Tag Archives: CNC

Ceapro (a Canadian biotech company) and its pressurized gas expanded technology with a mention of cellulose nanocrystals

At the mention of cellulose nanocrystals (CNC), my interest was piqued. From a Nov. 10, 2015 news item on Nanotechnology Now,

Ceapro Inc. (TSX VENTURE:CZO) (“Ceapro” or the “Company”), a growth-stage biotechnology company focused on the development and commercialization of active ingredients for healthcare and cosmetic industries, announced that Bernhard Seifried, Ph.D., Ceapro’s Senior Research Scientist and a co-inventor of its proprietary Pressurized Gas Expanded Technology (PGX) will present this morning [Nov. 10, 2015] at the prestigious 2015 Composites at Lake Louise engineering conference.

A Nov. 10, 2015 Ceapro press release, which originated the news item, describes the technology in a little more detail and briefly mentions cellulose nanocrystals (Note: A link has been removed),

Dr. Seifried will make a podium presentation entitled, “PGX – Technology: A versatile technology for generating advanced biopolymer materials,” which will feature the unique advantages of Ceapro’s enabling technology for processing aqueous solutions or dispersions of high molecular weight biopolymers, such as starch, polysaccharides, gums, pectins or cellulose nanocrystals, into open-porous morphologies, consisting of nano-scale particles and pores.

Gilles Gagnon, M.Sc., MBA, President and CEO of Ceapro, stated, “Our disruptive PGX enabling technology facilitates biopolymer processing at a new level for generating unique highly porous biopolymer morphologies that can be impregnated with bioactives/APIs or functionalized with other biopolymers to generate exfoliated nano-composites and novel advanced material. We believe this technology will provide transformational solutions not only for our internal programs, but importantly, can be applied much more broadly for Companies with whom we intend to partner globally.”

Utilizing its PGX technology, Ceapro successfully produces its bioactive pharmaceutical grade powder formulation of beta glucan, which is an ingredient in a number of personal care cosmeceutical products as well as a therapeutic agent used for wound healing and a lubricative agent integrated into injectable systems used to treat conditions like urinary incontinence. The Company is developing its enabling PGX platform at the commercial scale level. In order to fully exploit the use of this innovative technology, Ceapro has recently decided to further expand its new world-class manufacturing facility by 10,000 square feet.

“The PGX platform generates unique morphologies that are not possible to produce with other conventional drying systems,” Mr. Gagnon continued. “The ultra-light, highly porous polymer structures produced with PGX have a huge potential for use in an abundant number of applications ranging from functional foods, nutraceuticals, drug delivery and cosmeceuticals, to advanced technical applications.”

Ceapro’s novel PGX Technology can be utilized for a wide variety of bio-industrial processing applications including:

  • Dry aqueous solutions or dispersions of polymers derived from agricultural and/or forestry feedstock, such as polysaccharides, gums, biopolymers at mild processing conditions (40⁰C).
  • Purify biopolymers by removing lipids, salts, sugars and other contaminants, impurities and odours during the precipitation and drying process.
  • Micronize the polymer to a matrix consisting of highly porous fibrils or spherical particles having nano-scale features depending on polymer molecular structure.
  • Functionalize the polymer matrix by generating exfoliated nano-composites of various polymers forming fibers and/or spheres simply by mixing various aqueous polymer solutions/dispersions prior to PGX processing.
  • Impregnate the polymer matrix homogeneously with thermo-sensitive bioactives and/or hydrophobic modifiers to tune solubility of the final polymer bioactive matrix all in the same processing equipment at mild conditions (40⁰C).
  • Extract valuable bioactives at mild conditions from fermentation slurries, while drying the residual biomass.

The highly tune-able PGX process can generate exfoliated nano-composites and highly porous morphologies ranging from sub-micron particles (50nm) to micron-sized granules (2mm), as well as micro- and nanofibrils, granules, fine powders and aerogels with porosities of >99% and specific surface areas exceeding 300 m2/gram. The technology is based on a spray drying method, operating at mild temperatures (40°C) and moderate pressures (100-200 bar) utilizing PGX liquids, which is comprised of a mixture of food grade, recyclable solvents, generally regarded as safe (GRAS), such as pressurized carbon dioxide and anhydrous ethanol. The unique properties of PGX liquids afford single phase conditions and very low or vanishing interfacial tension during the spraying process. This then allows the generation of extremely fine particle morphologies with high porosity and a large specific surface area resulting in favorable solubilisation properties. This platform drying technology has been successfully scaled up from lab scale to pilot scale with a processing capacity of about 200 kg/hr of aqueous solutions.

Ceapro is based in Edmonton in the province of Alberta. This is a province with a CNC (cellulose nanocrytals) pilot production plant as I noted in my Nov. 10, 2013 posting where I belatedly mentioned the plant’s September 2013 commissioning date. The plant was supposed to have had a grand opening in 2014 according to a Sept. 12, 2013 Alberta Innovates Technology Futures [AITF] news release,

“Alberta Innovates-Technology Futures is proud to host and operate Western Canada’s only CNC pilot plant,” said Stephen Lougheed, AITF’s President and CEO. “Today’s commissioning is an important milestone in our ongoing efforts to provide technological know-how to our research and industry partners in their continued applied R&D and commercialization efforts. We’re able to provide researchers with more CNC than ever before, thereby accelerating the development of commercial applications.”

Members of Alberta’s and Western Canada’s growing CNC communities of expertise and interest spent the afternoon exploring potential commercial applications for the cellulose-based ‘wonder material.’

The CNC Pilot Plant’s Grand Opening is planned for 2014. [emphasis mine]

I have not been able to find any online trace of the plant’s grand opening. But I did find a few things. The AITF website has a page dedicated to CNC and its pilot plant and there’s a slide show about CNC and occupational health and safety from members of Alberta’s CNC Pilot Plant Research Team for their project, which started in 2014.

