Tag Archives: Council of Canadian Academies

2016 thoughts and 2017 hopes from FrogHeart

This is the 4900th post on this blog and as FrogHeart moves forward to 5000, I’m thinking there will be some changes although I’m not sure what they’ll be. In the meantime, here are some random thoughts on the year that was in Canadian science and on the FrogHeart blog.

Changeover to Liberal government: year one

Hopes were high after the Trudeau government was elected. Certainly, there seems to have been a loosening where science communication policies have been concerned although it may not have been quite the open and transparent process people dreamed of. On the plus side, it’s been easier to participate in public consultations but there has been no move (perceptible to me) towards open government science or better access to government-funded science papers.

Open Science in Québec

As far as I know, la crème de la crème of open science (internationally) is the Montreal Neurological Institute (Montreal Neuro; affiliated with McGill University. They bookended the year with two announcements. In January 2016, Montreal Neuro announced it was going to be an “Open Science institution (my Jan. 22, 2016 posting),

The Montreal Neurological Institute (MNI) in Québec, Canada, known informally and widely as Montreal Neuro, has ‘opened’ its science research to the world. David Bruggeman tells the story in a Jan. 21, 2016 posting on his Pasco Phronesis blog (Note: Links have been removed),

The Montreal Neurological Institute (MNI) at McGill University announced that it will be the first academic research institute to become what it calls ‘Open Science.’  As Science is reporting, the MNI will make available all research results and research data at the time of publication.  Additionally it will not seek patents on any of the discoveries made on research at the Institute.

Will this catch on?  I have no idea if this particular combination of open access research data and results with no patents will spread to other university research institutes.  But I do believe that those elements will continue to spread.  More universities and federal agencies are pursuing open access options for research they support.  Elon Musk has opted to not pursue patent litigation for any of Tesla Motors’ patents, and has not pursued patents for SpaceX technology (though it has pursued litigation over patents in rocket technology). …

Then, there’s my Dec. 19, 2016 posting about this Montreal Neuro announcement,

It’s one heck of a Christmas present. Canadian businessmen Larry Tannenbaum and his wife Judy have given the Montreal Neurological Institute (Montreal Neuro), which is affiliated with McGill University, a $20M donation. From a Dec. 16, 2016 McGill University news release,

The Prime Minister of Canada, Justin Trudeau, was present today at the Montreal Neurological Institute and Hospital (MNI) for the announcement of an important donation of $20 million by the Larry and Judy Tanenbaum family. This transformative gift will help to establish the Tanenbaum Open Science Institute, a bold initiative that will facilitate the sharing of neuroscience findings worldwide to accelerate the discovery of leading edge therapeutics to treat patients suffering from neurological diseases.

‟Today, we take an important step forward in opening up new horizons in neuroscience research and discovery,” said Mr. Larry Tanenbaum. ‟Our digital world provides for unprecedented opportunities to leverage advances in technology to the benefit of science.  That is what we are celebrating here today: the transformation of research, the removal of barriers, the breaking of silos and, most of all, the courage of researchers to put patients and progress ahead of all other considerations.”

Neuroscience has reached a new frontier, and advances in technology now allow scientists to better understand the brain and all its complexities in ways that were previously deemed impossible. The sharing of research findings amongst scientists is critical, not only due to the sheer scale of data involved, but also because diseases of the brain and the nervous system are amongst the most compelling unmet medical needs of our time.

Neurological diseases, mental illnesses, addictions, and brain and spinal cord injuries directly impact 1 in 3 Canadians, representing approximately 11 million people across the country.

“As internationally-recognized leaders in the field of brain research, we are uniquely placed to deliver on this ambitious initiative and reinforce our reputation as an institution that drives innovation, discovery and advanced patient care,” said Dr. Guy Rouleau, Director of the Montreal Neurological Institute and Hospital and Chair of McGill University’s Department of Neurology and Neurosurgery. “Part of the Tanenbaum family’s donation will be used to incentivize other Canadian researchers and institutions to adopt an Open Science model, thus strengthening the network of like-minded institutes working in this field.”

Chief Science Advisor

Getting back to the federal government, we’re still waiting for a Chief Science Advisor. Should you be interested in the job, apply here. The job search was launched in early Dec. 2016 (see my Dec. 7, 2016 posting for details) a little over a year after the Liberal government was elected. I’m not sure why the process is taking so long. It’s not like the Canadian government is inventing a position or trailblazing in this regard. Many, many countries and jurisdictions have chief science advisors. Heck the European Union managed to find their first chief science advisor in considerably less time than we’ve spent on the project. My guess, it just wasn’t a priority.

Prime Minister Trudeau, quantum, nano, and Canada’s 150th birthday

In April 2016, Prime Minister Justin Trudeau stunned many when he was able to answer, in an articulate and informed manner, a question about quantum physics during a press conference at the Perimeter Institute in Waterloo, Ontario (my April 18, 2016 post discussing that incident and the so called ‘quantum valley’ in Ontario).

