Tag Archives: CNTs

Terahertz imagers at your fingertips

It seems to me that I stumbled across quite a few carbon nanotube (CNT) stories in 2018. This one comes courtesy of Japan (from a June 28, 2018 news item on Nanowerk),

Researchers at Tokyo Tech have developed flexible terahertz imagers based on chemically “tunable” carbon nanotube materials. The findings expand the scope of terahertz applications to include wrap-around, wearable technologies as well as large-area photonic devices.

Here’s a peek at an imager,

Figure 1. The CNT-based flexible THz imager (a) Resting on a fingertip, the CNT THz imager can easily wrap around curved surfaces. (b) Just by inserting and rotating a flexible THz imager attached to the fingertip, damage to a pipe was clearly detected. Courtesy Tokyo Tech

A June 28, 2018 Tokyo Tech Institute press release (also on Eurekalert), which originated the news item, provides more detail,

Carbon nanotubes (CNTs) are beginning to take the electronics world by storm, and now their use in terahertz (THz) technologies has taken a big step forward.

Due to their excellent conductivity and unique physical properties, CNTs are an attractive option for next-generation electronic devices. One of the most promising developments is their application in THz devices. Increasingly, THz imagers are emerging as a safe and viable alternative to conventional imaging systems across a wide range of applications, from airport security, food inspection and art authentication to medical and environmental sensing technologies.

The demand for THz detectors that can deliver real-time imaging for a broad range of industrial applications has spurred research into low-cost, flexible THz imaging systems. Yukio Kawano of the Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Tech, is a world-renowned expert in this field. In 2016, for example, he announced the development of wearable terahertz technologies based on multiarrayed carbon nanotubes.

Kawano and his team have since been investigating THz detection performance for various types of CNT materials, in recognition of the fact that there is plenty of room for improvement to meet the needs of industrial-scale applications.

Now, they report the development of flexible THz imagers for CNT films that can be fine-tuned to maximize THz detector performance.

Publishing their findings in ACS Applied Nano Materials, the new THz imagers are based on chemically adjustable semiconducting CNT films.

By making use of a technology known as ionic liquid gating1, the researchers demonstrated that they could obtain a high degree of control over key factors related to THz detector performance for a CNT film with a thickness of 30 micrometers. This level of thickness was important to ensure that the imagers would maintain their free-standing shape and flexibility, as shown in Figure 1 [see above].

“Additionally,” the team says, “we developed gate-free Fermi-level2 tuning based on variable-concentration dopant solutions and fabricated a Fermi-level-tuned p-n junction3 CNT THz imager.” In experiments using this new type of imager, the researchers achieved successful visualization of a metal paper clip inside a standard envelope (see Figure 2.)

Non-contact, non-destructive visualization

Figure 2. Non-contact, non-destructive visualization

The CNT THz imager enabled clear, non-destructive visualization of a metal paper clip inside an envelope.

The bendability of the new THz imager and the possibility of even further fine-tuning will expand the range of CNT-based devices that could be developed in the near future.

Moreover, low-cost fabrication methods such as inkjet coating could make large-area THz imaging devices more readily available.

1 Ionic liquid gating

A technique used to modulate a material’s charge carrier properties.

2 Fermi level

A measure of the electrochemical potential for electrons, which is important for determining the electrical and thermal properties of solids. The term is named after the Italian–American physicist Enrico Fermi.

3 p-n junction

Refers to the interface between positive (p-type) and negative (n-type) semiconducting materials. These junctions form the basis of semiconductor electronic devices.

Here’s a link to and a citation for the paper,

Fermi-Level-Controlled Semiconducting-Separated Carbon Nanotube Films for Flexible Terahertz Imagers by Daichi Suzuki, Yuki Ochiai, Yota Nakagawa, Yuki Kuwahara, Takeshi Saito, and Yukio Kawano. ACS Appl. Nano Mater., 2018, 1 (6), pp 2469–2475 DOI: 10.1021/acsanm.8b00421 Publication Date (Web): June 6, 2018

Copyright © 2018 American Chemical Society

This paper is behind a paywall.

Carbon nanotube optics and the quantum

A US-France-Germany collaboration has led to some intriguing work with carbon nanotubes. From a June 18, 2018 news item on ScienceDaily,

Researchers at Los Alamos and partners in France and Germany are exploring the enhanced potential of carbon nanotubes as single-photon emitters for quantum information processing. Their analysis of progress in the field is published in this week’s edition of the journal Nature Materials.

“We are particularly interested in advances in nanotube integration into photonic cavities for manipulating and optimizing light-emission properties,” said Stephen Doorn, one of the authors, and a scientist with the Los Alamos National Laboratory site of the Center for Integrated Nanotechnologies (CINT). “In addition, nanotubes integrated into electroluminescent devices can provide greater control over timing of light emission and they can be feasibly integrated into photonic structures. We are highlighting the development and photophysical probing of carbon nanotube defect states as routes to room-temperature single photon emitters at telecom wavelengths.”

A June 18, 2018 Los Alamos National Laboratory (LANL) news release (also on EurekAlert), which originated the news item, expands on the theme,

The team’s overview was produced in collaboration with colleagues in Paris (Christophe Voisin [Ecole Normale Supérieure de Paris (ENS)]) who are advancing the integration of nanotubes into photonic cavities for modifying their emission rates, and at Karlsruhe (Ralph Krupke [Karlsruhe Institute of Technology (KIT]) where they are integrating nanotube-based electroluminescent devices with photonic waveguide structures. The Los Alamos focus is the analysis of nanotube defects for pushing quantum emission to room temperature and telecom wavelengths, he said.