No mention in the Alberta media materials is ever made of CelluForce, a CNC production plant in the province of Québec, which predates the Alberta plant by more than 18 months (my Dec. 15, 2011 posting).

One last comment, CNC or cellulose nanocrystals are sometimes called nanocrystalline cellulose or NCC. This is a result of Canadians who were leaders at the time naming the substance NCC but over time researchers and producers from other countries have favoured the term CNC. Today (2015), the NCC term has been trademarked by Celluforce.

Cellulose nanocrystals and a computational approach to new materials

There’s been a lot of research into cellulose nanomaterials as scientists work to develop applications for cellulose nanocrystals (CNC)* and cellulose nanofibrils (CNF). To date, there have been no such breakthroughs or, as they used to say, no such ‘killer apps’. An Oct. 2, 2015 news item on Nanowerk highlights work which made finally lead the way,

Theoretically, nanocellulose could be the next hot supermaterial.

A class of biological materials found within numerous natural systems, most notably trees, cellulose nanocrystals have captured researchers’ attention for their extreme strength, toughness, light weight, and elasticity. The materials are so strong and tough, in fact, that many people think they could replace Kevlar in ballistic vests and combat helmets for military. Unlike their source material (wood), cellulose nanocrystals are transparent, making them exciting candidates for protective eyewear, windows, or displays.

Although there is a lot of excitement around the idea of nanocellulose-based materials, the reality often falls flat.

“It’s difficult to make these theoretical properties materialize in experiments,” said Northwestern Engineering’s Sinan Keten. “Researchers will make composite materials with nanocellulose and find that they fall short of theory.”

Keten, an assistant professor of mechanical, civil, and environmental engineering at Northwestern University’s McCormick School of Engineering, and his team are bringing the world one step closer to a materials-by-design approach toward developing nanocomposites with cellulose. They have developed a novel, multi-scale computational framework that explains why these experiments do not produce the ideal material and proposes solutions for fixing these shortcomings, specifically by modifying the surface chemistry of cellulose nanocrystals to achieve greater hydrogen bonding with polymers.

An Oct. 2, 2015 (McCormick School of Engineering) Northwestern University news release (also on EurekAlert), which originated the news item, provides more context for the research before describing a new technique for better understanding the materials,

Found within the cellular walls of wood, cellulose nanocrystals are an ideal candidate for polymer nanocomposites — materials where a synthetic polymer matrix is embedded with nanoscale filler particles. Nanocomposites are commonly made synthetic fillers, such as silica, clay, or carbon black, and are used in a myriad of applications ranging from tires to biomaterials.

“Cellulose nanocrystals are an attractive alternative because they are naturally bioavailable, renewable, nontoxic, and relatively inexpensive,” Keten said. “And they can be easily extracted from wood pulp byproducts from the paper industry.”

Problems arise, however, when researchers try to combine the nanocellulose filler particles with the polymer matrix. The field has lacked an understanding of how the amount of filler affects the composite’s overall properties as well as the nature of the nanoscale interactions between the matrix and the filler.

Keten’s solution improves this understanding by focusing on the length scales of the materials rather than the nature of the materials themselves. By understanding what factors influence properties on the atomic scale, his computational approach can predict the nanocomposite’s properties as it scales up in size — with a minimal need for experimentation.

“Rather than just producing a material and then testing it to see what its properties are, we instead strategically tune design parameters in order to develop materials with a targeted property in mind,” Sinko said. “When you are equalizing music, you can turn knobs to adjust the bass, treble, etc. to produce a desired sound. In materials-by-design, we similarly can ‘turn the knobs’ of specific parameters to adjust the resulting properties.”

Here’s a link to and a citation for the paper,

Tuning Glass Transition in Polymer Nanocomposites with Functionalized Cellulose Nanocrystals through Nanoconfinement by Xin Qin, Wenjie Xia, Robert Sinko, and Sinan Keten. Nano Lett., Article ASAP
DOI: 10.1021/acs.nanolett.5b02588 Publication Date (Web): September 4, 2015

Copyright © 2015 American Chemical Society

This paper is open access.

*Cellulose nanocrystals (CNC) are also known as nancellulose crystals (NCC).

Cellulose nanocrystals and supercapacitors at McMaster University (Canada)

Photos: Xuan Yang and Kevin Yager.

Photos: Xuan Yang and Kevin Yager. Courtesy McMaster University

I love that featherlike structure holding up a tiny block of something while balanced on what appears to be a series of medallions. What it has to do with supercapacitors (energy storage) and cellulose nanocrystals is a mystery but that’s one of the images you’ll find illustrating an Oct. 7, 2015 news item on Nanotechnology Now featuring research at McMaster University,

McMaster Engineering researchers Emily Cranston and Igor Zhitomirsky are turning trees into energy storage devices capable of powering everything from a smart watch to a hybrid car.

The scientists are using cellulose, an organic compound found in plants, bacteria, algae and trees, to build more efficient and longer-lasting energy storage devices or supercapacitors. This development paves the way toward the production of lightweight, flexible, and high-power electronics, such as wearable devices, portable power supplies and hybrid and electric vehicles.

A Sept. 10, 2015 McMaster University news release, which originated the news item, describes the research in more detail,

Cellulose offers the advantages of high strength and flexibility for many advanced applications; of particular interest are nanocellulose-based materials. The work by Cranston, an assistant chemical engineering professor, and Zhitomirsky, a materials science and engineering professor, demonstrates an improved three-dimensional energy storage device constructed by trapping functional nanoparticles within the walls of a nanocellulose foam.

The foam is made in a simplified and fast one-step process. The type of nanocellulose used is called cellulose nanocrystals and looks like uncooked long-grain rice but with nanometer-dimensions. In these new devices, the ‘rice grains’ have been glued together at random points forming a mesh-like structure with lots of open space, hence the extremely lightweight nature of the material. This can be used to produce more sustainable capacitor devices with higher power density and faster charging abilities compared to rechargeable batteries.