In Sept. 2016, the University of Waterloo publicized the world’s smallest Canadian flag to celebrate the country’s upcoming 150th birthday and to announce its presence in QUANTUM: The Exhibition (a show which will tour across Canada). Here’s more from my Sept. 20, 2016 posting,

The record-setting flag was unveiled at IQC’s [Institute of Quantum Computing at the University of Waterloo] open house on September 17 [2016], which attracted nearly 1,000 visitors. It will also be on display in QUANTUM: The Exhibition, a Canada 150 Fund Signature Initiative, and part of Innovation150, a consortium of five leading Canadian science-outreach organizations. QUANTUM: The Exhibition is a 4,000-square-foot, interactive, travelling exhibit IQC developed highlighting Canada’s leadership in quantum information science and technology.

“I’m delighted that IQC is celebrating Canadian innovation through QUANTUM: The Exhibition and Innovation150,” said Raymond Laflamme, executive director of IQC. “It’s an opportunity to share the transformative technologies resulting from Canadian research and bring quantum computing to fellow Canadians from coast to coast to coast.”

The first of its kind, the exhibition will open at THEMUSEUM in downtown Kitchener on October 14 [2016], and then travel to science centres across the country throughout 2017.

You can find the English language version of QUANTUM: The Exhibition website here and the French language version of QUANTUM: The Exhibition website here.

There are currently four other venues for the show once finishes its run in Waterloo. From QUANTUM’S Join the Celebration webpage,


  • Science World at TELUS World of Science, Vancouver
  • TELUS Spark, Calgary
  • Discovery Centre, Halifax
  • Canada Science and Technology Museum, Ottawa

I gather they’re still looking for other venues to host the exhibition. If interested, there’s this: Contact us.

Other than the flag which is both nanoscale and microscale, they haven’t revealed what else will be included in their 4000 square foot exhibit but it will be “bilingual, accessible, and interactive.” Also, there will be stories.

Hmm. The exhibition is opening in roughly three weeks and they have no details. Strategy or disorganization? Only time will tell.

Calgary and quantum teleportation

This is one of my favourite stories of the year. Scientists at the University of Calgary teleported photons six kilometers from the university to city hall breaking the teleportation record. What I found particularly interesting was the support for science from Calgary City Hall. Here’s more from my Sept. 21, 2016 post,

Through a collaboration between the University of Calgary, The City of Calgary and researchers in the United States, a group of physicists led by Wolfgang Tittel, professor in the Department of Physics and Astronomy at the University of Calgary have successfully demonstrated teleportation of a photon (an elementary particle of light) over a straight-line distance of six kilometres using The City of Calgary’s fibre optic cable infrastructure. The project began with an Urban Alliance seed grant in 2014.

This accomplishment, which set a new record for distance of transferring a quantum state by teleportation, has landed the researchers a spot in the prestigious Nature Photonics scientific journal. The finding was published back-to-back with a similar demonstration by a group of Chinese researchers.

The research could not be possible without access to the proper technology. One of the critical pieces of infrastructure that support quantum networking is accessible dark fibre. Dark fibre, so named because of its composition — a single optical cable with no electronics or network equipment on the alignment — doesn’t interfere with quantum technology.

The City of Calgary is building and provisioning dark fibre to enable next-generation municipal services today and for the future.

“By opening The City’s dark fibre infrastructure to the private and public sector, non-profit companies, and academia, we help enable the development of projects like quantum encryption and create opportunities for further research, innovation and economic growth in Calgary,” said Tyler Andruschak, project manager with Innovation and Collaboration at The City of Calgary.

As for the science of it (also from my post),

A Sept. 20, 2016 article by Robson Fletcher for CBC (Canadian Broadcasting News) online provides a bit more insight from the lead researcher (Note: A link has been removed),

“What is remarkable about this is that this information transfer happens in what we call a disembodied manner,” said physics professor Wolfgang Tittel, whose team’s work was published this week in the journal Nature Photonics.

“Our transfer happens without any need for an object to move between these two particles.”

A Sept. 20, 2016 University of Calgary news release by Drew Scherban, which originated the news item, provides more insight into the research,

“Such a network will enable secure communication without having to worry about eavesdropping, and allow distant quantum computers to connect,” says Tittel.

Experiment draws on ‘spooky action at a distance’

The experiment is based on the entanglement property of quantum mechanics, also known as “spooky action at a distance” — a property so mysterious that not even Einstein could come to terms with it.

“Being entangled means that the two photons that form an entangled pair have properties that are linked regardless of how far the two are separated,” explains Tittel. “When one of the photons was sent over to City Hall, it remained entangled with the photon that stayed at the University of Calgary.”

Next, the photon whose state was teleported to the university was generated in a third location in Calgary and then also travelled to City Hall where it met the photon that was part of the entangled pair.

“What happened is the instantaneous and disembodied transfer of the photon’s quantum state onto the remaining photon of the entangled pair, which is the one that remained six kilometres away at the university,” says Tittel.

Council of Canadian Academies and The State of Science and Technology and Industrial Research and Development in Canada

Preliminary data was released by the CCA’s expert panel in mid-December 2016. I reviewed that material briefly in my Dec. 15, 2016 post but am eagerly awaiting the full report due late 2017 when, hopefully, I’ll have the time to critique the material, and which I hope will have more surprises and offer greater insights than the preliminary report did.