As the paper notes, “With the advent of high-speed information networks, light has become the main worldwide information carrier. . . . Single-photon sources are a key building block for a variety of technologies, in secure quantum communications metrology or quantum computing schemes.”

The use of single-walled carbon nanotubes in this area has been a focus for the Los Alamos CINT team, where they developed the ability to chemically modify the nanotube structure to create deliberate defects, localizing excitons and controlling their release. Next steps, Doorn notes, involve integration of the nanotubes into photonic resonators, to provide increased source brightness and to generate indistinguishable photons. “We need to create single photons that are indistinguishable from one another, and that relies on our ability to functionalize tubes that are well-suited for device integration and to minimize environmental interactions with the defect sites,” he said.

“In addition to defining the state of the art, we wanted to highlight where the challenges are for future progress and lay out some of what may be the most promising future directions for moving forward in this area. Ultimately, we hope to draw more researchers into this field,” Doorn said.

Here’s a link to and a citation for the paper,

Carbon nanotubes as emerging quantum-light sources by X. He, H. Htoon, S. K. Doorn, W. H. P. Pernice, F. Pyatkov, R. Krupke, A. Jeantet, Y. Chassagneux & C. Voisin. Nature Materials (2018) DOI: https://doi.org/10.1038/s41563-018-0109-2 Published online June 18, 2018

This paper is behind a paywall.

Creating cheap, small carbon nanotubes

The excitement fairly crackles off the video,

A May 24, 2018 news item on Nanowerk announces the research,

Imagine a box you plug into the wall that cleans your toxic air and pays you cash.

That’s essentially what Vanderbilt University researchers produced after discovering the blueprint for turning the carbon dioxide into carbon nanotubes with small diameters.

Carbon nanotubes are supermaterials that can be stronger than steel and more conductive than copper. The reason they’re not in every application from batteries to tires is that these amazing properties only show up in the tiniest nanotubes, which are extremely expensive. Not only did the Vanderbilt team show they can make these materials from carbon dioxide sucked from the air, but how to do this in a way that is much cheaper than any other method out there.

I’m not sure what ‘small’ means in this context. I’ve heard of long and short carbon nanotubes (CNTs) and also of single-walled, multi-walled, and double-walled CNTs. I wish there’d been an an explanation and measurements for ‘small diameter CNTs’. That nitpick aside, a May 23, 2018 Vanderbilt University news release by Heidi Hall adds a few more technical details,

These materials, which Assistant Professor of Mechanical Engineering Cary Pint calls “black gold,” could steer the conversation from the negative impact of emissions to how we can use them in future technology.

“One of the most exciting things about what we’ve done is use electrochemistry to pull apart carbon dioxide into elemental constituents of carbon and oxygen and stitch together, with nanometer precision, those carbon atoms into new forms of matter,” Pint said. “That opens the door to being able to generate really valuable products with carbon nanotubes.

“These could revolutionize the world.”

In a report published today in ACS [American Chemical Society] Applied Materials and Interfaces, Pint, interdisciplinary material science Ph.D. student Anna Douglas and their team describe how tiny nanoparticles 10,000 times smaller than a human hair can be produced from coatings on stainless steel surfaces. The key was making them small enough to be valuable.

“The cheapest carbon nanotubes on the market cost around $100-200 per kilogram,” Douglas said. “Our research advance demonstrates a pathway to synthesize carbon nanotubes better in quality than these materials with lower cost and using carbon dioxide captured from the air.”

But making small nanotubes is no small task. The research team showed that a process called Ostwald ripening — where the nanoparticles that grow the carbon nanotubes change in size to larger diameters — is a key contender against producing the infinitely more useful size. The team showed they could partially overcome this by tuning electrochemical parameters to minimize these pesky large nanoparticles.

side-by-side photos showing stainless steel plate becoming covered in carbon nanotubes (which look like lumps of ash or mud)
Small diameter carbon nanotubes grown on a stainless steel surface. (Pint Lab/Vanderbilt University)

This core technology led Pint and Douglas to co-found SkyNano LLC, a company focused on building upon the science of this process to scale up and commercialize products from these materials.

“What we’ve learned is the science that opens the door to now build some of the most valuable materials in our world, such as diamonds and single-walled carbon nanotubes, from carbon dioxide that we capture from air through our process,” Pint said.

Here’s a link to and a citation for the paper,

Toward Small-Diameter Carbon Nanotubes Synthesized from Captured Carbon Dioxide: Critical Role of Catalyst Coarsening by Anna Douglas, Rachel Carter, Mengya Li, and Cary L. Pint. ACS Appl. Mater. Interfaces, Article ASAP DOI: 10.1021/acsami.8b02834 Publication Date (Web): May 1, 2018

Copyright © 2018 American Chemical Society

This paper is behind a paywall.

Regarding the start-up, SkyNano, which Douglas and Pint have co-founded, it looks to be at a  very early stage.

Boron nitride nanotubes

Most of the talk about nanotubes is focused on carbon nanotubes but there are other kinds as a May 21, 2018 Rice University news release (also received via email and on EurekAlert and in a May 21, 2018 news item on ScienceDaily), notes,

Boron nitride nanotubes are primed to become effective building blocks for next-generation composite and polymer materials based on a new discovery at Rice University – and a previous one.

Scientists at known-for-nano Rice have found a way to enhance a unique class of nanotubes using a chemical process pioneered at the university. The Rice lab of chemist Angel Martí took advantage of the Billups-Birch reaction process to enhance boron nitride nanotubes.

