Tag Archives: cleaning up oil spills

Clean up oil spills (on water and/or land) with oil-eating bacterium

Quebec’s Institut national de la recherche scientifique (INRS) announced an environmentally friendly way of cleaning up oil spills in an April 9, 2018 news item on ScienceDaily,

From pipelines to tankers, oil spills and their impact on the environment are a source of concern. These disasters occur on a regular basis, leading to messy decontamination challenges that require massive investments of time and resources. But however widespread and serious the damage may be, the solution could be microscopic — Alcanivorax borkumensis — a bacterium that feeds on hydrocarbons. Professor Satinder Kaur Brar and her team at INRS have conducted laboratory tests that show the effectiveness of enzymes produced by the bacterium in degrading petroleum products in soil and water. Their results offer hope for a simple, effective, and eco-friendly method of decontaminating water and soil at oil sites.

An April 8, 2018 INRS news release by Stephanie Thibaut, which originated the news item, expands on the theme,

In recent years, researchers have sequenced the genomes of thousands of bacteria from various sources. Research associate Dr.Tarek Rouissi poured over “technical data sheets” for many bacterial strains with the aim of finding the perfect candidate for a dirty job: cleaning up oil spills. He focused on the enzymes they produce and the conditions in which they evolve.

A. borkumensis, a non-pathogenic marine bacterium piqued his curiosity. The microorganism’s genome contains the codes of a number of interesting enzymes and it is classified as “hydrocarbonoclastic”—i.e., as a bacterium that uses hydrocarbons as a source of energy. A. borkumensis is present in all oceans and drifts with the current, multiplying rapidly in areas where the concentration of oil compounds is high, which partly explains the natural degradation observed after some spills. But its remedial potential had not been assessed.

“I had a hunch,” Rouissi said, “and the characterization of the enzymes produced by the bacterium seems to have proven me right!” A. borkumensis boasts an impressive set of tools: during its evolution, it has accumulated a range of very specific enzymes that degrade almost everything found in oil. Among these enzymes, the bacteria’shydroxylases stand out from the ones found in other species: they are far more effective, in addition to being more versatile and resistant to chemical conditions, as tested in coordination by a Ph.D. student, Ms. Tayssir Kadri.

To test the microscopic cleaner, the research team purified a few of the enzymes and used them to treat samples of contaminated soil. “The degradation of hydrocarbons using the crude enzyme extract is really encouraging and reached over 80% for various compounds,” said Brar. The process is effective in removing benzene, toluene, and xylene, and has been tested under a number of different conditions to show that it is a powerful way to clean up polluted land and marine environments.”

The next steps for Brar’s team are to find out more about how these bacteria metabolize hydrocarbons and explore their potential for decontaminating sites. One of the advantages of the approach developed at INRS is its application in difficult-to-access environments, which present a major challenge during oil spill cleanup efforts.

Here’s a link to and a citation for the paper,

Ex-situ biodegradation of petroleum hydrocarbons using Alcanivorax borkumensis enzymes by Tayssir Kadri, Sara Magdouli, Tarek Rouissi, Satinder Kaur Brar. Biochemical Engineering Journal Volume 132, 15 April 2018, Pages 279-287 DOI: https://doi.org/10.1016/j.bej.2018.01.014

This paper is behind a paywall.

In light of this research, it seems remiss not to mention the recent setback for Canada’s Trans Mountain pipeline expansion. Canada’s Federal Court of Appeal quashed the approval as per this August 30, 2018 news item on canadanews.org. There were two reasons for the quashing (1) a failure to properly consult with indigenous people and (2) a failure to adequately assess environmental impacts on marine life. Interestingly, no one ever mentions environmental cleanups and remediation, which could be very important if my current suspicions regarding the outcome for the next federal election are correct.

Regardless of which party forms the Canadian government after the 2019 federal election, I believe that either Liberals or Conservatives would be equally dedicated to bringing this pipeline to the West Coast. The only possibility I can see of a change lies in a potential minority government is formed by a coalition including the NDP (New Democratic Party) and/or the Green Party; an outcome that seems improbable at this juncture.