Thank you to my online colleagues. While we don’t interact much it’s impossible to estimate how encouraging it is to know that these people continually participate and help create the nano and/or science blogosphere.

David Bruggeman at his Pasco Phronesis blog keeps me up-to-date on science policy both in the US, Canada, and internationally, as well as, keeping me abreast of the performing arts/science scene. Also, kudos to David for raising my (and his audience’s) awareness of just how much science is discussed on late night US television. Also, I don’t know how he does it but he keeps scooping me on Canadian science policy matters. Thankfully, I’m not bitter and hope he continues to scoop me which will mean that I will get the information from somewhere since it won’t be from the Canadian government.

Tim Harper of Cientifica Research keeps me on my toes as he keeps shifting his focus. Most lately, it’s been on smart textiles and wearables. You can download his latest White Paper titled, Fashion, Smart Textiles, Wearables and Disappearables, from his website. Tim consults on nanotechnology and other emerging technologies at the international level.

Dexter Johnson of the Nanoclast blog on the IEEE (Institute of Electrical and Electronics Engineers) website consistently provides informed insight into how a particular piece of research fits into the nano scene and often provides historical details that you’re not likely to get from anyone else.

Dr. Andrew Maynard is currently the founding Director of the Risk Innovation Lab at the University of Arizona. I know him through his 2020 Science blog where he posts text and videos on many topics including emerging technologies, nanotechnologies, risk, science communication, and much more. Do check out 2020 Science as it is a treasure trove.

2017 hopes and dreams

I hope Canada’s Chief Science Advisor brings some fresh thinking to science in government and that the Council of Canadian Academies’ upcoming assessment on The State of Science and Technology and Industrial Research and Development in Canada is visionary. Also, let’s send up some collective prayers for the Canada Science and Technology Museum which has been closed since 2014 (?) due to black mold (?). It would be lovely to see it open in time for Canada’s 150th anniversary.

I’d like to see the nanotechnology promise come closer to a reality, which benefits as many people as possible.

As for me and FrogHeart, I’m not sure about the future. I do know there’s one more Steep project (I’m working with Raewyn Turner on a multiple project endeavour known as Steep; this project will involve sound and gold nanoparticles).

Should anything sparkling occur to me, I will add it at a future date.

In the meantime, Happy New Year and thank you from the bottom of my heart for reading this blog!

Preliminary data from third assessment of The State of Science and Technology and Industrial Research and Development in Canada

It’s a little misleading to call this a third assessment as the first two were titled “The state of science and technology” whereas this time they’ve thrown “industrial research and development” (which previously rated its own separate assessment) into the mix as I noted in my July 1, 2016 post about this upcoming report by the Council of Canadian Academies (CCA).

To whet our appetites, the CCA’s expert panel has released some preliminary data according to a Dec. 15, 2016 news release (received via email),

The Council of Canadian Academies is pleased to release the Preliminary Data Update on Canadian Research Performance and International Reputation. This document represents the early work of the Expert Panel on the State of Science and Technology and Industrial Research and Development in Canada. It contains a preliminary update of key bibliometric and opinion survey data comparable to that published in the 2012 CCA assessment on the state of science and technology in Canada.

“This update provides a window into some of the data we are using to explore the state of research, development, and innovation in Canada,” said Max Blouw, Chair of the Expert Panel and President and Vice-Chancellor of Wilfrid Laurier University. “Our intention is to provide timely access to a body of evidence on Canada’s research performance that may serve as an important input to ongoing federal policy development.”

Highlights of this work include updated data on research output and collaboration, research impact, international reputation and stature, and data on research fields.

This data update is part of a larger project to assess the state of research, development, and innovation in Canada. The Expert Panel continues to work on its final report, which is expected to be released in late 2017.

I have taken a look at the material and these are the research highlights from the preliminary report,

Research Output and Collaboration
• Canada ranks ninth in the world in research publication output and accounts for 3.8% of the world’s output.
• Canada’s research output is growing at a rate comparable to that exhibited by most developed countries. Developed countries, however, are increasingly being overshadowed by the dramatic growth in research production in China and other emerging economies over the past decade.
• Canadian researchers continue to be highly collaborative internationally, working with international co-authors in nearly 46% of their publications.

Research Impact
• Citation-based indicators show that Canadian research continues to have relatively high levels of impact. By ARC score, Canada ranks sixth out of leading countries: its research is cited 43% more than the world average across all fields of study.
• The impact of Canada’s research, as reflected in citations (ARC, MRC, and HCP1%), has increased in recent years. However, these increases have been often matched or exceeded by other countries. Canada’s rank by ARC declined slightly in many fields as a result.

International Reputation and Stature
• Canada’s research contributions continue to be well regarded internationally according to a survey of top-cited researchers around the world. The share of top-cited researchers who rate Canada’s research as strong in their field of study rose from 68% in 2012 to 72% in 2016.
• Approximately 36% of surveyed top-cited researchers identify Canada as one of the top five countries in their research fields. As a result, Canada ranks fourth overall, behind the United States, United Kingdom, and Germany.
• The share of top-cited researchers who have worked or studied in Canada, or collaborated with Canadians, has increased since 2012.