The work is described in the American Chemical Society journal ACS Applied Nano Materials.

Boron nitride nanotubes, like their carbon cousins, are rolled sheets of hexagonal arrays. Unlike carbon nanotubes, they’re electrically insulating hybrids made of alternating boron and nitrogen atoms.

Insulating nanotubes that can be functionalized will be a valuable building block for nanoengineering projects, Martí said. “Carbon nanotubes have outstanding properties, but you can only get them in semiconducting or metallic conducting types,” he said. “Boron nitride nanotubes are complementary materials that can fill that gap.”

Until now, these nanotubes have steadfastly resisted functionalization, the “decorating” of structures with chemical additives that allows them to be customized for applications. The very properties that give boron nitride nanotubes strength and stability, especially at high temperatures, also make them hard to modify for their use in the production of advanced materials.

But the Billups-Birch reaction developed by Rice Professor Emeritus of Chemistry Edward Billups, which frees electrons to bind with other atoms, allowed Martí and lead author Carlos de los Reyes to give the electrically inert boron nitride nanotubes a negative charge.

That, in turn, opened them up to functionalization with other small molecules, including aliphatic carbon chains.

“Functionalizing the nanotubes modifies or tunes their properties,” Martí said. “When they’re pristine they are dispersible in water, but once we attach these alkyl chains, they are extremely hydrophobic (water-avoiding). Then, if you put them in very hydrophobic solvents like those with long-chain hydrocarbons, they are more dispersible than their pristine form.

“This allows us to tune the properties of the nanotubes and will make it easier to take the next step toward composites,” he said. “For that, the materials need to be compatible.”

After he discovered the phenomenon, de los Reyes spent months trying to reproduce it reliably. “There was a period where I had to do a reaction every day to achieve reproducibility,” he said. But that turned out to be an advantage, as the process only required about a day from start to finish. “That’s the advantage over other processes to functionalize carbon nanotubes. There are some that are very effective, but they may take a few days.”

The process begins with adding pure ammonia gas to the nanotubes and cooling it to -70 degrees Celsius (-94 degrees Fahrenheit). “When it combines with sodium, lithium or potassium — we use lithium — it creates a sea of electrons,” Martí said. “When the lithium dissolves in the ammonia, it expels the electrons.”

The freed electrons quickly bind with the nanotubes and provide hooks for other molecules. De los Reyes enhanced Billups-Birch when he found that adding the alkyl chains slowly, rather than all at once, improved their ability to bind.

The researchers also discovered the process is reversible. Unlike carbon nanotubes that burn away, boron nitride nanotubes can stand the heat. Placing functionalized boron nitride tubes into a furnace at 600 degrees Celsius (1,112 degrees Fahrenheit) stripped them of the added molecules and returned them to their nearly pristine state.

“We call it defunctionalization,” Martí said. “You can functionalize them for an application and then remove the chemical groups to regain the pristine material. That’s something else the material brings that is a little different.”

The researchers have provided this pretty illustration of boron nitride nanotube,

Caption: Rice University researchers have discovered a way to ‘decorate’ electrically insulating boron nitride nanotubes with functional groups, making them more suitable for use with polymers and composite materials. Credit: Martí Research Group/Rice University

Here’s a link to and a citation for the paper,

Chemical Decoration of Boron Nitride Nanotubes Using the Billups-Birch Reaction: Toward Enhanced Thermostable Reinforced Polymer and Ceramic Nanocomposites by Carlos A. de los Reyes, Kendahl L. Walz Mitra, Ashleigh D. Smith, Sadegh Yazdi, Axel Loredo, Frank J. Frankovsky, Emilie Ringe, Matteo Pasquali, and Angel A. Martí. ACS Appl. Nano Mater., Article ASAP DOI: 10.1021/acsanm.8b00633 Publication Date (Web): May 16, 2018

Copyright © 2018 American Chemical Society

This paper is behind a paywall.

Robust reverse osmosis membranes made of carbon nanotubes

Caption: SEM images of MWCNT-PA (Multi-Walled Carbon Nanotube-Polyamide) nanocomposite membranes, for plain PA, and PA with 5, 9.5, 12.5, 15.5, 17 and 20 wt.% of MWCNT, where the typical lobe-like structures appear at the surface. Note the tendency towards a flatter membrane surface as the content of MWCNT increases. Scale bar corresponds to 1.0?μm for all the micrographs. Credit: Copyright 2018, Springer Nature, Licensed under CC BY 4.0

It seems unlikely that the image’s resemblance to a Japanese kimono on display is accidental. Either way, nicely done!

An April 12, 2018 news item on phys.org describes a technique that would allow large-scale water desalination,

A research team of Shinshu University, Japan, has developed robust reverse osmosis membranes that can endure large-scale water desalination. The team published their results in early February [2018] in Scientific Reports.

“Since more than 97 percent of the water in the world is saline water, reverse osmosis desalination plants for producing fresh water are increasingly important for providing a safe and consistent supply,” said Morinobu Endo, Ph.D., corresponding author on the paper. Endo is a distinguished professor of Shinshu University and the Honorary Director of the Institute of Carbon Science and Technology. “Even though reverse osmosis membrane technology has been under development for several decades, new threats like global warming and increasing clean water demand in populated urban centers challenge the conventional water supply systems.”

Reverse osmosis membranes typically consist of thin film composite systems, with an active layer of polymer film that restricts undesired substances, such as salt, from passing through a permeable porous substrate. Such membranes can turn seawater into drinkable water, as well as aid in agricultural and landscape irrigation, but they can be costly to operate and spend a large amount of energy.

