sources and I recommend Dexter Johnson’s Nanoclast blog and Cientifica, an emerging technologies consultancy. (Dexter works for Cientifica, in addition to writing for the IEEE, but most of the publications on that site are by Tim Harper). Oh, and you can check here too, although the business side of things is not my main focus, I still manage to write the odd piece about marketing (promotion usually).

Biomining for rare earth elements with Alberta’s (Canada) Ingenuity Lab

Alberta’s Ingenuity Lab and its biomining efforts are being featured in a Feb. 3, 2014 Nanowerk Spotlight article which was supplied by Ingenuity Lab (Note: A link has been removed),

Scientists at Ingenuity Lab in Edmonton, Alberta are taking cues from nature, as they focus on nanotechnology gains in the area of biomining. Using microorganisms and biomolecules, the group is making significant advances in the recovery of rare earth and precious metals from industrial processes and the environment thanks to superior molecular recognition techniques.

In recent decades, the utility of protein/peptide molecules and their inorganic material recognition and binding abilities has come to light. Combinatorial biology tools have enabled researchers to select peptides for various materials such as ceramics, metal oxides, alloys and pure metals. Even though the binding mechanism of peptides hasn’t yet been fully resolved, studies are ongoing and these peptides continue to be used in many nanotechnology applications.

The Spotlight article further describes the approach being undertaken,

… researchers at Alberta’s first nanotechnology accelerator laboratory (Ingenuity Lab) are looking to take advantage of inorganic binding peptides for mining valuable and rare earth elements/metals that exist in nature or synthetic materials.

Rare earth elements (REE) are sought after materials that facilitate the production of electrical car batteries, high power magnets, lasers, fiber optic technology, MRI contrast agents, fluorescent lightening and much more. Despite increasing demand, mining and processing yields are not enough to satisfy the growing need. This is mainly due to the great loss during mining (25-50%) and beneficiation (10-30%).

Since REEs exist as a mixture in mineral ores, their beneficiation and separation into individual metals requires unique processes. Depending on the chemical form of the metal, different compounds are necessary during beneficiation steps to convert minerals into metal nitrates, oxides, chlorides and fluorides, which would be further extracted individually. Furthermore, this process must be followed with solvent separation to obtain individual metals. These excessive steps not only increase the production cost and energy consumption but also decrease the yield and generate environmental pollution due to the use of various chemicals and organic solvents.

…  Ingenuity Lab is working on generating smart biomaterials composed of inorganic binding peptides coated on the core of magnetic nanoparticles. These smart materials will expose two functions; first they will recognize and bind to a specific REE through the peptide region and they will migrate to magnetic field by the help of Iron Oxide core.

You can find more detail and illustrations in the Spotlight article.

There is biomining research being performed in at least one other lab (in China) as I noted in a Nov. 1, 2013 posting about some work to remove REEs from wastewater and where I noted that China had announced a cap on its exports of REEs.

Tim Harper’s Cientifica emerging technologies and business consultancy offers a white paper (free), Simply No Substitute? [2013?], which contextualizes and provides insight into the situation with REEs and other other critical materials. From Cientifica’s Simply No Substitute? webpage,

There is increasing concern that restricted supplies of certain metals and other critical minerals could hinder the deployment of future technologies. This new white paper by Cientifica and Material Value,  Simply No Substitute? takes a critical look at the current technology and policy landscape in this vital area, and in particular, the attempts to develop substitutes for critical materials.

A huge amount of research and development is currently taking place in academic and industrial research laboratories, with the aim of developing novel, innovative material substitutes or simply to ‘engineer-out’ critical materials with new designs.  As an example, our analysis shows the number of patents related to substitutes for rare earth elements has doubled in the last two years. However, the necessity and effectiveness of this research activity is still unclear and requires greater insight. Certainly, as this white paper details, there is no universal agreement between Governments and other stakeholders on what materials are at risk of future supply disruptions.