Data by Field of Research
• Preliminary analysis of Canadian research by field reveals patterns similar to those presented in the 2012 S&T report.
• All fields of research in Canada were cited at rates above the world average in 2009–2014. Few fields in Canada have experienced major shifts in output or impact in recent years, though the specialization rate of Clinical Medicine gradually increased and that of Engineering decreased relative to other countries.
• Fields in which Canada has both a relatively high degree of specialization and a high impact (above the G7 average) include Clinical Medicine; Biology; Information and Communication Technologies; Agriculture, Fisheries and Forestry; Earth and Environmental Sciences; and Economics and Business.
• Canada’s research contributions in Physics and Astronomy continue to be highly cited despite a lower publication output than might be expected. Chemistry and Enabling and Strategic Technologies (Energy, Biotechnology, Bioinformatics, Nanoscience and Nanotechnology, Optoelectronics and Photonics) are other areas in which Canada’s research output is low relative to other countries.
• When analyzed by field of study, results from the international survey of top-cited researchers are consistent with those from the 2012 survey. Canada continues to rank among the top five countries in three-quarters of fields.
• Canada’s research reputation is the weakest in core fields of the natural sciences such as Mathematics and Statistics, Physics and Astronomy, Chemistry, Engineering, and in Enabling and Strategic Technologies. [p. 5 PDF; p. v print]

As the panel notes they have the same problem as their predecessors. Bibliometric data, i. e., the number of papers your researchers have published, how often they’ve been cited, and in which journals (impact factor) they’ve been published are problematic as indicators of scientific progress.  Excellent research can end up in an obscure journal and be ignored for decades while more problematic (substandard) work may be published in a prestigious (high impact) journal thereby gaining more attention.  Unfortunately, despite these and other issues, bibliometric data remains a basic indicator of scientific progress. The expert panel for the 2012 report (State of Science and Technology) attempted to mitigate some of the problems by using other indicators. If I remember rightly, one of those indicators was an international survey of researchers (which is also problematic in some ways) about their awareness of and opinion of Canadian research. It seems this expert panel has also gone that route,

Qualitative evidence can be a useful complement to bibliometric data in assessing research performance, especially when drawing on the insights of researchers and scientists who are highly accomplished in their fields. Similar to the 2012 S&T report, a survey was sent to the top 1% of highly cited researchers by field worldwide, asking them to identify the leading countries in their areas of expertise. The results of this survey are comparable to those from 2012 and illustrate that Canada’s international research reputation remains strong across most fields of research.


Researchers were asked to identify the top five countries in their field and sub-field of expertise. As shown in Figure 6.1, 35.5% of respondents (compared with 37% in the 2012 survey) from across all fields of research rated Canada within the top five countries in their field. Canada ranks fourth out of all countries, behind the United States, United Kingdom, and Germany and ahead of France. This represents a change of about 1.5 percentage points from the overall results of the 2012 survey. There was a three percentage point decrease in how often France is ranked among the top five countries; the ordering of the top five countries, however, remains the same.

When asked to rate Canada’s research strength among other advanced countries in their field of expertise, 72% of respondents rated Canadian research as “strong” (corresponds to a score of 5 or higher on a 7-point scale), and 47% rated it as “very strong” (Figure 6.1 and Table 6.1). These ratings increased from 68% and 42%, respectively, in the 2012 report.16 [p. 29 PDF, p. 23 print]

Taking into account that there are no perfect measures, here’s what the preliminary report has to say overall,

Canada continues to rank within the top 10 countries in total output of research publications, but fell from seventh place to ninth between 2003–2008 and 2009–2014. Canada produces 3.8% of the world output.6 During the period, Canadian researchers produced about 496,696 publications (see Table 3.1).7 In the 2012 S&T report, Canada ranked seventh in 2005–2010 with roughly 395,000 scientific publications. Although India and Italy overtook Canada to reach the seventh and eighth positions, respectively, the distance separating Canada from Italy is negligible (over 2,000 publications). The United States continues to lead in number of publications, but the gap with China is rapidly narrowing.

This data update presents country rankings in a similar manner to the 2012 S&T report. Note that research output may be normalized by various measures to produce alternative rankings. For example, output can be examined relative to the size of the population or the economy of a country.

Figure 3.1 shows overall output of publications relative to a country’s population. By this measure, Canada ranks fifth with about 14 publications per 1,000 inhabitants in 2009–2014. This indicator shows China’s rank to be lower on a per capita basis; however, this could also indicate China’s potential for considerable future growth. For countries like Switzerland, high publication output reflects a high level of international collaboration and the presence of major scientific research facilities, such as CERN, which are associated with global networks of researchers. [p. 11 PDF; p. 5 print]

This represents a few bits of information from the panel’s 34 pp. preliminary report. If you have the time, do take a look at it. As these things go, it’s readable. One last comment, the panel notes that nothing about industrial research has been included in the preliminary report.