To meet the demand of potable water at low cost, Endo says more robust membranes capable of withstanding harsh conditions, while remaining chemically stable to tolerate cleaning treatments, are necessary. The key lays in carbon nanotechnology.

An April 11, 2018 Shinshu University press release, which originated the news item, provides more details about the work,

Endo is a pioneer of carbon nanotubes [sic] synthesis by catalytic chemical vapor deposition. In this research, Endo and his team developed a multi-walled carbon nanotube-polyamide nanocomposite membrane, which is resistant to chlorine–one of the main cause of degradation or failure cases in reverse osmosis membranes. The added carbon nanotubes create a protective effect that stabilized the linked molecules of the polyamide against chlorine.

“Carbon nanotechnology has been expected to bring benefits, and this is one promising example of the contribution of carbon nanotubes to a very critical application: water purification,” Endo said. “Carbon nanotubes and fibers are already superb reinforcements for other applications in materials science and engineering, and this is yet another field where their exceptional properties can be used for improving conventional technologies.”

The researchers are working to stabilize and expand the production and processing of multi-walled carbon nanotube-polyamide nanocomposite membranes.

“We are currently working on scaling up our method of synthesis, which, in principle, is based on the same method used to prepare current polyamide membranes,” Endo said. He also noted that his team is planning a collaboration to produce commercial membranes.

Here’s a link to and a citation for the paper,

Robust water desalination membranes against degradation using high loads of carbon nanotubes by J. Ortiz-Medina, S. Inukai, T. Araki, A. Morelos-Gomez, R. Cruz-Silva, K. Takeuchi, T. Noguchi, T. Kawaguchi, M. Terrones, & M. Endo. Scientific Reports volume 8, Article number: 2748 (2018) doi:10.1038/s41598-018-21192-5 Published online: 09 February 2018

This paper is open access.

The new knitting: electronics and batteries

Researchers from China have developed a new type of yarn for flexible electronics. A March 28, 2018 news item on Nanowerk announces the work, (Note: A link has been removed),

When someone thinks about knitting, they usually don’t conjure up an image of sweaters and scarves made of yarn that can power watches and lights. But that’s just what one group is reporting in ACS Nano (“Waterproof and Tailorable Elastic Rechargeable Yarn Zinc Ion Batteries by a Cross-Linked Polyacrylamide Electrolyte”). They have developed a rechargeable yarn battery that is waterproof and flexible. It also can be cut into pieces and still work.

A March 28, 2018 2018 American Chemical Society (ACS) news release (also on EurekAlert), which originated the news item, expands on the theme (Note: Links have been removed),

Most people are familiar with smartwatches, but for wearable electronics to progress, scientists will need to overcome the challenge of creating a device that is deformable, durable, versatile and wearable while still holding and maintaining a charge. One dimensional fiber or yarn has shown promise, since it is tiny, flexible and lightweight. Previous studies have had some success combining one-dimensional fibers with flexible Zn-MnO2 batteries, but many of these lose charge capacity and are not rechargeable. So, Chunyi Zhi and colleagues wanted to develop a rechargeable yarn zinc-ion battery that would maintain its charge capacity, while being waterproof and flexible.

The group twisted carbon nanotube fibers into a yarn, then coated one piece of yarn with zinc to form an anode, and another with magnesium oxide to form a cathode. These two pieces were then twisted like a double helix and coated with a polyacrylamide electrolyte and encased in silicone. Upon testing, the yarn zinc-ion battery was stable, had a high charge capacity and was rechargeable and waterproof. In addition, the material could be knitted and stretched. It also could be cut into several pieces, each of which could power a watch. In a proof-of-concept demonstration, eight pieces of the cut yarn battery were woven into a long piece that could power a belt containing 100 light emitting diodes (known as LEDs) and an electroluminescent panel.

The authors acknowledge funding from the National Natural Science Foundation of China and the Research Grants Council of Hong Kong Joint Research Scheme, City University of Hong Kong and the Sichuan Provincial Department of Science & Technology.

Here’s an image the researchers have used to illustrate their work,

 

Courtesy: American Chemical Society

Here’s a link to and a citation for the paper,

Waterproof and Tailorable Elastic Rechargeable Yarn Zinc Ion Batteries by a Cross-Linked Polyacrylamide Electrolyte by Hongfei Li, Zhuoxin Liu, Guojin Liang, Yang Huang, Yan Huang, Minshen Zhu, Zengxia Pe, Qi Xue, Zijie Tang, Yukun Wang, Baohua Li, and Chunyi Zhi. ACS Nano, Article ASAP DOI: 10.1021/acsnano.7b09003 Publication Date (Web): March 28, 2018

Copyright © 2018 American Chemical Society

This paper is behind a paywall.

Stronger than steel and spider silk: artificial, biodegradable, cellulose nanofibres

This is an artificial and biodegradable are two adjectives you don’t usually see united by the conjunction, and. However, it is worth noting that the artificial material is initially derived from a natural material, cellulose. Here’s more from a May 16, 2018 news item on ScienceDaily,

At DESY’s [Deutsches Elektronen-Synchrotron] X-ray light source PETRA III, a team led by Swedish researchers has produced the strongest bio-material that has ever been made. The artifical, but bio-degradable cellulose fibres are stronger than steel and even than dragline spider silk, which is usually considered the strongest bio-based material. The team headed by Daniel Söderberg from the KTH Royal Institute of Technology in Stockholm reports the work in the journal ACS Nano of the American Chemical Society.