Lightweight and high-power density capacitors are of particular interest for the development of hybrid and electric vehicles. The fast-charging devices allow for significant energy saving, because they can accumulate energy during braking and release it during acceleration.

For anyone interested in a more detailed description of supercapacitors, there’s my favourite one which involves Captain America’s shield along with some serious science in my April 28, 2014 posting.

Getting back to the research at McMaster, here’s a link to and a citation for the paper,

Cellulose Nanocrystal Aerogels as Universal 3D Lightweight Substrates for Supercapacitor Materials by Xuan Yang, Kaiyuan Shi, Igor Zhitomirsky, and Emily D. Cranston. Advanced Materials DOI: 10.1002/adma.201502284View/save citation First published online 2 September 2015

This paper is behind a paywall.

One final bit, cellulose nanocrystals (CNC) are sometimes referred to as nanocrystalline cellulose (NCC).

Nanocellulose markets report released

I don’t usually feature reports about market conditions as this information lies far outside my understanding. In other words, this post is not an endorsement. However, as I often feature information on nanocellulose and, less frequently, on efforts of commercialize it, this June 3, 2015 news item on Azonano is being added here to provide a more complete picture of the ‘nanocellulose scene’,

The report “Nanocellulose Market by Type (Cellulose nanocrystals [aka nanocellulose nanocrystals {NCC} or {CNC}], Cellulose nanofibrils [CNF], cellulose nanocomposites, and others), Application (Composites and Packaging, Paper and Paper Board, Biomedicine, Rheology Modifier, Flexible Electronics and Sensors, and Others), and Geography – Regional Trends & Forecast to 2019” published by MarketsandMarkets, Nanocellulose Market is projected to register a market size in terms of value of $250 Million by 2019, signifying firm annualized CAGR [compound annual growth rate] of 19% between 2014 and 2019.

Here’s more from the MarketsandMarkets undated news release,

Early buyers will receive 10% customization on reports.

Nanocellulose market is projected to register a market size in terms of value of $250 Million by 2019, signifying firm annualized CAGR of 19% between 2014 and 2019.

The report also identifies the driving and restraining factors for nanocellulose market with an analysis of drivers, restraints, opportunities, and strengths. The market is segmented and the value has been forecasted on the basis of important regions, such as Asia-Pacific, North America, Europe, and Rest of the World (RoW). Further, the market is segmented and the demand and value are forecasted on the basis of various key applications of nano cellulose, such as composites and packaging, paper and paper board, biomedicine, and other applications.

Rising demand for technological advancements in end-user industries is driving the nanocellulose market

The application of nano cellulose [sic for all instances] in the end-user industries is witnessing a revolutionary change mainly due to the commercial development of nano cellulose driven by the increasing petroleum prices and the high-energy intensity in the production of chemicals and synthetic polymers. Nano cellulose is being developed for the novel use in applications ranging from scaffolds in tissue engineering, artificial skin and cartilage, wound healing, and vessel substitutes to biodegradable food packaging.

The nano cellulose is considered as a viable alternative to the more expensive high tech materials such as carbon fibers and carbon nanotubes. Since nano cellulose is made from tightly packed array of needle like crystals, it becomes incredibly tough. This makes it perfect for building future body armors that are both strong and light. Nano cellulose is also being used to make ultra-absorbent aerogels, fuel efficient cars, biofuel, and many more. Nano cellulose has also been used as a tablet binder in the pharmaceutical companies, with gradual increasing applications in tampons, advance wound healing, and developing a vital role in existing healthcare products.

North America is projected to drive the highest demand for nano cellulose in its end-user industries by 2020 [sic]

North America is the largest market for nano cellulose currently and the same is expected to continue till 2019. This is because of continuous technological innovations, advancements in healthcare industry, and rising focus on biodegradable food packaging. Europe market is expected to register second highest growth rate after North America. The Asia-Pacific market is expected to show a steady growth rate but the market is currently lower than North America and Europe. The U.S. and European countries are projected to be the hub of nano cellulose manufacturing in the world and are projected to be the major consumers of nano cellulose by 2019.

You can find the report, published in April 2015, here.

Synthesizing nerve tissues with 3D printers and cellulose nanocrystals (CNC)

There are lots of stories about bioprinting and tissue engineering here and I think it’s time (again) for one which one has some good, detailed descriptions and, bonus, it features cellulose nanocrystals (CNC) and graphene. From a May 13, 2015 news item on Azonano,

The printer looks like a toaster oven with the front and sides removed. Its metal frame is built up around a stainless steel circle lit by an ultraviolet light. Stainless steel hydraulics and thin black tubes line the back edge, which lead to an inner, topside box made of red plastic.

In front, the metal is etched with the red Bio Bot logo. All together, the gray metal frame is small enough to fit on top of an old-fashioned school desk, but nothing about this 3D printer is old school. In fact, the tissue-printing machine is more like a sci-fi future in the flesh—and it has very real medical applications.

Researchers at Michigan Technological University hope to use this newly acquired 3D bioprinter to make synthesized nerve tissue. The key is developing the right “bioink” or printable tissue. The nanotechnology-inspired material could help regenerate damaged nerves for patients with spinal cord injuries, says Tolou Shokuhfar, an assistant professor of mechanical engineering and biomedical engineering at Michigan Tech.

Shokuhfar directs the In-Situ Nanomedicine and Nanoelectronics Laboratory at Michigan Tech, and she is an adjunct assistant professor in the Bioengineering Department and the College of Dentistry at the University of Illinois at Chicago.