In an effort to ensure the interests of end-users are represented across this increasingly complex and rapidly developing issue, the publication proposes the creation of a new industry body. This will benefit not just end-users, but also primary and secondary producers  of critical materials, for who it is currently only feasible to have sporadic and inconsistent interaction with the diverse range of industries that use their materials.

You can download the white paper from here.

Getting back to Ingenuity Lab, there is no research paper mentioned in the Spotlight article. Their website does offer this on the Mining page,

The extraction of oil and gas is key to the economic prosperity of Alberta and Canada. We have the third largest oil reserves in the world behind Saudi Arabia and Venezuela. Not only is our oil and gas sector expected to generate $2.1 trillion in economic activity across Canada over the next 25 years, Canadian employment is expected to grow from 75,000 jobs in 2010 to 905,000 in 2035. However, it’s not without its impacts to the environment. This, we know. There are great strides being made in technology and innovation in this sector, but what if we could do more?

Then, there’s this from the site’s Biomining subpage,

Using a process called biomining, the research team at Ingenuity Lab is engineering new nano particles that have the capability to detect, extract or even bind to rare earth and precious metals that exist in nature or found in man-made materials.

Leveraging off of the incredible advances in targeted medical therapies, active nanoparticle and membrane technologies offer the opportunity to recover valuable resources from mining operations while leading to the remediation of environmentally contaminated soil and water.

Biomining technology offers the opportunity to maximize the utility of our natural resources, establish a new path forward to restore the pristine land and water of our forefathers and redefine Canada’s legacy of societal environmental, and economic prosperity.

Finally, there’s this page (Ingenuity Attracts Attention with Biomining Advances)  which seems to have originated the Spotlight article and is the source of the images in the Spotlight article.  I am curious as to whose attention they’ve attracted although I can certainly understand why various groups and individuals might be,

… Ingenuity’s system will also be able to work in a continuous flow process. There will be a constant input of metal mixture, which could be mine acid drain, tailing ponds or polluted water sources, and smart biomaterial. Biomaterial will be recovered from the end point of the chamber together with the targeted metal. Since the interaction between the peptide and the metal of interest is not covalent bonding, metal will be removed from the material without the need for harsh chemicals. This means valuable materials, currently discarded as waste, will be accessible and the reuse of the smart biomaterial will be an option, lowering the purification cost even more.

These exciting discoveries are welcome news for the mining industry and the environment, but also for communities around the world and generations to come.  Thanks to ingenuity, we will soon be able to maximize the utility of our precious resources as we restore damaged lands and water.

In any event I hope to hear more about this promising work with more details (such as:  At what stage is this work?, Is it scalable?) and the other research being performed at Ingenuity Lab.

Graphene hype; the emerging story in an interview with Carla Alvial Palavicino (University of Twente, Netherlands)

i’m delighted to be publishing this interview with Carla Alvial Palavicino, PhD student at the University of Twente (Netherlands), as she is working on the topicof  graphene ‘hype’. Here’s a bit more about the work from her University of Twente webpage (Note: A link has been removed),

From its origins the field of nanotechnology has been populated of expectations. Pictured as “the new industrial revolution” the economic promise holds strong, but also nanotechnologies as a cure for almost all the human ills, sustainers of future growth, prosperity and happiness. In contrast to these promises, the uncertainties associated to the introduction of such a new and revolutionary technology, and mainly risks of nanomaterials, have elicited concerns among governments and the public. Nevertheless, the case of the public can be characterized as concerns about concerns, based on the experience of previous innovations (GMO, etc.).

Expectations, both as promises and concerns, have played and continue playing a central role in the “real-time social and political constitution of nanotechnology” (Kearnes and Macnaghten 2006). A circulation of visions, promises and concerns in observed in the field, from the broadly defined umbrella promises to more specific expectations, and references to grand challenges as moral imperatives. These expectations have become such an important part of the social repertoire of nano applications that we observe the proliferation of systematic and intentional modes of expectation building such as roadmaps, technology assessment, etc.; as well as a considerable group of reports on risk, concerns, and ethical and social aspects. This different modes of expectation building (Konrad 2010) co-exist and contribute to the articulation of the nano field.