Council of Canadian Academies and science policy for Alberta

The Council of Canadian Academies (CCA) has expanded its approach from assembling expert panels to report on questions posed by various Canadian government agencies (assessments) to special reports from a three-member panel and, now, to a workshop on the province of Alberta’s science policy ideas. From an Oct. 27, 2016 CCA news release (received via email),

The Council of Canadian Academies (CCA) is pleased to announce that it is undertaking an expert panel workshop on science policy ideas under development in Alberta. The workshop will engage national and international experts to explore various dimensions of sub-national science systems and the role of sub-national science policy.

“We are pleased to undertake this project,” said Eric M. Meslin, PhD, FCAHS, President and CEO of the CCA. “It is an assessment that could discuss strategies that have applications in Alberta, across Canada, and elsewhere.”

A two-day workshop, to be undertaken in November 2016, will bring together a multidisciplinary and multi-sectoral group of leading Canadian and international experts to review, validate, and advance work being done on science policy in Alberta. The workshop will explore the necessary considerations when creating science policy at the sub-national level. Specifically it will:

  • Debate and validate the main outcomes of a sub-national science enterprise, particularly in relation to knowledge, human, and social capital.
  • Identify the key elements and characteristics of a successful science enterprise (e.g., funding, trust, capacity, science culture, supporting interconnections and relationships) with a particular focus at a sub-national level.
  • Explore potential intents of a sub-national science policy, important features of such a policy, and the role of the policy in informing investment decisions.

To lead the design of the workshop, complete the necessary background research, and develop the workshop summary report, the CCA has appointed a five member Workshop Steering Committee, chaired by Joy Johnson, FCAHS, Vice President, Research, Simon Fraser University. The other Steering Committee members are: Paul Dufour, Adjunct Professor, Institute for Science, Society and Policy; University of Ottawa, Principal, Paulicy Works; Janet Halliwell, Principal, J.E. Halliwell Associates, Inc.; Kaye Husbands Fealing, Chair and Professor, School of Public Policy, Georgia Tech; and Marc LePage, President and CEO, Genome Canada.

The CCA, under the guidance of its Scientific Advisory Committee, and in collaboration with the Workshop Steering Committee, is now assembling a multidisciplinary, multi-sectoral, group of experts to participate in the two-day workshop. The CCA’s Member Academies – the Royal Society of Canada, the Canadian Academy of Engineering, and the Canadian Academy of Health Sciences – are a key source of membership for expert panels. Many experts are also Fellows of the Academies.

The workshop results will be published in a final summary report in spring 2017. This workshop assessment is supported by a grant from the Government of Alberta.

By comparison with the CCA’s last assessment mentioned here in a July 1, 2016 posting (The State of Science and Technology and Industrial Research and Development in Canada), this workshop has a better balance. The expert panel is being chaired by a woman (the first time I’ve seen that in a few years) and enough female members to add up to 60% representation. No representation from Québec (perhaps not a surprise given this is Alberta) but there is 40% from the western provinces given there is representation from both BC and Alberta. Business can boast 30% (?) with Paul Dufour doing double duty as both academic and business owner. It’s good to see international representation and one day I hope to see it from somewhere other than the US, the UK, and/or the Europe Union. Maybe Asia?

You can find contact information on the CCA’s Towards a Science Policy in Alberta webpage.

One comment, I find the lack of a specific date for the workshop interesting. It suggests either they were having difficulty scheduling or they wanted to keep the ‘unwashed’ away.

The State of Science and Technology (S&T) and Industrial Research and Development (IR&D) in Canada

Earlier this year I featured (in a July 1, 2016 posting) the announcement of a third assessment of science and technology in Canada by the Council of Canadian Academies. At the time I speculated as to the size of the ‘expert panel’ making the assessment as they had rolled a second assessment (Industrial Research and Development) into this one on the state of science and technology. I now have my answer thanks to an Oct. 17, 2016 Council of Canadian Academies news release announcing the chairperson (received via email; Note: Links have been removed and emphases added for greater readability),

The Council of Canadian Academies (CCA) is pleased to announce Dr. Max Blouw, President and Vice-Chancellor of Wilfrid Laurier University, as Chair of the newly appointed Expert Panel on the State of Science and Technology (S&T) and Industrial Research and Development (IR&D) in Canada.

“Dr. Blouw is a widely respected leader with a strong background in research and academia,” said Eric M. Meslin, PhD, FCAHS, President and CEO of the CCA. “I am delighted he has agreed to serve as Chair for an assessment that will contribute to the current policy discussion in Canada.”

As Chair of the Expert Panel, Dr. Blouw will work with the multidisciplinary, multi-sectoral Expert Panel to address the following assessment question, referred to the CCA by Innovation, Science and Economic Development Canada (ISED):

What is the current state of science and technology and industrial research and development in Canada?

Dr. Blouw will lead the CCA Expert Panel to assess the available evidence and deliver its final report by late 2017. Members of the panel include experts from different fields of academic research, R&D, innovation, and research administration. The depth of the Panel’s experience and expertise, paired with the CCA’s rigorous assessment methodology, will ensure the most authoritative, credible, and independent response to the question.

“I am very pleased to accept the position of Chair for this assessment and I consider myself privileged to be working with such an eminent group of experts,” said Dr. Blouw. “The CCA’s previous reports on S&T and IR&D provided crucial insights into Canada’s strengths and weaknesses in these areas. I look forward to contributing to this important set of reports with new evidence and trends.”