A May 16, 2018 DESY press release (also on EurekAlert), which originated the news item, provides more detail,

The ultrastrong material is made of cellulose nanofibres (CNF), the essential building blocks of wood and other plant life. Using a novel production method, the researchers have successfully transferred the unique mechanical properties of these nanofibres to a macroscopic, lightweight material that could be used as an eco-friendly alternative for plastic in airplanes, cars, furniture and other products. “Our new material even has potential for biomedicine since cellulose is not rejected by your body”, explains Söderberg.

The scientists started with commercially available cellulose nanofibres that are just 2 to 5 nanometres in diameter and up to 700 nanometres long. A nanometre (nm) is a millionth of a millimetre. The nanofibres were suspended in water and fed into a small channel, just one millimetre wide and milled in steel. Through two pairs of perpendicular inflows additional deionized water and water with a low pH-value entered the channel from the sides, squeezing the stream of nanofibres together and accelerating it.

This process, called hydrodynamic focussing, helped to align the nanofibres in the right direction as well as their self-organisation into a well-packed macroscopic thread. No glue or any other component is needed, the nanofibres assemble into a tight thread held together by supramolecular forces between the nanofibres, for example electrostatic and Van der Waals forces.

With the bright X-rays from PETRA III the scientists could follow and optimise the process. “The X-rays allow us to analyse the detailed structure of the thread as it forms as well as the material structure and hierarchical order in the super strong fibres,” explains co-author Stephan Roth from DESY, head of the Micro- and Nanofocus X-ray Scattering Beamline P03 where the threads were spun. “We made threads up to 15 micrometres thick and several metres in length.”

Measurements showed a tensile stiffness of 86 gigapascals (GPa) for the material and a tensile strength of 1.57 GPa. “The bio-based nanocellulose fibres fabricated here are 8 times stiffer and have strengths higher than natural dragline spider silk fibres,” says Söderberg. “If you are looking for a bio-based material, there is nothing quite like it. And it is also stronger than steel and any other metal or alloy as well as glass fibres and most other synthetic materials.” The artificial cellulose fibres can be woven into a fabric to create materials for various applications. The researchers estimate that the production costs of the new material can compete with those of strong synthetic fabrics. “The new material can in principle be used to create bio-degradable components,” adds Roth.

The study describes a new method that mimics nature’s ability to accumulate cellulose nanofibres into almost perfect macroscale arrangements, like in wood. It opens the way for developing nanofibre material that can be used for larger structures while retaining the nanofibres’ tensile strength and ability to withstand mechanical load. “We can now transform the super performance from the nanoscale to the macroscale,” Söderberg underlines. “This discovery is made possible by understanding and controlling the key fundamental parameters essential for perfect nanostructuring, such as particle size, interactions, alignment, diffusion, network formation and assembly.” The process can also be used to control nanoscale assembly of carbon tubes and other nano-sized fibres.

(There are some terminology and spelling issues, which are described at the end of this post.)

Let’s get back to a material that rivals spider silk and steel for strength (for some reason that reminded me of an old carnival game where you’d test your strength by swinging a mallet down on a ‘teeter-totter-like’ board and sending a metal piece up a post to make a bell ring). From a May 16, 2018 DESY press release (also on EurekAlert), which originated the news item,

The ultrastrong material is made of cellulose nanofibres (CNF), the essential building blocks of wood and other plant life. Using a novel production method, the researchers have successfully transferred the unique mechanical properties of these nanofibres to a macroscopic, lightweight material that could be used as an eco-friendly alternative for plastic in airplanes, cars, furniture and other products. “Our new material even has potential for biomedicine since cellulose is not rejected by your body”, explains Söderberg.

The scientists started with commercially available cellulose nanofibres that are just 2 to 5 nanometres in diameter and up to 700 nanometres long. A nanometre (nm) is a millionth of a millimetre. The nanofibres were suspended in water and fed into a small channel, just one millimetre wide and milled in steel. Through two pairs of perpendicular inflows additional deionized water and water with a low pH-value entered the channel from the sides, squeezing the stream of nanofibres together and accelerating it.

This process, called hydrodynamic focussing, helped to align the nanofibres in the right direction as well as their self-organisation into a well-packed macroscopic thread. No glue or any other component is needed, the nanofibres assemble into a tight thread held together by supramolecular forces between the nanofibres, for example electrostatic and Van der Waals forces.

With the bright X-rays from PETRA III the scientists could follow and optimise the process. “The X-rays allow us to analyse the detailed structure of the thread as it forms as well as the material structure and hierarchical order in the super strong fibres,” explains co-author Stephan Roth from DESY, head of the Micro- and Nanofocus X-ray Scattering Beamline P03 where the threads were spun. “We made threads up to 15 micrometres thick and several metres in length.”

Measurements showed a tensile stiffness of 86 gigapascals (GPa) for the material and a tensile strength of 1.57 GPa. “The bio-based nanocellulose fibres fabricated here are 8 times stiffer and have strengths higher than natural dragline spider silk fibres,” says Söderberg. “If you are looking for a bio-based material, there is nothing quite like it. And it is also stronger than steel and any other metal or alloy as well as glass fibres and most other synthetic materials.” The artificial cellulose fibres can be woven into a fabric to create materials for various applications. The researchers estimate that the production costs of the new material can compete with those of strong synthetic fabrics. “The new material can in principle be used to create bio-degradable components,” adds Roth.

The study describes a new method that mimics nature’s ability to accumulate cellulose nanofibres into almost perfect macroscale arrangements, like in wood. It opens the way for developing nanofibre material that can be used for larger structures while retaining the nanofibres’ tensile strength and ability to withstand mechanical load. “We can now transform the super performance from the nanoscale to the macroscale,” Söderberg underlines. “This discovery is made possible by understanding and controlling the key fundamental parameters essential for perfect nanostructuring, such as particle size, interactions, alignment, diffusion, network formation and assembly.” The process can also be used to control nanoscale assembly of carbon tubes and other nano-sized fibres.