This project seeks to identify, characterize and contextualize the existing modes of expectations building, being those intentional (i.e. foresight, TA, etc.) or implicit in arenas of public discourse, associated to ongoing and emerging social processes in the context of socio-technical change.

This dynamics are being explored in relation to the new material graphene.

Before getting to the interview, here’s Alvial Palavicino’s biography,

Carla Alvial Palavicino has a bachelor degree in Molecular Biology Engineering, School of Science, University of Chile, Chile and a Master’s degree on Sustainability Sciences, Graduate School of Frontier Science, University of Tokyo, Japan. She has worked in technology transfer and more recently, in Smart Grids and local scale renewable energy provision.

Finally, here’s the interview (Note: At the author’s request, there have been some grammatical changes made to conform with Canadian English.),

  • What is it that interests you about the ‘hype’ that some technologies receive and how did you come to focus on graphene in particular?

My research belongs to a field called the Sociology of Expectations, which deals with the role of promises, visions, concerns and ideas of the future in the development of technologies, and how these ideas actually affect people’s strategies in technology development. Part of the dynamic found for these expectations are hype-disappointment cycles, much like the ones the Gartner Group uses. And hype has become an expectation itself; people expect that there will be too many promises and some, maybe many of them are not going to be fulfilled, followed by disappointment.

I came to know about graphene because, initially, I was broadly interested in nanoelectronics (my research project is part of NanoNextNL a large Dutch Nano research programme), due to the strong future orientation in the electronics industry. The industry has been organizing, and continues to organize around the promise of Moore’s law for more than 50 years! So I came across graphene as thriving to some extent on the expectations around the end of Moore’s law and because simply everybody was talking about it as the next big thing! Then I thought, this is a great opportunity to investigate hype in real-time

  • Is there something different about the hype for graphene or is this the standard ‘we’ve found a new material and it will change everything’?

I guess with every new technology and new material you find a portion of genuine enthusiasm which might lead to big promises. But that doesn’t necessarily turn into big hype. One thing is that all hype is not the same and you might have technologies that disappeared after the hype such as High Temperature Semiconductors, or technologies that go through a number of hype cycles and disappointment cycles throughout their development (for example, Fuel Cells). Now with graphene what you certainly have is very ‘loud’ hype – the amount of attention it has received in so little time is extraordinary. If that is a characteristic of graphene or a consequence of the current conditions in which the hype has been developed, such as faster ways of communication (social media for example) or different incentives for science and innovation well, this is part of what I am trying to find out.

Quite clearly, the hype in graphene seems to be more ‘reflexive’ than others, that is, people seem to be more conscious about hype now. We have had the experience with carbon nanotubes only recently and scientist, companies and investors are less naïve about what can be expected of the technology, and what needs to be done to move it forward ‘in the right direction’. And they do act in ways that try to soften the slope of the hype-disappointment curve. Having said that, actors [Ed. Note: as in actor-network theory] are also aware of how they can take some advantage of the hype (for funding, investment, or another interest), how to make use of it and hopefully leave safely, before disappointment. In the end, it is rather hard to ask accountability of big promises over the long-term.

  • In the description of your work you mention intentional and implicit modes of building expectations, could explain the difference between the two?

One striking feature of technology development today is that we found more and more activities directed at learning about, assess, and shaping the future, such as forecasts, foresights, Delphi, roadmaps and so on. There are even specialized future actors such as consultancy organisations or foresight experts,  Cientifica among them. And these formalized ways of anticipating  the future are expected to be performative by those who produce them and use them, that is, influence the way the future – and the present- turns out. But this is not a linear story, it’s not like 100% of a roadmap can be turned practice (not even for the ITRS roadmap [Ed. Note: International Technology Roadmap for Semi-conductors] that sustains Moore’s law, some expectations change quite radically between editions of the roadmap). Besides that, there are other forms of building expectations which are embedded in practices around new technologies. Think of the promises made in high profile journals or grant applications; and of expectations incorporated in patents and standards. All these embody particular forms and directions for the future, and exclude others. These are implicit forms of expectation-building, even if not primarily intended as such. These forms are shaped by particular expectations which themselves shape further development. So, in order to understand how these practices, both intentional and implicit, anticipate futures you need to look at the interplay between the various types.