Dr. Blouw was Vice-President Research, Associate Vice-President Research, and Professor of Biology, at the University of Northern British Columbia, before joining Wilfrid Laurier as President. Dr. Blouw served two terms as the chair of the university advisory group to Industry Canada and was a member of the adjudication panel for the Ontario Premier’s Discovery Awards, which recognize the province’s finest senior researchers. He recently chaired the International Review Committee of the NSERC Discovery Grants Program.

For a complete list of Expert Panel members, their biographies, and details on the assessment, please visit the assessment page. The CCA’s Member Academies – the Royal Society of Canada, the Canadian Academy of Engineering, and the Canadian Academy of Health Sciences – are a key source of membership for expert panels. Many experts are also Fellows of the Academies.

The Expert Panel on the State of S&T and IR&D
Max Blouw, (Chair) President and Vice-Chancellor of Wilfrid Laurier University
Luis Barreto, President, Dr. Luis Barreto & Associates and Special Advisor, NEOMED-LABS
Catherine Beaudry, Professor, Department of Mathematical and Industrial Engineering, Polytechnique Montréal
Donald Brooks, FCAHS, Professor, Pathology and Laboratory Medicine, and Chemistry, University of British Columbia
Madeleine Jean, General Manager, Prompt
Philip Jessop, FRSC, Professor, Inorganic Chemistry and Canada Research Chair in Green Chemistry, Department of Chemistry, Queen’s University; Technical Director, GreenCentre Canada
Claude Lajeunesse, FCAE, Corporate Director and Interim Chair of the Board of Directors, Atomic Energy of Canada Ltd.
Steve Liang, Associate Professor, Geomatics Engineering, University of Calgary; Director, GeoSensorWeb Laboratory; CEO, SensorUp Inc.
Robert Luke, Vice-President, Research and Innovation, OCAD University
Douglas Peers, Professor, Dean of Arts, Department of History, University of Waterloo
John M. Thompson, O.C., FCAE, Retired Executive Vice-Chairman, IBM Corporation
Anne Whitelaw, Associate Dean Research, Faculty of Fine Arts and Associate Professor, Department of Art History, Concordia University
David A. Wolfe, Professor, Political Science and Co-Director, Innovation Policy Lab, Munk School of Global Affairs, University of Toronto

You can find more information about the expert panel here and about this assessment and its predecesors here.

A few observations, given the size of the task this panel is lean. As well, there are three women in a group of 13 (less than 25% representation) in 2016? It’s Ontario and Québec-dominant; only BC and Alberta rate a representative on the panel. I hope they will find ways to better balance this panel and communicate that ‘balanced story’ to the rest of us. On the plus side, the panel has representatives from the humanities, arts, and industry in addition to the expected representatives from the sciences.

Dear Science Minister Kirsty Duncan and Science, Innovation and Economic Development Minister Navdeep Bains: a Happy Canada Day! open letter

Dear Minister of Science Kirsty Duncan and Minister of Science, Innovation and Economic Development Navdeep Bains,

Thank you both. It’s been heartening to note some of the moves you’ve made since entering office. Taking the muzzles off Environment Canada and Natural Resources Canada scientists was a big relief and it was wonderful to hear that the mandatory longform census was reinstated along with the Experimental Lakes Area programme. (Btw, I can’t be the only one who’s looking forward to hearing the news once Canada’s Chief Science Officer is appointed. In the fall, eh?)

Changing the National Science and Technology week by giving it a news name “Science Odyssey” and rescheduling it from the fall to the spring seems to have revitalized the effort. Then, there was the news about a review focused on fundamental science (see my June 16, 2016 post). It seems as if the floodgates have opened or at least communication about what’s going on has become much freer. Brava and Bravo!

The recently announced (June 29, 2016) third assessment on the State of S&T (Science and Technology) and IR&D (Industrial Research and Development; my July 1, 2016 post features the announcement) by the Council of Canadian Academies adds to the impression that you both have adopted a dizzying pace for science of all kinds in Canada.

With the initiatives I’ve just mentioned in mind, it would seem that encouraging a more vital science culture and and re-establishing science as a fundamental part of Canadian society is your aim.

Science education and outreach as a whole population effort

It’s facey to ask for more but that’s what I’m going to do.

In general, the science education and outreach efforts in Canada have focused on children. This is wonderful but not likely to be as successful as we would hope when a significant and influential chunk of the population is largely ignored: adults. (There is a specific situation where outreach to adults is undertaken but more about that later.)

There is research suggesting that children’s attitudes to science and future careers is strongly influenced by their family. From my Oct. 9, 2013 posting,

One of the research efforts in the UK is the ASPIRES research project at King’s College London (KCL), which is examining children’s attitudes to science and future careers. Their latest report, Ten Science Facts and Fictions: the case for early education about STEM careers (PDF), is profiled in a Jan. 11, 2012 news item on physorg.com (from the news item),

Professor Archer [Louise Archer, Professor of Sociology of Education at King’s] said: “Children and their parents hold quite complex views of science and scientists and at age 10 or 11 these views are largely positive. The vast majority of children at this age enjoy science at school, have parents who are supportive of them studying science and even undertake science-related activities in their spare time. They associate scientists with important work, such as finding medical cures, and with work that is well paid.