Here’s a link to and a citation for the paper,

Multiscale Control of Nanocellulose Assembly: Transferring Remarkable Nanoscale Fibril Mechanics to Macroscale Fibers by Nitesh Mittal, Farhan Ansari, Krishne Gowda V, Christophe Brouzet, Pan Chen, Per Tomas Larsson, Stephan V. Roth, Fredrik Lundell, Lars Wågberg, Nicholas A. Kotov, and L. Daniel Söderberg. ACS Nano, Article ASAP DOI: 10.1021/acsnano.8b01084 Publication Date (Web): May 9, 2018

Copyright © 2018 American Chemical Society

This paper is open access and accompanied by this image illustrating the work,

Courtesy: American Chemical Society and the researchers [Note: The bottom two images of cellulose nanofibres, which are constittuents of an artificial cellulose fibre, appear to be from a scanning tunneling microsscope. Credit: Nitesh Mittal, KTH Stockholm

This news has excited interest at General Electric (GE) (its Wikipedia entry), which has highlighted the work in a May 25, 2018 posting (The 5 Coolest Things On Earth This Week) by Tomas Kellner on the GE Reports blog.

Terminology and spelling

I’ll start with spelling since that’s the easier of the two. In some parts of the world it’s spelled ‘fibres’ and in other parts of the world it’s spelled ‘fibers’. When I write the text in my post, it tends to reflect the spelling used in the news/press releases. In other words, I swing in whichever direction the wind is blowing.

For diehards only

As i understand the terminology situation, nanocellulose and cellulose nanomaterials are interchangeable generic terms. Further, cellulose nanofibres (CNF) seems to be another generic term and it encompasses both cellulose nanocrystals (CNC) and cellulose nanofibrils (CNF). Yes, there appear to be two CNFs. Making matters more interesting is the fact that cellulose nanocrystals were originally christened nanocrystalline cellulose (NCC). For anyone who follows the science and technology scene, it becomes obvious that competing terminologies are the order of the day. Eventually the dust settles and naming conventions are resolved. More or less.

Ordinarily I would reference the Nanocellulose Wikipedia entry in my attempts to clarify the issues but it seems that the writers for the entry have not caught up to the current naming convention for cellulose nanocrystals, still referring to the material as nanocrystalline cellulose. This means, I can’t trust the rest of the entry, which has only one CNF (cellulose nanofibres).

I have paid more attention to the NCC/CNC situation and am not as familiar with the CNF situation. Using, NCC/CNC as an example of a terminology issue, I believe it was first developed in Canada and it was Canadian researchers who were pushing their NCC terminology while the international community pushed back with CNC.

In the end, NCC became a brand name, which was trademarked by CelluForce, a Canadian company in the CNC market. From the CelluForce Products page on Cellulose Nanocrystals,

CNC are not all made equal. The CNC produced by CelluForce is called CelluForce NCCTM and has specific properties and are especially easy to disperse. CelluForce NCCTM is the base material that CelluForce uses in all its products. This base material can be modified and tailored to suit the specific needs in various applications.

These, days CNC is almost universally used but NCC (not as a trademark) is a term still employed on occasion (and, oddly, the researchers are not necessarily Canadian).

Should anyone have better information about terminology issues, please feel free to comment.

I’ve got my eye on you (tissue paper sensors from the University of Washington [state])

University of Washington graduate student, Jinyuan Zhang, demonstrates how wearable sensors can track eye movement. Dennis R. Wise/University of Washington

A February 13, 2018 news item on phys.org announces a technology that can transform tissue paper into a sensor,

University of Washington engineers have turned tissue paper – similar to toilet tissue – into a new kind of wearable sensor that can detect a pulse, a blink of an eye and other human movement. The sensor is light, flexible and inexpensive, with potential applications in health care, entertainment and robotics.

A February 12, 2018 University of Washington news release (also on EurekAlert) by Jackson Holtz, which originated the news item, provides more detail (Note: Links have been removed),

The technology, described in a paper published in January in the journal Advanced Materials Technologies, shows that by tearing tissue paper that’s loaded with nanocomposites and breaking the paper’s fibers, the paper acts as a sensor. It can detect a heartbeat, finger force, finger movement, eyeball movement and more, said Jae-Hyun Chung, a UW associate professor of mechanical engineering and senior author of the research.

Finger sensor

University of Washington graduate student, Jinyuan Zhang, demonstrates how a wearable sensor can measure finger pressure.Dennis R. Wise/University of Washington

“The major innovation is a disposable wearable sensor made with cheap tissue paper,” said Chung. “When we break the specimen, it will work as a sensor.”

These small, Band Aid-sized sensors could have a variety of applications in various fields. For example, monitoring a person’s gait or the movement of their eyes can be used to inspect brain function or a game player’s actions. The sensor could track how a special-needs child walks in a home test, sparing the child the need for hospital visits. Or the sensors could be used in occupational therapy for seniors.

“They can use these sensors and after one-time use, they can be thrown away,” said Chung.

In their research, the scientists used paper similar to toilet tissue. The paper – nothing more than conventional paper towels – is then doused with carbon nanotube-laced water. Carbon nanotubes are tiny materials that create electrical conductivity. Each piece of tissue paper has both horizontal and vertical fibers, so when the paper is torn, the direction of the tear informs the sensor of what’s happened. To trace eye movement, they’re attached to a person’s reading glasses.