  • Do you see a difference internationally with regard to graphene hype? Is it more prevalent in Europe than in the North America? Is it particularly prevalent in some jurisdiction, e.g. UK?

I think the graphene ‘hype’ has been quite global, but it is moving to different communities, or actors groups, as Tim Harper from Cientifica has mentioned in his recent report about graphene

What is interesting in relation to the different ‘geographical’ responses to graphene is that they exemplify nicely how a big promise (graphene, in this case) is connected to other circulating visions, expectations or concerns. In the case of the UK, the *Nobel prize on Graphene and the following investment was connected to the idea of a perceived crisis of innovation in the country. Thus, the decision to invest in graphene was presented and discussed in reference to global competitiveness, showing a political commitment for science and innovation that was in doubt at that time.

In the European case with its *Graphene flagship, something similar happened. While there is no doubt of the scientific excellence of the flagship project, the reasons why it finally became a winner in the flagship competition might have been related to the attention on graphene. The project itself started quite humbly, and it differed from the other flagship proposals that were much more oriented towards economic or societal challenges. But the attention graphene received after the Nobel Prize, plus the engagement of some large companies, helped to frame the project in terms of its economic profitability.  And. this might have helped to bring attention and make sense of the project in the terms the European Commission was interested in.

In contrast, if you think of the US, the hype has been there (the number of companies engaged in graphene research is only increasing) but it has not had a big echo in policy. One of the reasons might be because this idea of global competition and being left behind is not so present in the US. And in the case of Canada for example, graphene has been taken up by the graphite (mining) community, which is a very local feature.

So answering your questions, the hype has been quite global and fed in a global way (developments in one place resonate in the other) but different geographical areas have reacted in relation to their contingent expectations to what this hype dynamic provided.

  • What do you think of graphene?

I think it’s the new material with more YouTube videos (this one is particularly good in over promising for example)  and the coolest superhero (Mr G from the Flagship). But seriously,  I often get asked that question when I do interviews with actors in the field, since they are curious to learn about the outsider perspective. But to be honest I try to remain as neutral and distant as possible regarding my research object… and not getting caught in the hype!

Thanks so much for a fascinating interview Carla and I very much appreciate the inclusion of Canada in your response to the question about the international response to graphene hype. (Here are three of my postings on graphite and mining in Canada: Canada’s contribution to graphene research: big graphite flakes [Feb. 6, 2012]; A ‘graphite today, graphene tomorrow’ philosophy from Focus Graphite [April 17, 2013[; and Lomiko’s Quatre Milles graphite flakes—pure and ultra pure [April 17, 2013] There are others you can find by searching ‘graphite’ in the blog’s search box.)

* For anyone curious about the Nobel prize and graphene, there’s this Oct.7, 2010 posting. Plus, the Graphene Flagship was one of several projects competing for one of the two 1B Euro research prizes awarded in January 2013 (the win is mentioned in my Jan. 28, 2013 posting).

Merry Christmas, Happy New Year, and Happy Holidays to all!

News of nanotechnology-enabled recovery of rare earth elements from industrial wastewater and some rare earths context

An Oct. 31, 2013 news item on Azonano features information about rare earth elements and their use in technology along with a new technique for recycling them from wastewater,

Many of today’s technologies, from hybrid car batteries to flat-screen televisions, rely on materials known as rare earth elements (REEs) that are in short supply, but scientists are reporting development of a new method to recycle them from wastewater.

The process, which is described in a study in the journal ACS [American Chemical Society] Applied Materials & Interfaces, could help alleviate economic and environmental pressures facing the REE industry.

… Attempts so far to recycle them from industrial wastewater are expensive or otherwise impractical. A major challenge is that the elements are typically very diluted in these waters. The team knew that a nanomaterial known as nano-magnesium hydroxide, or nano-Mg(OH)2, was effective at removing some metals and dyes from wastewater. So they set out to understand how the compound worked and whether it would efficiently remove diluted REEs, as well.