“Nevertheless, less than 17 per cent aspire to a career in science. These positive impressions seem to lead to the perception that science offers only a very limited range of careers, for example doctor, scientist or science teacher. It appears that this positive stereotype is also problematic in that it can lead people to view science as out of reach for many, only for exceptional or clever people, and ‘not for me’. [emphases mine]

Family as a bigger concept

I suggest that ‘family’ be expanded to include the social environment in which children operate. When I was a kid no one in our family or extended group of friends had been to university let alone become a scientist. My parents had aspirations for me but when it came down to brass tacks, even though I was encouraged to go to university, they were much happier when I dropped out and got a job.

It’s very hard to break out of the mold. The odd thing about it all? I had two uncles who were electricians which when you think about it means they were working in STEM (science, technology,engineering, mathematics) jobs. Electricians, then and now. despite their technical skills, are considered tradespeople.

It seems to me that if more people saw themselves as having STEM or STEM-influenced occupations: hairdressers, artists, automechanics, plumbers, electricians, musicians, etc., we might find more children willing to engage directly in STEM opportunities. We might also find there’s more public support for science in all its guises.

That situation where adults are targeted for science outreach? It’s when the science is considered controversial or problematic and, suddenly, public (actually they mean voter) engagement or outreach is considered vital.


Given the initiatives you both have undertaken and Prime Minister Trudeau’s recent public outbreak of enthusiasm for and interest in quantum computing (my April 18, 2016 posting), I’m hopeful that you will consider the notion and encourage (fund?) science promotion programmes aimed at adults. Preferably attention-grabbing and imaginative programmes.

Should you want to discuss the matter further (I have some suggestions), please feel free to contact me.

Regardless, I’m very happy to see the initiatives that have been undertaken and, just as importantly, the communication about science.

Yours sincerely,

Maryse de la Giroday
(FrogHeart blog)

P.S. I very much enjoyed the June 22, 2016 interview with Léo Charbonneau for University Affairs,

UA: Looking ahead, where would you like Canada to be in terms of research in five to 10 years?

Dr. Duncan: Well, I’ll tell you, it breaks my heart that in a 10-year period we fell from third to eighth place among OECD countries in terms of HERD [government expenditures on higher education research and development as a percentage of gross domestic product]. That should never have happened. That’s why it was so important for me to get that big investment in the granting councils.

Do we have a strong vision for science? Do we have the support of the research community? Do we have the funding systems that allow our world-class researchers to do the work they want do to? And, with the chief science officer, are we building a system where we have the evidence to inform decision-making? My job is to support research and to make sure evidence makes its way to the cabinet table.

As stated earlier, I’m hoping you will expand your vision to include Canadian society, not forgetting seniors (being retired or older doesn’t mean that you’re senile and/or incapable of public participation), and supporting Canada’s emerging science media environment.

P.P.S. As a longstanding observer of the interplay between pop culture, science, and society I was much amused and inspired by news of Justin Trudeau’s emergence as a character in a Marvel comic book (from a June 28, 2016 CBC [Canadian Broadcasting Corporation] news online item),

Trudeau Comic Cover 20160628

The variant cover of the comic Civil War II: Choosing Sides #5, featuring Prime Minister Justin Trudeau surrounded by the members of Alpha Flight: Sasquatch, top, Puck, bottom left, Aurora, right, and Iron Man in the background. (The Canadian Press/Ramon Perez)

Make way, Liberal cabinet: Prime Minister Justin Trudeau will have another all-Canadian crew in his corner as he suits up for his latest feature role — comic book character.

Trudeau will grace the variant cover of issue No. 5 of Marvel’s “Civil War II: Choosing Sides,” due out Aug. 31 [2016].

Trudeau is depicted smiling, sitting relaxed in the boxing ring sporting a Maple Leaf-emblazoned tank, black shorts and red boxing gloves. Standing behind him are Puck, Sasquatch and Aurora, who are members of Canadian superhero squad Alpha Flight. In the left corner, Iron Man is seen with his arms crossed.

“I didn’t want to do a stuffy cover — just like a suit and tie — put his likeness on the cover and call it a day,” said award-winning Toronto-based cartoonist Ramon Perez.

“I wanted to kind of evoke a little bit of what’s different about him than other people in power right now. You don’t see (U.S. President Barack) Obama strutting around in boxing gear, doing push-ups in commercials or whatnot. Just throwing him in his gear and making him almost like an everyday person was kind of fun.”

The variant cover featuring Trudeau will be an alternative to the main cover in circulation showcasing Aurora, Puck, Sasquatch and Nick Fury.

It’s not the first time a Canadian Prime Minister has been featured in a Marvel comic book (from the CBC news item),

Trudeau Comic Cover 20160628

Prime Minister Pierre Trudeau in 1979’s Volume 120 of The Uncanny X-Men. (The Canadian Press/Marvel)

Trudeau follows in the prime ministerial footsteps of his late father, Pierre, who graced the pages of “Uncanny X-Men” in 1979.