For now, the work has been contained to a laboratory, and researchers are hoping to find a suitable commercial use. A provisional patent was filed in December 2017.

The study was funded partially by Samsung Research America through the Think Tank Team Award.

Foot sensor

University of Washington mechanical engineering undergraduate, Yared Shella, demonstrates how foot pressure is measured with a wearable sensor.Dennis R. Wise/University of Washington

Here’s a link to and a citation for the paper,

Fracture-Induced Mechanoelectrical Sensitivities of Paper-Based Nanocomposites by Jinyuan Zhang, Gil-Yong Lee, Chiew Cerwyn, Jinkyu Yang, Fabrice Fondjo, Jong-Hoon Kim, Minoru Taya, Dayong Gao, and Jae-Hyun Chung. Advanced Materials Technologies Vol. 3 Issue 1 DOI: 10.1002/admt.201700266 Version of Record online: 26 JAN 2018

© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

How small can a carbon nanotube get before it stops being ‘electrical’?

Research, which began as an attempt to get reproducible electronics (?) measurements, yielded some unexpected results according ta January 3, 2018 news item on phys.org,

Carbon nanotubes bound for electronics not only need to be as clean as possible to maximize their utility in next-generation nanoscale devices, but contact effects may limit how small a nano device can be, according to researchers at the Energy Safety Research Institute (ESRI) at Swansea University [UK] in collaboration with researchers at Rice University [US].

ESRI Director Andrew Barron, also a professor at Rice University in the USA, and his team have figured out how to get nanotubes clean enough to obtain reproducible electronic measurements and in the process not only explained why the electrical properties of nanotubes have historically been so difficult to measure consistently, but have shown that there may be a limit to how “nano” future electronic devices can be using carbon nanotubes.

Swansea University Issued a January 3, 2018 press release (also on EurekAlert), which originated the news item, explains the work in more detail,

Like any normal wire, semiconducting nanotubes are progressively more resistant to current along their length. But conductivity measurements of nanotubes over the years have been anything but consistent. The ESRI team wanted to know why.

“We are interested in the creation of nanotube based conductors, and while people have been able to make wires their conduction has not met expectations. We were interested in determining the basic sconce behind the variability observed by other researchers.”

They discovered that hard-to-remove contaminants — leftover iron catalyst, carbon and water — could easily skew the results of conductivity tests. Burning them away, Barron said, creates new possibilities for carbon nanotubes in nanoscale electronics.

The new study appears in the American Chemical Society journal Nano Letters.

The researchers first made multiwalled carbon nanotubes between 40 and 200 nanometers in diameter and up to 30 microns long. They then either heated the nanotubes in a vacuum or bombarded them with argon ions to clean their surfaces.

They tested individual nanotubes the same way one would test any electrical conductor: By touching them with two probes to see how much current passes through the material from one tip to the other. In this case, their tungsten probes were attached to a scanning tunneling microscope.

In clean nanotubes, resistance got progressively stronger as the distance increased, as it should. But the results were skewed when the probes encountered surface contaminants, which increased the electric field strength at the tip. And when measurements were taken within 4 microns of each other, regions of depleted conductivity caused by contaminants overlapped, further scrambling the results.

“We think this is why there’s such inconsistency in the literature,” Barron said.

“If nanotubes are to be the next generation lightweight conductor, then consistent results, batch-to-batch, and sample-to-sample, is needed for devices such as motors and generators as well as power systems.”

Annealing the nanotubes in a vacuum above 200 degrees Celsius (392 degrees Fahrenheit) reduced surface contamination, but not enough to eliminate inconsistent results, they found. Argon ion bombardment also cleaned the tubes, but led to an increase in defects that degrade conductivity.

Ultimately they discovered vacuum annealing nanotubes at 500 degrees Celsius (932 Fahrenheit) reduced contamination enough to accurately measure resistance, they reported.

To now, Barron said, engineers who use nanotube fibers or films in devices modify the material through doping or other means to get the conductive properties they require. But if the source nanotubes are sufficiently decontaminated, they should be able to get the right conductivity by simply putting their contacts in the right spot.

“A key result of our work was that if contacts on a nanotube are less than 1 micron apart, the electronic properties of the nanotube changes from conductor to semiconductor, due to the presence of overlapping depletion zones” said Barron, “this has a potential limiting factor on the size of nanotube based electronic devices – this would limit the application of Moore’s law to nanotube devices.”

Chris Barnett of Swansea is lead author of the paper. Co-authors are Cathren Gowenlock and Kathryn Welsby, and Rice alumnus Alvin Orbaek White of Swansea. Barron is the Sêr Cymru Chair of Low Carbon Energy and Environment at Swansea and the Charles W. Duncan Jr.–Welch Professor of Chemistry and a professor of materials science and nanoengineering at Rice.

The Welsh Government Sêr Cymru National Research Network in Advanced Engineering and Materials, the Sêr Cymru Chair Program, the Office of Naval Research and the Robert A. Welch Foundation supported the research.

Rice University has published a January 4, 2018 Rice University news release (also on EurekAlert), which is almost (95%) identical to the press release from Swansea. That’s a bit unusual as collaborating institutions usually like to focus on their unique contributions to the research, hence, multiple news/press releases.

Dexter Johnson, in a January 11, 2018 post on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website,  adds a detail or two while writing in an accessible style.