The Oct. 30, 2013 ACS PressPac news release, which originated the news item, provides a few details about how the scientists tested their approach,

To test their idea, they produced inexpensive nano-Mg(OH)2 particles, whose shapes resemble flowers when viewed with a high-power microscope. They showed that the material captured more than 85 percent of the REEs that were diluted in wastewater in an initial experiment mimicking real-world conditions. “Recycling REEs from wastewater not only saves rare earth resources and protects the environment, but also brings considerable economic benefits,” the researchers state. “The pilot-scale experiment indicated that the self-supported flower-like nano-Mg(OH)2 had great potential to recycle REEs from industrial wastewater.”

Here’s a link to and a citation for the published paper,

Recycling Rare Earth Elements from Industrial Wastewater with Flowerlike Nano-Mg(OH)2 by Chaoran Li †‡, Zanyong Zhuang, Feng Huang, Zhicheng Wu, Yangping Hong, and Zhang Lin. ACS Appl. Mater. Interfaces, 2013, 5 (19), pp 9719–9725 DOI: 10.1021/am4027967 Publication Date (Web): September 13, 2013

Copyright © 2013 American Chemical Society

As for the short supply mentioned in the first line of the news item, the world’s largest exporter of rare earth elements at 90% of the market, China, recently announced a cap according to a Sept. 6, 2013 article by David Stanway for Reuters. The Chinese government appears to be curtailing exports as part of an ongoing, multi-year strategy. Here’s how Cientifica‘s (an emerging technologies consultancy, etc.) white paper (Simply No Substitute?) about critical materials published in 2012 (?), described the situation,

Despite their name, REE are not that rare in the Earth’s crust. What has happened in the past decade is that REE exports from China undercut prices elsewhere, leading to the closure of mines such as the Mountain Pass REE mine in California. Once China had acquired a dominant market position, prices began to rise. But this situation will likely ease. The US will probably begin REE production from the Mountain Pass mine later in 2012, and mines in other countries are expected to start operation soon as well.

Nevertheless, owing to their broad range of uses REE will continue to exert pressures on their supply – especially for countries without notable REE deposits. This highlights two aspects of importance for strategic materials: actual rarity and strategic supply issues such as these seen for REE. Although strategic and diplomatic supply issues may have easier solutions, their consideration for manufacturing industries will almost be the same – a shortage of crucial supply lines.

Furthermore, as the example of REE shows, the identification of long-term supply problems can often be difficult, and not every government has the same strategic foresight that the Chinese demonstrated. And as new technologies emerge, new elements may see an unexpected, sudden demand in supply. (pp. 16-17)

Meanwhile, in response to China’s decision to cap its 2013 REE exports, the Russian government announced a $1B investment to 2018 in rare earth production,, according to a Sept. 10, 2013 article by Polina Devitt for Reuters.

For those who like to get their information in a more graphic form, here’s an infographic from Thomson Reuters from a May 13, 2012 posting on their eponymous blog,

Rare Earth Metals - Graphic of the Day Credit:  Thomson Reuters [downloaded from http://blog.thomsonreuters.com/index.php/rare-earth-metals-graphic-of-the-day/]

Rare Earth Metals – Graphic of the Day Credit: Thomson Reuters [downloaded from http://blog.thomsonreuters.com/index.php/rare-earth-metals-graphic-of-the-day/]

There is a larger version on  their blog.

All of this serves to explain the interest in recycling REE from industrial wastewater. Surprisingly,, the researchers who developed this new recycling technique are based in China which makes me wonder if the Chinese government sees a future where it too will need to import rare earths as its home sources diminish.

Should October 2013 be called ‘the month of graphene’?

Since the Oct. 10-11, 2013 Graphene Flagship (1B Euros investment) launch, mentioned in my preview Oct. 7, 2013 posting, there’ve been a flurry of graphene-themed news items both on this blog and elsewhere and I’ve decided to offer a brief roundup what I’ve found elsewhere.