In the bioprinting research, Shokuhfar collaborates with Reza Shahbazian-Yassar, the Richard and Elizabeth Henes Associate Professor in the Department of Mechanical Engineering-Engineering Mechanics at Michigan Tech. Shahbazian-Yassar’s highly interdisciplinary background on cellulose nanocrystals as biomaterials, funded by the National Science Foundation’s (NSF) Biomaterials Program, helped inspire the lab’s new 3D printing research. “Cellulose nanocrystals with extremely good mechanical properties are highly desirable for bioprinting of scaffolds that can be used for live tissues,” says Shahbazian-Yassar. [emphases mine]

A May 11, 2015 Michigan Technological University (MTU) news release by Allison Mills, which originated the news item, explains the ‘why’ of the research,

“We wanted to target a big issue,” Shokuhfar says, explaining that nerve regeneration is a particularly difficult biomedical engineering conundrum. “We are born with all the nerve cells we’ll ever have, and damaged nerves don’t heal very well.”

Other facilities are trying to address this issue as well. Many feature large, room-sized machines that have built-in cell culture hoods, incubators and refrigeration. The precision of this equipment allows them to print full organs. But innovation is more nimble at smaller scales.

“We can pursue nerve regeneration research with a simpler printer set-up,” says Shayan Shafiee, a PhD student working with Shokuhfar. He gestures to the small gray box across the lab bench.

He opens the red box under the top side of the printer’s box. Inside the plastic casing, a large syringe holds a red jelly-like fluid. Shafiee replenishes the needle-tipped printer, pulls up his laptop and, with a hydraulic whoosh, he starts to print a tissue scaffold.

The news release expands on the theme,

At his lab bench in the nanotechnology lab at Michigan Tech, Shafiee holds up a petri dish. Inside is what looks like a red gummy candy, about the size of a half-dollar.

Here’s a video from MTU illustrating the printing process,

Back to the news release, which notes graphene could be instrumental in this research,

“This is based on fractal geometry,” Shafiee explains, pointing out the small crenulations and holes pockmarking the jelly. “These are similar to our vertebrae—the idea is to let a nerve pass through the holes.”

Making the tissue compatible with nerve cells begins long before the printer starts up. Shafiee says the first step is to synthesize a biocompatible polymer that is syrupy—but not too thick—that can be printed. That means Shafiee and Shokuhfar have to create their own materials to print with; there is no Amazon.com or even a specialty shop for bioprinting nerves.

Nerves don’t just need a biocompatible tissue to act as a carrier for the cells. Nerve function is all about electric pulses. This is where Shokuhfar’s nanotechnology research comes in: Last year, she was awarded a CAREER grant from NSF for her work using graphene in biomaterials research. [emphasis mine] “Graphene is a wonder material,” she says. “And it has very good electrical conductivity properties.”

The team is extending the application of this material for nerve cell printing. “Our work always comes back to the question, is it printable or not?” Shafiee says, adding that a successful material—a biocompatible, graphene-bound polymer—may just melt, mush or flat out fail under the pressure of printing. After all, imagine building up a substance more delicate than a soufflé using only the point of a needle. And in the nanotechnology world, a needlepoint is big, even clumsy.

Shafiee and Shokuhfar see these issues as mechanical obstacles that can be overcome.

“It’s like other 3D printers, you need a design to work from,” Shafiee says, adding that he will tweak and hone the methodology for printing nerve cells throughout his dissertation work. He is also hopeful that the material will have use beyond nerve regeneration.

This looks like a news release designed to publicize work funded at MTU by the US National Science Foundation (NSF) which is why there is no mention of published work.

One final comment regarding cellulose nanocrystals (CNC). They have also been called nanocrystalline cellulose (NCC), which you will still see but it seems CNC is emerging as the generic term. NCC has been trademarked by CelluForce, a Canadian company researching and producing CNC (or if you prefer, NCC) from forest products.

The shorter, the better for cellulose nanofibres

Cellulose nanomaterials can be derived from any number of plants. In Canada, we tend to think of our trees first but there are other sources such as cotton, bananas, hemp, carrots, and more.

In anticipation that cellulose nanofibres will become increasingly important constituents of various products and having noticed a resemblance to carbon nanotubes, scientists in Switzerland have investigated the possible toxicity issues according to a May 7, 2015 news item on Nanowerk,

Plant-based cellulose nanofibres do not pose a short-term health risk, especially short fibres, shows a study conducted in the context of National Research Programme “Opportunities and Risks of Nanomaterials” (NRP 64). But lung cells are less efficient in eliminating longer fibres.

Similar to carbon nanotubes that are used in cycling helmets and tennis rackets, cellulose nanofibres are extremely light while being extremely tear-resistant. But their production is significantly cheaper because they can be manufactured from plant waste of cotton or banana plants. “It is only a matter of time before they prevail on the market,” says Christoph Weder of the Adolphe Merkle Institute at the University of Fribourg [Switzerland].

A May 7, 2015 Swiss National Science Foundation (SNSF) press release, which originated the news item, provides more detail,

In the context of the National Research Programme “Opportunities and Risks of Nanomaterials” (NRP 64), he collaborated with the team of Barbara Rothen-Rutishauser to examine whether these plant-based nanofibres are harmful to the lungs when inhaled. The investigation does not rely on animal testing; instead the group of Rothen-Rutishauser developped a complex 3D lung cell system to simulate the surface of the lungs by using various human cell cultures in the test tube.

The shorter, the better

Their results (*) show that cellulose nanofibres are not harmful: the analysed lung cells showed no signs of acute stress or inflammation. But there were clear differences between short and long fibres: the lung cell system efficiently eliminated short fibres while longer fibres stayed on the cell surface.

“The testing only lasted two days because we cannot grow the cell cultures for longer,” explains Barbara Rothen-Rutishauser. For this reason, she adds, they cannot say if the longer fibre may have a negative impact on the lungs in the long term. Tests involving carbon nanotubes have shown that lung cells lose their equilibrium when they are faced with long tubes because they try to incorporate them into the cell to no avail. “This frustrated phagocytosis can trigger an inflammatory reaction,” says Rothen-Rutishauser. To avoid potential harm, she recommends that companies developing products with nanofibres use fibres that are short and pliable instead of long and rigid.