Here’s a link to and a citation for the paper,

Spatial and Contamination-Dependent Electrical Properties of Carbon Nanotubes by Chris J. Barnett, Cathren E. Gowenlock, Kathryn Welsby, Alvin Orbaek White, and Andrew R. Barron. Nano Lett., Article ASAP DOI: 10.1021/acs.nanolett.7b03390 Publication Date (Web): December 19, 2017

Copyright © 2017 American Chemical Society

This paper is behind a paywall.

Carbon nanotubes for enhanced wheat growth?

It’s been a long time (Oct. 22, 2009 posting; scroll down about 20% of the way) since I’ve written about carbon nanotubes and their possible use in agriculture but now a December 6, 2017 news item on ScienceDaily raises the topic again,

The introduction of purified carbon nanotubes appears to have a beneficial effect on the early growth of wheatgrass, according to Rice University scientists. But in the presence of contaminants, those same nanotubes could do great harm.

The Rice lab of chemist Andrew Barron grew wheatgrass in a hydroponic garden to test the potential toxicity of nanoparticles on the plant. To their surprise, they found one type of particle dispersed in water helped the plant grow bigger and faster.

They suspect the results spring from nanotubes’ natural hydrophobic (water-avoiding) nature that in one experiment apparently facilitated the plants’ enhanced uptake of water.

The research appears in the Royal Society of Chemistry journal Environmental Science: Nano.

A December 6, 2017 Rice University news release (also on EurekAlert), which originated the news item, expands on the theme,

The lab mounted the small-scale study with the knowledge that the industrial production of nanotubes will inevitably lead to their wider dispersal in the environment. The study cited rapid growth in the market for nanoparticles in drugs, cosmetic, fabrics, water filters and military weapons, with thousands of tons produced annually.

Despite their widespread use, Barron said few researchers have looked at the impact of environmental nanoparticles — whether natural or man-made — on plant growth.

The researchers planted wheatgrass seeds in multiple replicates in cotton wool and fed them with dispersions that contained raw single-walled or multi-walled nanotubes, purified single-walled nanotubes or iron oxide nanoparticles that mimicked leftover catalyst often attached to nanotubes. The solutions were either water or tetrahydrofuran (THF), an industrial solvent. Some of the seeds were fed pure water or THF as a control.

Rice University researchers tested the effects of carbon nanotubes on the growth of wheatgrass. While some showed no effect, purified single-walled nanotubes in water (5) enhanced the plants' growth, while the same nanotubes in a solvent (6) retarded their development. The photos at left show the plants after four days and at right after eight days, with odd-numbered plants growing in water and evens in a solvent. Numbers 1 and 2 are controls without nanotubes; 3-4 contain raw single-walled tubes; 5-6 purified single-walled tubes; 7-8 raw multi-walled tubes; 9-10 low-concentration iron-oxide nanoparticles and 11-12 high-concentration iron-oxide nanoparticles.

Rice University researchers tested the effects of carbon nanotubes on the growth of wheatgrass. While some showed no effect, purified single-walled nanotubes in water (5) enhanced the plants’ growth, while the same nanotubes in a solvent (6) retarded their development. The photos at left show the plants after four days and at right after eight days, with odd-numbered plants growing in water and evens in a solvent. Numbers 1 and 2 are controls without nanotubes; 3-4 contain raw single-walled tubes; 5-6 purified single-walled tubes; 7-8 raw multi-walled tubes; 9-10 low-concentration iron-oxide nanoparticles and 11-12 high-concentration iron-oxide nanoparticles. Click on the image for a larger version. Photos by Seung Mook Lee

After eight days, the plantings showed that purified single-walled nanotubes in water enhanced the germination rate and shoot growth of wheatgrass, which grew an average of 13 percent larger than plants in plain water. Raw single- and multi-walled nanotubes and particles in either solution had little effect on the plants’ growth, they found.

However, purified single-walled nanotubes in THF retarded plant development by 45 percent compared to single-walled nanotubes in water, suggesting the nanotubes act as a carrier for the toxic substance.

The concern, Barron said, is that if single-walled nanotubes combine with organic pollutants like pesticides, industrial chemicals or solvents in the environment, they may concentrate and immobilize the toxins and enhance their uptake by plants.

Nothing seen in the limited study indicated whether carbon nanotubes in the environment, and potentially in plants, will rise up the food chain and be harmful to humans, he said.

On the other hand, the researchers said it may be worth looking at whether hydrophobic substrates that mimic the positive effects observed in single-walled nanotubes could be used for high-efficiency channeling of water to seeds.

“Our work confirms the importance of thinking of nanomaterials as part of a system rather in isolation,” Barron said. “It is the combination with other compounds that is important to understand.”

Seung Mook Lee, a former visiting student research assistant from Memorial High School in Houston and now an undergraduate student at the University of California, Berkeley, is lead author of the paper. Co-authors are Rice research scientist Pavan Raja and graduate student Gibran Esquenazi. Barron is the Charles W. Duncan Jr.–Welch Professor of Chemistry and a professor of materials science and nanoengineering at Rice and the Sêr Cymru Chair of Low Carbon Energy and Environment at Swansea University, Wales (UK).

The Welsh Government Sêr Cymru Program and the Robert A. Welch Foundation supported the research.

Here’s a link to and a citation for the paper,

Effect of raw and purified carbon nanotubes and iron oxide nanoparticles on the growth of wheatgrass prepared from the cotyledons of common wheat (triticum aestivum) by Seung Mook Lee, Pavan M. V. Raja, Gibran L. Esquenazi, and Andrew R. Barron. Environ. Sci.: Nano, 2018, Advance Article DOI: 10.1039/C7EN00680B First published on 09 Nov 2017

This paper appears to be behind a paywall.