Tag Archives: corn

Alan Copperman and Amanda Marcotte have a very US-centric discussion about CRISPR and germline editing (designer babies?)

For anyone who needs more information, I ran a three part series on CRISPR germline editing on August 15, 2017:

Part 1 opens the series with a basic description of CRISPR and the germline research that occasioned the series along with some of the ethical issues and patent disputes that are arising from this new technology. CRISPR and editing the germline in the US (part 1 of 3): In the beginning

Part 2 covers three critical responses to the reporting and between them describe the technology in more detail and the possibility of ‘designer babies’.  CRISPR and editing the germline in the US (part 2 of 3): ‘designer babies’?

Part 3 is all about public discussion or, rather, the lack of and need for according to a couple of social scientists. Informally, there is some discussion via pop culture and Joelle Renstrom notes although she is focused on the larger issues touched on by the television series, Orphan Black and as I touch on in my final comments. CRISPR and editing the germline in the US (part 3 of 3): public discussions and pop culture

The news about CRISPR and germline editing by a US team made a bit of a splash even being mentioned on Salon.com, which hardly ever covers any science news (except for some occasional climate change pieces). In a Sept. 4, 2017 salon.com item (an excerpt from the full interview) Amanda Marcotte talks with Dr. Alan Copperman director of the division of reproductive endocrinology and infertility at Mount Sinai Medical Center about the technology and its implications.  As noted in the headline, it’s a US-centric discussion where assumptions are made about who will be leading discussions about the future of the technology.

It’s been a while since I’ve watched it but I believe they do mention in passing that Chinese scientists published two studies about using CRISPR to edit the germline (i think there’s a third Chinese paper in the pipeline) before the American team announced its accomplishment in August 2017. By the way, the first paper by the Chinese caused quite the quandary in April 2015. (My May 14, 2015 posting covers some of the ethical issues; scroll down about 50% of the way for more about the impact of the published Chinese research.)

Also, you might want notice just how smooth Copperman’s responses are almost always emphasizing the benefits of the technology before usually answering the question. He’s had media training and he’s good at this.

They also talk about corn and CRISPR just about the time that agricultural research was announced. Interesting timing, non? (See my Oct. 11, 2017 posting about CRISPR edited corn coming to market in 2020.)

For anyone who wants to skip to the full Marcotte/Cooperman interview, go here on Facebook.

CRISPR corn to come to market in 2020

It seems most of the recent excitement around CRISPR/CAS9 (clustered regularly interspaced short palindromic repeats) has focused on germline editing, specifically human embryos. Most people don’t realize that the first ‘CRISPR’ product is slated to enter the US market in 2020. A June 14, 2017 American Chemical Society news release (also on EurekAlert) provides a preview,

The gene-editing technique known as CRISPR/Cas9 made a huge splash in the news when it was initially announced. But the first commercial product, expected around 2020, could make it to the market without much fanfare: It’s a waxy corn destined to contribute to paper glue and food thickeners. The cover story of Chemical & Engineering News (C&EN), the weekly newsmagazine of the American Chemical Society, explores what else is in the works.

Melody M. Bomgardner, a senior editor at C&EN [Chemical & Engineering News], notes that compared to traditional biotechnology, CRISPR allows scientists to add and remove specific genes from organisms with greater speed, precision and oftentimes, at a lower cost. Among other things, it could potentially lead to higher quality cotton, non-browning mushrooms, drought-resistant corn and — finally — tasty, grocery store tomatoes.

Some hurdles remain, however, before more CRISPR products become available. Regulators are assessing how they should approach crops modified with the technique, which often (though not always) splices genes into a plant from within the species rather than introducing a foreign gene. And scientists still don’t understand all the genes in any given crop, much less know which ones might be good candidates for editing. Luckily, researchers can use CRISPR to find out.

Melody M. Bomgardner’s June 12, 2017 article for C&EN describes in detail how CRISPR could significantly change agriculture (Note: Links have been removed),

When the seed firm DuPont Pioneer first announced the new corn in early 2016, few people paid attention. Pharmaceutical companies using CRISPR for new drugs got the headlines instead.

But people should notice DuPont’s waxy corn because using CRISPR—an acronym for clustered regularly interspaced short palindromic repeats—to delete or alter traits in plants is changing the world of plant breeding, scientists say. Moreover, the technique’s application in agriculture is likely to reach the public years before CRISPR-aided drugs hit the market.

Until CRISPR tools were developed, the process of finding useful traits and getting them into reliable, productive plants took many years. It involved a lot of steps and was plagued by randomness.

“Now, because of basic research in the lab and in the field, we can go straight after the traits we want,” says Zachary Lippman, professor of biological sciences at Cold Spring Harbor Laboratory. CRISPR has been transformative, Lippman says. “It’s basically a freight train that’s not going to stop.”

Proponents hope consumers will embrace gene-edited crops in a way that they did not accept genetically engineered ones, especially because they needn’t involve the introduction of genes from other species—a process that gave rise to the specter of Frankenfood.

But it’s not clear how consumers will react or if gene editing will result in traits that consumers value. And the potential commercial uses of CRISPR may narrow if agriculture agencies in the U.S. and Europe decide to regulate gene-edited crops in the same way they do genetically engineered crops.

DuPont Pioneer expects the U.S. to treat its gene-edited waxy corn like a conventional crop because it does not contain any foreign genes, according to Neal Gutterson, the company’s vice president of R&D. In fact, the waxy trait already exists in some corn varieties. It gives the kernels a starch content of more than 97% amylopectin, compared with 75% amylopectin in regular feed corn. The rest of the kernel is amylose. Amylopectin is more soluble than amylose, making starch from waxy corn a better choice for paper adhesives and food thickeners.