National Research Programme “Opportunities and Risks of Nanomaterials” (NRP 64)

The National Research Programme “Opportunities and Risks of Nanomaterials” (NRP 64) hopes to be able to bridge the gaps in our current knowledge on nanomaterials. Opportunities and risks for human health and the environment in relation to the manufacture, use and disposal of synthetic nanomaterials need to be better understood. The projects started their research work in December 2010.

I have a link to and a citation for the paper (Note: They use the term cellulose nanocrystals in the paper’s title),

Fate of Cellulose Nanocrystal Aerosols Deposited on the Lung Cell Surface In Vitro by Carola Endes, Silvana Mueller, Calum Kinnear, Dimitri Vanhecke, E. Johan Foster, Alke Petri-Fink, Christoph Weder, Martin J. D. Clift, and Barbara Rothen-Rutishauser. Biomacromolecules, 2015, 16 (4), pp 1267–1275 DOI: 10.1021/acs.biomac.5b00055 Publication Date (Web): March 19, 2015

Copyright © 2015 American Chemical Society

While tracking down the 2015 paper, I found this from 2011,

Investigating the Interaction of Cellulose Nanofibers Derived from Cotton with a Sophisticated 3D Human Lung Cell Coculture by Martin J. D. Clift, E. Johan Foster, Dimitri Vanhecke, Daniel Studer, Peter Wick, Peter Gehr, Barbara Rothen-Rutishauser, and Christoph Weder. Biomacromolecules, 2011, 12 (10), pp 3666–3673 DOI: 10.1021/bm200865j Publication Date (Web): August 16, 2011

Copyright © 2011 American Chemical Society

Both papers are behind a paywall.

Cellullose nanocrystals (CNC) and better concrete

Earlier this week in a March 30, 2015 post, I was bemoaning the dearth of applications for cellulose nanocrystals (CNC) with concomitant poor prospects for commercialization and problems for producers such as Canada’s CelluForce. Possibly this work at Purdue University (Indiana, US) will help address some of those issues (from a March 31, 2015 news item on Nanowerk),

Cellulose nanocrystals derived from industrial byproducts have been shown to increase the strength of concrete, representing a potential renewable additive to improve the ubiquitous construction material.

The cellulose nanocrystals (CNCs) could be refined from byproducts generated in the paper, bioenergy, agriculture and pulp industries. They are extracted from structures called cellulose microfibrils, which help to give plants and trees their high strength, lightweight and resilience. Now, researchers at Purdue University have demonstrated that the cellulose nanocrystals can increase the tensile strength of concrete by 30 percent.

A March 31, 2015 Purdue University news release by Emil Venere, which originated the news item, further describes the research published in print as of February 2015 (Note: A link has been removed),

One factor limiting the strength and durability of today’s concrete is that not all of the cement particles are hydrated after being mixed, leaving pores and defects that hamper strength and durability.

“So, in essence, we are not using 100 percent of the cement,” Zavattieri [Pablo Zavattieri, an associate professor in the Lyles School of Civil Engineering] said.

However, the researchers have discovered that the cellulose nanocrystals increase the hydration of the concrete mixture, allowing more of it to cure and potentially altering the structure of concrete and strengthening it.  As a result, less concrete needs to be used.

The cellulose nanocrystals are about 3 to 20 nanometers wide by 50-500 nanometers long – or about 1/1,000th the width of a grain of sand – making them too small to study with light microscopes and difficult to measure with laboratory instruments. They come from a variety of biological sources, primarily trees and plants.

The concrete was studied using several analytical and imaging techniques. Because chemical reactions in concrete hardening are exothermic, some of the tests measured the amount of heat released, indicating an increase in hydration of the concrete. The researchers also hypothesized the precise location of the nanocrystals in the cement matrix and learned how they interact with cement particles in both fresh and hardened concrete. The nanocrystals were shown to form little inlets for water to better penetrate the concrete.

The research dovetails with the goals of P3Nano, a public-private partnership supporting development and use of wood-based nanomaterial for a wide-range of commercial products.

“The idea is to support and help Purdue further advance the CNC-Cement technology for full-scale field trials and the potential for commercialization,” Zavattieri said.

The researchers have provided an image,

This transmission electron microscope image shows cellulose nanocrystals, tiny structures derived from renewable sources that might be used to create a new class of biomaterials with many potential applications. The structures have been shown to increase the strength of concrete. (Purdue Life Sciences Microscopy Center)

This transmission electron microscope image shows cellulose nanocrystals, tiny structures derived from renewable sources that might be used to create a new class of biomaterials with many potential applications. The structures have been shown to increase the strength of concrete. (Purdue Life Sciences Microscopy Center)

Here’s a link to and a citation for the paper,

The influence of cellulose nanocrystal additions on the performance of cement paste by Yizheng Cao, Pablo Zavaterri, Jeff Youngblood, Robert Moon, and Jason Weiss. Cement and Concrete Composites, Volume 56, February 2015, Pages 73–83  DOI: 10.1016/j.cemconcomp.2014.11.008 Available online 18 November 2014

The paper is behind a paywall.

One final note, cellulose nanocrystals (CNC) may also be referred to nanocrystalline cellulose (NCC).


CelluForce celebrates a new investor but gives no details about research or applications

The most one can gather from the news item/press release is that CelluForce is researching applications in the oil and gas sector and that they’re very happy to receive money although there’s no indication as to how much. From a March 26, 2015 news item on Azonano,

CelluForce is pleased to announce an investment into the company by Schlumberger, the world’s leading supplier of technology, integrated project management and information solutions for the global oil and gas industry.