Dexter Johnson offers a commentary in the pithily titled, Europe Invests €1 Billion to Become “Graphene Valley,” an Oct. 15, 2013 posting on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website) Note: Links have been removed,

The initiative has been dubbed “The Graphene Flagship,” and apparently it is the first in a number of €1 billion, 10-year plans the EC is planning to launch. The graphene version will bring together 76 academic institutions and industrial groups from 17 European countries, with an initial 30-month-budget of €54M ($73 million).

Graphene research is still struggling to find any kind of applications that will really take hold, and many don’t expect it will have a commercial impact until 2020. What’s more, manufacturing methods are still undeveloped. So it would appear that a 10-year plan is aimed at the academic institutions that form the backbone of this initiative rather than commercial enterprises.

Just from a political standpoint the choice of Chalmers University in Sweden as the base of operations for the Graphene Flagship is an intriguing choice. …

I have to agree with Dexter that choosing Chalmers University over the University of Manchester where graphene was first isolated is unexpected. As a companion piece to reading Dexter’s posting in its entirety and which features a video from the flagship launch, you might want to try this Oct. 15, 2013 article by Koen Mortelmans for Youris (h/t Oct. 15, 2013 news item on Nanowerk),

Andre Konstantin Geim is the only person who ever received both a Nobel and an Ig Nobel. He was born in 1958 in Russia, and is a Dutch-British physicist with German, Polish, Jewish and Ukrainian roots. “Having lived and worked in several European countries, I consider myself European. I don’t believe that any further taxonomy is necessary,” he says. He is now a physics professor at the University of Manchester. …

He shared the Noble [Nobel] Prize in 2010 with Konstantin Novoselov for their work on graphene. It was following on their isolation of microscope visible grapheme flakes that the worldwide research towards practical applications of graphene took off.  “We did not invent graphene,” Geim says, “we only saw what was laid up for five hundred year under our noses.”

Geim and Novoselov are often thought to have succeeded in separating graphene from graphite by peeling it off with ordinary duct tape until there only remained a layer. Graphene could then be observed with a microscope, because of the partial transparency of the material. That is, after dissolving the duct tape material in acetone, of course. That is also the story Geim himself likes to tell.

However, he did not use – as the urban myth goes – graphite from a common pencil. Instead, he used a carbon sample of extreme purity, specially imported. He also used ultrasound techniques. But, probably the urban legend will survive, as did Archimedes’ bath and Newtons apple. “It is nice to keep some of the magic,” is the expression Geim often uses when he does not want a nice story to be drowned in hard facts or when he wants to remain discrete about still incomplete, but promising research results.

Mortelmans’ article fills in some gaps for those not familiar with the graphene ‘origins’ story while Tim Harper’s July 22, 2012 posting on Cientifica’s (an emerging technologies consultancy where Harper is the CEO and founder) TNT blog offers an insight into Geim’s perspective on the race to commercialize graphene with a paraphrased quote for the title of Harper’s posting, “It’s a bit silly for society to throw a little bit of money at (graphene) and expect it to change the world.” (Note: Within this context, mention is made of the company’s graphene opportunities report.)

With all this excitement about graphene (and carbon generally), the magazine titled Carbon has just published a suggested nomenclature for 2D carbon forms such as graphene, graphane, etc., according to an Oct. 16, 2013 news item on Nanowerk (Note: A link has been removed),

There has been an intense research interest in all two-dimensional (2D) forms of carbon since Geim and Novoselov’s discovery of graphene in 2004. But as the number of such publications rise, so does the level of inconsistency in naming the material of interest. The isolated, single-atom-thick sheet universally referred to as “graphene” may have a clear definition, but when referring to related 2D sheet-like or flake-like carbon forms, many authors have simply defined their own terms to describe their product.

This has led to confusion within the literature, where terms are multiply-defined, or incorrectly used. The Editorial Board of Carbon has therefore published the first recommended nomenclature for 2D carbon forms (“All in the graphene family – A recommended nomenclature for two-dimensional carbon materials”).