Like most of today’s crops, DuPont’s current waxy corn varieties are the result of decades of effort by plant breeders using conventional breeding techniques.

Breeders identify new traits by examining unusual, or mutant, plants. Over many generations of breeding, they work to get a desired trait into high-performing (elite) varieties that lack the trait. They begin with a first-generation cross, or hybrid, of a mutant and an elite plant and then breed several generations of hybrids with the elite parent in a process called backcrossing. They aim to achieve a plant that best approximates the elite version with the new trait.

But it’s tough to grab only the desired trait from a mutant and make a clean getaway. DuPont’s plant scientists found that the waxy trait came with some genetic baggage; even after backcrossing, the waxy corn plant did not offer the same yield as elite versions without the trait. The disappointing outcome is common enough that it has its own term: yield drag.

Because the waxy trait is native to certain corn plants, DuPont did not have to rely on the genetic engineering techniques that breeders have used to make herbicide-tolerant and insect-resistant corn plants. Those commonly planted crops contain DNA from other species.

In addition to giving some consumers pause, that process does not precisely place the DNA into the host plant. So researchers must raise hundreds or thousands of modified plants to find the best ones with the desired trait and work to get that trait into each elite variety. Finally, plants modified with traditional genetic engineering need regulatory approval in the U.S. and other countries before they can be marketed.

Instead, DuPont plant scientists used CRISPR to zero in on, and partially knock out, a gene for an enzyme that produces amylose. By editing the gene directly, they created a waxy version of the elite corn without yield drag or foreign DNA.

Plant scientists who adopt gene editing may still need to breed, measure, and observe because traits might not work well together or bring a meaningful benefit. “It’s not a panacea,” Lippman says, “but it is one of the most powerful tools to come around, ever.”

It’s an interesting piece which answers the question of why tomatoes from the grocery store don’t taste good.

Gold nanoparticles used to catalyze biofuel waste and create a useful additive

This work is the result of an international collaboration including Russia (from a May 23, 2017 news item on Nanowerk),

Gold nanoparticles serve as catalysts for obtaining valuable chemical products based on glycerol. Scientists from Tomsk Polytechnic University and their international colleagues are developing gold catalysts to recycle one of the main byproducts of biofuel production. The obtained products are in high demand in medicine, agriculture, cosmetic industry and other sectors.

Scientists from the University of Milano (Italy), the National Autonomous University of Mexico, the Institute of Catalysis and Petrochemistry of Madrid (Spain) and the University of Porto (Portugal) take part in the study of gold nanoparticles.

A May 23, 2027 Tomsk Polytechnic University press release, which originated the news item, expands on the theme,

Today the production of biofuels is an important area in many countries. They can be obtained from a great variety of biomasses. In Latin America it is orange and tangerine peel as well as banana skin. In USA biofuels are produced from corn, in the central part of Russia and Europe – from rape (Brassica napus). When processing these plants into biofuels a large amount of glycerol is formed. Its esters constitute the basis of oils and fats. Glycerol is widely used in cosmetic industry as an individual product. However, much more glycerol is obtained in the production of biofuels – many thousands of tons a year. As a result, unused glycerol merely becomes waste,’ describes the problem Alexey Pestryakov, the Head of the Department of Physical and Analytical Chemistry. ‘Now, a lot of research groups are engaged in this issue as to how to transform excess glycerol into other useful products. Along with our foreign colleagues we offered catalysts based on gold nanoparticles.’

The authors of the research note that catalytic oxidation on gold is one of the most effective techniques to obtain from glycerol such useful products as aldehydes, esters, carboxylic acids and other substances.

‘All these substances are products of fine organic chemistry and are in demand in a wide range of industries, first of all, in the pharmaceutical and cosmetic industries. In agriculture they are applied as part of different feed additives, veterinary drugs, fertilizers, plant treatment products, etc.

Thus, unused glycerol after being processed will further be applied,’ sums up Alexey Pestryakov.

Gold catalysts are super active. They can enter into chemical reactions with other substances at room temperature (other catalysts need to be heated), in some case even under zero. However, gold can be a catalyst only at the nanolevel.

‘If you take a piece of gold, even very tiny, there will be no chemical reaction. In order to make gold become chemically active, the size of its particle should be less than two nanometers. Only then it gets its amazing properties,’ explains the scientist.

As a catalyst gold was discovered not so long ago, in the early 1990s, by Japanese chemists.

To date, TPU scientists and their colleagues are not the only ones who develop such catalysts.

Unlike their counterparts the gold catalysts developed at TPU are more stable (they retain their activity longer).

‘A great challenge in this area is that gold catalysts are very rapidly deactivated, not only during work, but even during storage. Our objective is to ensure their longer shelf life. It is also important to use oxygen as an oxidizer, since toxic and corrosive peroxide compounds are often used for such purposes,’ says Alexey Petryakov.

Here’s a link to and a citation for the paper,

More Insights into Support and Preparation Method Effects in Gold Catalyzed Glycerol Oxidation by Nina Bogdanchikova, Inga Tuzovskaya, Laura Prati, Alberto Villa, Alexey Pestryakov, Mario Farías. Current Organic Synthesis VOLUME: 14 ISSUE: 3 Year: 2017Page: [377 – 382] Pages: 6 DOI: 10.2174/1570179413666161031114833

This paper is behind a paywall. (Scroll down the page to find the article.)