Given what I believe to be the political will regarding the Trans Mountain pipeline, I would dearly love to see more support for better cleanup and remediation measures.

Oil spill cleanups with supergelators

Researchers in Singapore have proposed a new technology for cleaning up oil spills, according to a June 17, 2016 news item on Nanowerk,

Large-scale oil spills, where hundreds of tons of petroleum products are accidentally released into the oceans, not only have devastating effects on the environment, but have significant socio-economic impact as well [1].

Current techniques of cleaning up oil spills are not very efficient and may even cause further pollution or damage to the environment. These methods, which include the use of toxic detergent-like compounds called dispersants or burning of the oil slick, result in incomplete removal of the oil. The oil molecules remain in the water over long periods and may even be spread over a larger area as they are carried by wind and waves. Further, burning can only be applied to fresh oil slicks of at least 3 millimeters thick, and this process would also cause secondary environmental pollution.

In a bid to improve the technology utilized by cleanup crews to manage and contain such large spills, researchers from the Institute of Bioengineering and Nanotechnology (IBN) of A*STAR [located in Singapore] have invented a smart oil-scavenging material or supergelators that could help clean up oil spills efficiently and rapidly to prevent secondary pollution.

These supergelators are derived from highly soluble small organic molecules, which instantly self-assemble into nanofibers to form a 3D net that traps the oil molecules so that they can be removed easily from the surface of the water.

A June 17, 2016 IBN A*STAR media release, which originated the news item, provides more detail,

“Marine oil spills have a disastrous impact on the environment and marine life, and result in an enormous economic burden on society. Our rapid-acting supergelators offer an effective cleanup solution that can help to contain the severe environmental damage and impact of such incidents in the future,” said IBN Executive Director Professor Jackie Y. Ying.

Motivated by the urgent need for a more effective oil spill control solution, the IBN researchers developed new compounds that dissolve easily in environmentally friendly solvents and gel rapidly upon contact with oil. The supergelator molecules arrange themselves into a 3D network, entangling the oil molecules into clumps that can then be easily skimmed off the water’s surface.

“The most interesting and useful characteristic of our molecules is their ability to stack themselves on top of each other. These stacked columns allow our researchers to create and test different molecular constructions, while finding the best structure that will yield the desired properties,” said IBN Team Leader and Principal Research Scientist Dr Huaqiang Zeng. (Animation: Click to see how the supergelators stack themselves into columns.)

IBN’s supergelators have been tested on various types of weathered and unweathered crude oil in seawater, and have been found to be effective in solidifying all of them. The supergelators take only minutes to solidify the oil at room temperature for easy removal from water. In addition, tests carried out by the research team showed that the supergelator was not toxic to human cells, as well as zebrafish embryos and larvae. The researchers believe that these qualities would make the supergelators suitable for use in large oil spill areas.

The Institute is looking for industrial partners to further develop its technology for commercial use. [emphasis mine]

Video: Click to watch the supergelators in action

  1. The well documented BP Gulf of Mexico oil well accident in 2010 was a catastrophe on an unprecedented scale, with damages amounting to hundreds of billions of dollars. Its wide-ranging effects on the marine ecosystem, as well as the fishing and tourism industries, can still be felt six years on.

Here’s a link to and a citation for the paper,

Instant Room-Temperature Gelation of Crude Oil by Chiral Organogelators by Changliang Ren, Grace Hwee Boon Ng, Hong Wu, Kiat-Hwa Chan, Jie Shen, Cathleen Teh, Jackie Y. Ying, and Huaqiang Zeng. Chem. Mater., 2016, 28 (11), pp 4001–4008 DOI: 10.1021/acs.chemmater.6b01367 Publication Date (Web): May 10, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

I have featured other nanotechnology-enabled oil spill cleanup solutions here. One of the more recent pieces is my Dec. 7, 2015 post about boron nitride sponges. The search terms: ‘oil spill’ and ‘oil spill cleanup’ will help you unearth more.

There have been some promising possibilities and I hope one day these clean up technologies will be brought to market.