This proposed nomenclature comes in the form of an editorial, from Carbon (Volume 65, December 2013, Pages 1–6),

All in the graphene family – A recommended nomenclature for two-dimensional carbon materials

  • Alberto Bianco
    CNRS, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique, Strasbourg, France
  • Hui-Ming Cheng
    Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
  • Toshiaki Enoki
    Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan
  • Yury Gogotsi
    Materials Science and Engineering Department, A.J. Drexel Nanotechnology Institute, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
  • Robert H. Hurt
    Institute for Molecular and Nanoscale Innovation, School of Engineering, Brown University, Providence, RI 02912, USA
  • Nikhil Koratkar
    Department of Mechanical, Aerospace and Nuclear Engineering, The Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
  • Takashi Kyotani
    Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
  • Marc Monthioux
    Centre d’Elaboration des Matériaux et d’Etudes Structurales (CEMES), UPR-8011 CNRS, Université de Toulouse, 29 Rue Jeanne Marvig, F-31055 Toulouse, France
  • Chong Rae Park
    Carbon Nanomaterials Design Laboratory, Global Research Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Republic of Korea
  • Juan M.D. Tascon
    Instituto Nacional del Carbón, INCAR-CSIC, Apartado 73, 33080 Oviedo, Spain
  • Jin Zhang
    Center for Nanochemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

This editorial is behind a paywall.

Designing nanocellulose (?) products in Finland; update on Canada’s CelluForce

A VTT Technical Research Centre of Finland Oct. 2, 2013 news release (also on EurekAlert) has announced an initiative which combines design with technical expertise in the production of cellulose- (nanocellulose?) based textile and other products derived from wood waste,

The combination of strong design competence and cutting-edge cellulose-based technologies can result in new commercially successful brands. The aim is for fibre from wood-based biomass to replace both cotton production, which burdens the environment, and polyester production, which consumes oil. A research project launched by VTT Technical Research Centre of Finland, Aalto University and Tampere University of Technology aims to create new business models and ecosystems in Finland through design-driven cellulose products.

The joint research project is called Design Driven Value Chains in the World of Cellulose (DWoC). The objective is to develop cellulose-based products suitable for technical textiles and consumer products. The technology could also find use in the pharmaceutical, food and automotive industries. Another objective is to build a new business ecosystem and promote spin-offs.

Researchers seek to combine Finnish design competence with cutting-edge technological developments to utilise the special characteristics of cellulose to create products that feature the best qualities of materials such as cotton and polyester. Product characteristics achieved by using new manufacturing technologies and nanocellulose as a structural fibre element include recyclability and individual production.

The first tests performed by professor Olli Ilkkala’s team at the Aalto University showed that the self-assembly of cellulose fibrils in wood permits the fibrils to be spun into strong yarn. VTT has developed an industrial process that produces yarn from cellulose fibres without the spinning process. VTT has also developed efficient applications of the foam forming method for manufacturing materials that resemble fabric.

“In the future, combining different methods will enable production of individual fibre structures and textile products, even by using 3D printing technology,” says Professor Ali Harlin from VTT.

Usually the price of a textile product is the key criterion even though produced sustainably. New methods help significantly to shorten the manufacturing chain of existing textile products and bring it closer to consumers to respond to their rapidly changing needs. Projects are currently under way where the objective is to replace wet spinning with extrusion technology. The purpose is to develop fabric manufacturing methods where several stages of weaving and knitting are replaced without losing the key characteristics of the textile, such as the way it hangs.

The VTT news release also provides statistics supporting the notion that cellulose textile products derived from wood waste are more sustainable than those derived from cotton,

Finland’s logging residue to replace environmentally detrimental cotton Cotton textiles account for about 40% of the world’s textile markets, and oil-based polyester for practically the remainder. Cellulose-based fibres make up 6% of the market. Although cotton is durable and comfortable to wear, cotton production is highly water-intensive, and artificial fertilisers and chemical pesticides are often needed to ensure a good crop. The surface area of cotton-growing regions globally equates to the size of Finland.