CelluForce’s March 25, 2015 press release does go on but there are no more details to be had,

This investment furthers the collaboration between CelluForce and Schlumberger to explore the use of CelluForce’s wood-derived nano-crystalline cellulose (CelluForce NCCTM) to enhance the productivity of oil and gas wells.

“We are very proud to be expanding our partnership with Schlumberger, the world’s leading oil and gas service company”, stated René Goguen, Acting President of CelluForce. “We have always believed that NCC applications hold promise extending far beyond the forest sector, and we see this investment from an international company as respected as Schlumberger as confirmation of this belief.”

NCC is a fundamental building block of trees that can be extracted from the forest biomass and has unique properties that offer a wide range of potential applications. Measured in units as small as nanometres, these tiny structures have strength properties comparable to steel and will have uses in a variety of industrial sectors.

The first small-scale NCC pilot plant was built and began operation in 2006 at FPInnovations’ laboratory in Montréal, Québec. Supported in part by Natural Resources Canada and the Ministère de l’Énergie et des Ressources naturelles du Québec, the pilot plant operation led to a scalable NCC production process and placed Canada in the pole position of the global race towards commercial NCC manufacture. Based on the success of the small-scale pilot plant, CelluForce, a joint venture of Domtar and FPInnovations, was created which led to the construction of a demonstration plant at Domtar’s mill in Windsor, Québec, having a production capacity of 1000 kg of NCC per day.

This announcement follows the recent announcement by the Honourable Greg Rickford, Minister of Natural Resources, of a $4.0 million contribution by Sustainable Development Technology Canada (SDTC) to optimize the extraction process of NCC from dry wood pulp and develop applications for its use in the oil and gas sector.

The $4M Canadian federal government investment was mentioned in my Feb. 19, 2015 post (scroll down about 40% of the way).

I get the feeling CelluForce is trying to recover from a setback and I wonder if it has anything to do with their production facility’s stockpile of NCC (aka, CNC or cellulose nanocrystals), first mentioned here in an Oct. 3, 2013 post. There was much fanfare about producing NCC/CNC but there was and is no substantive demand for the material in Canada or anywhere else globally.

Canada has three facilities that produce CNC (CelluForce being the largest) and there are production facilities in other countries. To date, there is no major application for CNC but given its properties, there is substantive research into how it could be commercialized. My Nov. 25, 2014 post covers a recent US report about commercializing nanocellulosic materials, including CNC.

I hope that CelluForce is able to overcome whatever problems it seems to be experiencing. Certainly, investments such as Schlumberger’s hint at the possibility. I wish the management team good luck.

SAPPI to locate cellulose nanofibril facility in the Netherlands

SAPPI (formerly South African Pulp and Paper Industries) has announced it will build a nanocellulose facility in the Netherlands. From a March 11, 2015 news item on Nanowerk,

Sappi Limited, a leading global producer of dissolving wood pulp and graphics, speciality and packaging papers, is pleased to announce that it will build a pilot-scale plant for low-cost Cellulose NanoFibrils (nanocellulose) production at the Brightlands Chemelot Campus in Sittard-Geleen in the Netherlands. The pilot plant is expected to be operational within nine months.

A March 11, 2015 SAPPI media release (also on PR Newswire), which originated the news item, provides more detail about SAPPI’s nanocellulose business plans and the proposed pilot plant,

Commenting on the decision, Andrea Rossi, Group Head Technology, Sappi Limited, explained that the pilot plant will help with Sappi’s move into new adjacent business fields based on renewable raw materials. Sappi’s strategy includes seeking growth opportunities by producing innovative performance materials from renewable resources. The raw material for the pilot plant would be supplied from any of Sappi’s Saiccor, Ngodwana and Cloquet dissolving wood pulp plants. The pilot plant is the precursor for Sappi to consider the construction of a commercial CNF plant.

He goes on to say “the pilot plant will test the manufacturing of dry re-dispersible Cellulose NanoFibrils (CNF) using the proprietary technology developed by Sappi and Edinburgh Napier University. The location of the pilot plant at Brightlands Chemelot Campus provides Sappi with easy access to multiple partners with whom Sappi will seek to co-develop products that will incorporate CNF across a large variety of product applications to optimise performance and to create unique characteristics for these products.

The CNF produced by Sappi will have unique morphology, specifically modified for either hydrophobic or hydrophilic applications. Products produced using Sappi’s CNF will be optimally suitable for conversion in lighter and stronger fibre-reinforced composites and plastics, in food and pharmaceutical applications, and in rheology modifiers as well as in barrier and other paper and coating applications.

Speaking on behalf of Brightlands Chemelot Campus, the CEO Bert Kip said “We’re proud that a globally leading company like Sappi has chosen our campus for their new facility. The initiative perfectly fits with our focus area on bio-based materials and our new pilot plant infrastructure.”

In December 2014, Sappi and Edinburgh Napier University announced the results of their 3 year project to find a low cost energy-saving process that would allow Sappi to produce the nanocellulose on a commercially viable basis – and importantly without producing large volumes of chemical waste water associated with existing techniques. At the time, Professor Rob English, who led the research with his Edinburgh Napier colleague, Dr. Rhodri Williams, said “What is significant about our process is the use of unique chemistry, which has allowed us to very easily break down the wood pulp fibers into nanocellulose. There is no expensive chemistry required and, most significantly, the chemicals used can be easily recycled and reused without generating large quantities of waste water.

Math Jennekens, R&D Director at Sappi Europe who is the project coordinator and will oversee the pilot plant, said “We are very excited to be able to move from a bench top environment into real-world production. Our targeted run-rate will be 8 tons per annum. We will produce a dry powder that can be easily redispersed in water. The nanocellulose is unmodified which makes it easier to combine with other materials. The product will be used to build partnerships to test the application of our nanocellulose across the widest range of uses.”

He went on to thank the Government of the Province of Limburg in the Netherlands for their significant support and financial contribution towards the establishment of the pilot plant.

This business with a pilot production plant reminds me of CelluForce which has a cellulose nanocrystal (CNC) or, as it’s also known, nanocellulose crystal (NCC) production plant located in Windsor, Québec. They too announced a production plant which opened to fanfare in January 2012. in my Oct. 3, 2013 post (scroll down about 60% of the way) I noted that production had stopped in August 2013 due to a growing stockpile. As of March 11, 2015, I was not able to find any updates about the stockpile on the CelluForce website. The most recent CelluForce information I’ve been able to find is in a Feb. 19, 2015 posting (scroll down about 40% of the way).

Cellulose nanocrystals (CNC), also known as nanocrystalline cellulose (NCC), and toxicity; some Celluforce news; anti-petroleum extremists

The February 2015 issue of Industrial Biotechnology is hosting a special in depth research section on the topic of cellulose nanotechnology. A Feb. 19, 2015 news item on Phys.org features a specific article in the special section (Note: A link has been removed),

Novel nanomaterials derived from cellulose have many promising industrial applications, are biobased and biodegradable, and can be produced at relatively low cost. Their potential toxicity—whether ingested, inhaled, on contact with the skin, or on exposure to cells within the body—is a topic of intense discussion, and the latest evidence and insights on cellulose nanocrystal toxicity are presented in a Review article in Industrial Biotechnology.

Maren Roman, PhD, Virginia Tech, Blacksburg, VA, describes the preparation of cellulose nanocrystals (CNCs) and highlights the key factors that are an essential part of studies to assess the potential adverse health effects of CNCs by various types of exposure. In the article “Toxicity of Cellulose Nanocrystals: A Review” , Dr. Roman discusses the current literature on the pulmonary, oral, dermal, and cytotoxicity of CNCs, provides an in-depth view on their effects on human health, and suggests areas for future research.

There has been much Canadian investment both federal and provincial in cellulose nanocrystals (CNC). There’s also been a fair degree of confusion regarding the name. In Canada, which was a research leader initially, it was called nanocrystalline cellulose (NCC) but over time a new term was coined cellulose nanocrystals (CNC). The new name was more in keeping with the naming conventions for other nanoscale cellulose materials such as  cellulose nanofibrils, etc. Hopefully, this confusion will resolve itself now that Celluforce, a Canadian company, has trademarked NCC. (More about Celluforce later in this post.)

Getting back to toxicity and CNC, here’s a link to and a citation for Maron’s research paper,

Toxicity of Cellulose Nanocrystals: A Review by Roman Maren. Industrial Biotechnology. February 2015, 11(1): 25-33. doi:10.1089/ind.2014.0024.

The article is open access at this time. For anyone who doesn’t have the time to read it, here’s the conclusion,

Current studies of the oral and dermal toxicity of CNCs have shown a lack of adverse health effects. The available studies, however, are still very limited in number (two oral toxicity studies and three dermal toxicity studies) and in the variety of tested CNC materials (CelluForce’s NCC). Additional oral and dermal toxicity studies are needed to support the general conclusion that CNCs are nontoxic upon ingestion or contact with the skin. Studies of pulmonary and cytotoxicity, on the other hand, have yielded discordant results. The questions of whether CNCs have adverse health effects on inhalation and whether they elicit inflammatory or oxidative stress responses at the cellular level therefore warrant further investigation. The toxicity of CNCs will depend strongly on their physicochemical properties—in particular, surface chemistry, including particle charge, and degree of aggregation, which determines particle shape and dimensions. Therefore, these properties—which in turn depend strongly on the cellulose source, CNC preparation procedure, and post-processing or sample preparation methods, such as lyophilization, aerosolization, sonication, or sterilization—need to be carefully measured in the final samples.

Another factor that might affect the outcomes of toxicity studies are sample contaminants, such as endotoxins or toxic chemical impurities. Samples for exposure tests should therefore be carefully analyzed for such contaminants prior to testing. Ideally, because detection of toxic chemical contaminants may be difficult, control experiments should be carried out with suitable blanks from which the CNCs have been removed, for example by membrane filtration. Moreover, especially in cytotoxicity assessments, the effect of CNCs on pH and their aggregation in the cell culture medium need to be monitored. Only by careful particle characterization and exclusion of interfering factors will we be able to develop a detailed understanding of the potential adverse health effects of CNCs.

If I understand this rightly, CNC seems safe (more or less) when ingested orally (food/drink) or applied to the skin (dermal application) but inhalation seems problematic and there are indications that this could lead to inflammation of lung cells. Other conclusions suggest both the source for the cellulose and CNC preparation may affect its toxicity. I encourage you to read the whole research paper as this author provides good explanations of the terms and summaries of previous research, as well as, some very well considered research.

Here’s more about Industrial Biotechnology’s special research section in the February 2015 issue, from a Feb. 19, 2015 Mary Ann Liebert publishers press release (also on EurekAlert*),

The article is part of an IB IN DEPTH special research section entitled “Cellulose Nanotechnology: Fundamentals and Applications,” led by Guest Editors Jose Moran-Mirabal, PhD and Emily Cranston, PhD, McMaster University, Hamilton, Canada. In addition to the Review article by Dr. Roman, the issue includes Reviews by M. Rose, M. Babi, and J. Moran-Mirabal (“The Study of Cellulose Structure and Depolymerization Through Single-Molecule Methods”) and by X.F. Zhao and W.T. Winter (“Cellulose/cellulose-based nanospheres: Perspectives and prospective”); Original Research articles by A. Rivkin, T. Abitbol, Y. Nevo, et al. (“Bionanocomposite films from resilin-CBD bound to cellulose nanocrystals), and P. Criado, C. Fraschini, S. Salmieri, et al. (“Evaluation of antioxidant cellulose nanocrystals and applications in gellan gum films”); and the Overview article “Cellulose Nanotechnology on the Rise,” by Drs. Moran-Mirabal and Cranston.