Approximately 5 million tons of fibre could be manufactured from Finland’s current logging residue (25 million cubic metres/year). This could replace more than 20% of globally produced cotton, at the same time reducing carbon dioxide emissions by 120 million tons, and releasing enough farming land to grow food for 18 million people. Desertification would also decrease by approximately 10 per cent.

I am guessing this initiative is focused on nanocellulose since the news release makes no mention of it but it is highly suggestive that one of the project leads, Olli Ilkkala mentions nanocellulose as part of the research for which he received a major funding award as recently as 2012,. From a Feb. 7, 2012 Aalto University news release announcing the grant for Ikkala’s research,

The European Research Council granted Aalto University’s Academy Professor Olli Ikkala funding in the amount of €2.3 million for research on biomimetic nanomaterials. Ikkala’s group specialises in the self-assembly of macromolecules and how to make use of this process when producing functional materials.

The interests of Ikkala’s group focus on the self-assembled strong and light nanocomposite structures found in nature, such as the nacreous matter underneath seashells and biological fibres resembling silk and nanocellulose. [emphasis mine] Several strong natural materials are built from both strong parallel elements and softening and viscosifying macromolecules. All sizes of structures form to combine opposite properties: strength and viscosity.

The research of the properties of biomimetic nanocomposites is based on finding out the initial materials of self-assembly. Initial material may include, for example, nano platelets, polymers, new forms of carbon, surfactants and nanocellulose.[emphasis mine]

– Cellulose is especially interesting, as it is the most common polymer in the world and it is produced in our renewable forests. In terms of strength, nano-sized cellulose fibres are comparable to metals, which was the very offset of interest in using nanocellulose in the design of strong self-assembled biomimetic materials, Ikkala says. [emphases mine]

Celluforce update

After reading about the Finnish initiative, I stumbled across an interesting little article on the Celluforce website about the current state of NCC (nanocrystalline cellulose aka CNC [cellulose nanocrystals]) production, Canada’s claim to fame in the nanocellulose world. From an August 2013 Natural Resources Canada, Canadian Forest Service, Spotlight series article,

The pilot plant, located at the Domtar pulp and paper mill in Windsor, Quebec, is a joint venture between Domtar and FPInnnovations called CelluForce. The plant, which began operations in January 2012, has since successfully demonstrated its capacity to produce NCC on a continuous basis, thus enabling a sufficient inventory of NCC to be collected for product development and testing. Operations at the pilot plant are temporarily on hold while CelluForce evaluates the potential markets for various NCC applications with its stockpiled material. [emphasis mine]

When the Celluforce Windsor, Québec plant was officially launched in January 2012 the production target was for 1,000 kg (1 metric ton) per day (there’s more in my Jan. 31 2012 posting about the plant’s launch). I’ve never seen anything which confirms they reached their production target, in any event, that seems irrelevant in light of the ‘stockpile’.

I am somewhat puzzled by the Celluforce ‘stockpile’ issue. On the one hand, it seems the planning process didn’t take into account demand for the material and, on the other hand, I’ve had a couple back channel requests from entrepreneurs about gaining access to the material after they were unsuccessful with Celluforce.  Is there not enough demand and/or is Celluforce choosing who or which agencies are going to have access to the material?

ETA Oct. 14, 2013: It took me a while to remember but there was a very interesting comment by Tim Harper (UK-based, emerging technologies consultant [Cientifica]) in Bertrand Marotte’s May 6, 2012 Globe & Mail article (about NCC (from my May 8, 2012 posting offering some commentary about Marotte’s article),

Tim Harper, the CEO of London-based Cientifica, a consultant on advanced technologies, describes the market for NCC as “very much a push, without signs of any pull.”

It would seem the current stockpile confirms Harper’s take on NCC’s market situation. For anyone not familiar with marketing terminology, ‘pull’ means market demand. No one is asking to buy NCC as there are no applications requiring the product, so there is ‘no pull/no market demand’.