Meanwhile Celluforce announces a $4M ‘contribution’ from Sustainable Development Technology Canada (SDTC), from a Feb. 16, 2015 Celluforce news release,

CelluForce welcomes the announcement by Sustainable Development Technology Canada (SDTC) of a contribution of $4.0 million to optimize the extraction process of Nanocrystaline Cellulose (NCC) from dry wood pulp and develop applications for its use in the oil and gas sector. The announcement was made in Quebec City today [Feb. 16, 2015] by the Honourable Greg Rickford, Minister of Natural Resources and Minister for the Federal Economic Development Initiative for Northern Ontario.

NCC is a fundamental building block of trees that can be extracted from the forest biomass and has unique properties that offer a wide range of potential applications. Measured in units as small as nanometres, these tiny structures have strength properties comparable to steel and will have uses in a variety of industrial sectors. In particular, NCC is touted as having the potential to significantly advance the oil and gas industry.

Our Government is positioning Canada as a global leader in the clean technology sector by supporting innovative projects aimed at growing our economy while contributing to a cleaner environment,” said the Honourable Greg Rickford, Canada’s Minister of Natural Resources. [emphasis mine] “By developing our resources responsibly, exploring next-generation transportation and advancing clean energy technology, the projects announced today will create jobs and improve innovation opportunities in Quebec and across Canada.”

“World-class research led to the development of this ground breaking extraction process and placed Canada at the leading edge of NCC research”, stated René Goguen, Acting President of CelluForce Inc. “This announcement by SDTC sets the stage for the pre-commercial development of applications that will not only support Canada’s forest sector but also the oil and gas sector, both of which are important drivers of the Canadian economy.”

This project will further improve and optimize the process developed by CelluForce to extract nanocrystalline cellulose (CelluForce NCC™) from dry wood pulp. In addition to improving the extraction process, this project will investigate additional applications for the oil-and-gas industry such as cementing using this renewable forestry resource.

There’s very little information in this news release other than the fact that CelluForce’s $4M doesn’t need to be repaid seeing it’s described as a ‘contribution’ rather than an investment. The difference between a contribution and a grant, which is what these funds used to be called, somewhat mystifies me unless this is a translation issue.

As for the news release content, it is remarkably scant. This $4M will be spent on improving the extraction process and on applications for the oil and gas industry. Neither the improvements nor the possible applications are described. Hopefully, the government has some means of establishing whether or not those funds (sorry, the contribution) were used for the purposes described.

I am glad to see this in this news release, “Our Government is positioning Canada as a global leader in the clean technology sector …” although I’m not sure how it fits with recent attempts to brand environmentalists as part of an ‘anti-petroleum’ movement as described in a Feb. 19, 2015 post by Glyn Moody for Techdirt (Note: A link has been removed),

As Techdirt has been warning for some time, one of the dangers with the flood of “anti-terrorist” laws and powers is that they are easily redirected against other groups for very different purposes. A story in the Globe and Mail provides another chilling reminder of how that works:

The RCMP [Royal Canadian Mounted Police] has labelled the “anti-petroleum” movement as a growing and violent threat to Canada’s security, raising fears among environmentalists that they face increased surveillance, and possibly worse, under the Harper government’s new terrorism legislation.

As the Globe and Mail article makes clear, environmentalists are now being considered as part of an “anti-petroleum” movement. That’s not just some irrelevant rebranding: it means that new legislation supposedly targeting “terrorism” can be applied.

It seems logically incoherent to me that the government wants clean tech while condemning environmentalists. Whether or not you buy climate change science (for the record, I do), you have to admit that we are running out of petroleum. At heart, both the government and the environmentalists have to agree that we need new sources for fuel. It doesn’t make any sense to spend valuable money, time, and resources on pursuing environmentalists.

This business about the ‘anti-petroleum’ movement reminds me of a copyright kerfuffle including James Moore, currently the Minister of Industry, and writer Cory Doctorow. Moore, Minister of Canadian Heritage at the time, at some sort of public event, labeled Doctorow as a ‘radical extremist’ regarding his (Doctorow’s) views on copyright. The comments achieved notoriety when it appeared that Moore and the organizers denied the comments ever took place. The organizers seemed to have edited the offending video and Moore made public denials. You can read more about the incident in my June 25, 2010 post. Here’s an excerpt from the post which may explain why I feel there is a similarity,

… By simultaneously linking individuals who use violence to achieve their ends (the usual application for the term ‘radical extremists’) to individuals who are debating, discussing, and writing commentaries critical of your political aims you render the term into a joke and you minimize the violence associated with it.

Although with ‘anti-petroleum’, it seems they could decide any dissension is a form of violence. It should be noted that in Canada the Ministry of Industry, is tightly coupled with the Ministry of Natural Resources since the Canadian economy has been and continues to be largely resource-based.

For anyone interested in CelluForce and NCC/CNC, here’s a sampling of my previous posts on the topic,

CelluForce (nanocrystalline cellulose) plant opens (Dec. 15, 2011)

Double honours for NCC (ArboraNano and CelluForce recognized) (May 25, 2012)

You say nanocrystalline cellulose, I say cellulose nanocrystals; CelluForce at Japan conference and at UK conference (Oct. 15, 2012)

Designing nanocellulose (?) products in Finland; update on Canada’s CelluForce (Oct. 3, 2013) Note: CelluForce stopped producing NCC due to a growing stockpile.

There’s a lot more about CNC on this blog* should you care to search. One final note, I gather there’s a new interim boss at CelluForce, René Goguen replacing Jean Moreau.

* EurekAlert link added Feb. 20, 2015.

* ‘on the CNC blog’ changed to ‘about CNC on this blog’ on March 4, 2015.