The news item goes on to describe artist/writer Chip Zdarsky’s (Edmonton-born) ideas for the 2016 story.

h/t to Reva Seth’s June 29, 2016 article for Fast Company for pointing me to Justin Trudeau’s comic book cover.

Third assessment of The State of Science and Technology and Industrial Research and Development in Canada announced

The last State of Science and Technology and Industrial Research and Development in Canada assessments were delivered in 2006* and 2013 respectively, which seems a shortish gap between assessments, as these things go. On a positive note, this may mean that the government has seen the importance of a more agile approach as the pace of new discoveries is ever quickening. Here’s more from a June 29, 2016 announcement from the Canadian Council of Academies (CCA; received via email),

CCA to undertake third assessment on the State of S&T and IR&D

June 29, 2016 (Ottawa, ON) – The Council of Canadian Academies (CCA) is pleased to announce the launch of a new assessment on the state of science and technology (S&T) and industrial research and development (IR&D) in Canada. This assessment, referred by Innovation, Science and Economic Development Canada (ISED), will be the third installment in the state of S&T and IR&D series by the CCA.

“I’m delighted the government continues to recognize the value of the CCA’s state of S&T and IR&D reports,” said Eric M. Meslin, President and CEO of the Council of Canadian Academies. “An updated assessment will enable policy makers, and others, such as industry leaders, universities, and the private sector, to draw on current Canadian S&T and IR&D data to make evidence-informed decisions.”

The CCA’s reports on the state of S&T and state of IR&D provide valuable data and analysis documenting Canada’s S&T and IR&D strengths and weaknesses. New data will help identify trends that have emerged in the Canadian S&T and IR&D environment in the past four to five years.

Under the guidance of the CCA’s Scientific Advisory Committee, a multidisciplinary, multi-sectoral expert panel is being assembled. It is anticipated that the final report will be released in a two-part sequence, with an interim report released in late 2016 and a final report released in 2017.

To learn more about this and the CCA’s other active assessments, visit Assessments in Progress.

The announcement offers information about the series of assessments,

About the State of S&T and IR&D Assessment Series

Current charge: What is the current state of science and technology and industrial research and development in Canada?

Sponsor: Innovation, Science and Economic Development Canada (ISED)

This assessment will be the third edition in the State of S&T and Industrial R&D assessment series.

Background on the Series

  • In 2006, the CCA completed its first report on The State of Science and Technology in Canada. The findings were integral to the identification of S&T priority areas in the federal government’s 2007 S&T strategy,  Mobilizing Science and Technology to Canada’s Advantage [the original link was not functional; I found the report on an archived page].
  • In 2010 the CCA was again asked to assess the state of S&T in Canada.  The State of Science and Technology in Canada, 2012 updated the 2006 report and provided a thorough analysis of the scientific disciplines and technological applications where Canada excelled in a global context. It also identified Canada’s S&T strengths, regional specializations, and emerging research areas.
  • In 2013, the CCA published The State of Industrial R&D in Canada. This report provided an in-depth analysis of research and development activities in Canadian industries and is one of the most detailed and systematic studies of the state of IR&D ever undertaken in Canada.

I wrote three posts after the second assessment was delivered in 2012. My Sept. 27, 2012 posting was an announcement of its launch and then I offered a two-part critique: part 1 was in a Dec. 28, 2012 posting and part 2 was in a second Dec. 28, 2012 posting. I did not write about the 2013 report on Canada’s industrial research and development efforts.

Given the size of the 2012 assessment of science and technology at 232 pp. (PDF) and the 2013 assessment of industrial research and development at 220 pp. (PDF) with two expert panels, the imagination boggles at the potential size of the 2016 expert panel and of the 2016 assessment combining the two areas.

Given the timing for the interim report (late 2016), I wonder if they are planning to release at the 2016 Canadian Science Policy Conference, which is being held in Ottawa from Nov. 8 – 10, 2016 (for the second year in a row and, I believe, the third time in eight conferences).

*’2012′ changed to ‘2006’ on Oct. 17, 2016.

Canadian ‘studies of science’ news: career opportunity for postdoc (2nd call), summer school in India, and a Situating Science update

The deadline for a posdoctoral fellowship with Atlantic Canada’s Cosmoplitanism group (which morphed out of the Situating Science group) is coming up shortly (March 2, 2015). I wrote about this opportunity in a Dec. 12, 2014 post part of which I will reproduce here,

Postdoctoral Fellowship

Science and Technology Studies (STS) / History and Philosophy of Science, Technology, Medicine (HPSTM)

University of King’s College / Dalhousie University, Halifax, NS
Duration: 1 year, with option to renew for second year pending budget and project restrictions and requirements
Application Deadline: Monday March 2 2015

The University of King’s College and Dalhousie University announce a postdoctoral fellowship award in Science and Technology Studies (STS)/ History and Philosophy of Science, Technology and Medicine (HPSTM), associated with the SSHRC [Canada Social Sciences and Humanities Research Council] Partnership Development Grant, “Cosmopolitanism and the Local in Science and Nature: Creating an East/West Partnership,” a partnership development between institutions in Canada, India and Southeast Asia aimed at establishing an East/West research network on “Cosmopolitanism” in science. The project closely examines the ideas, processes and negotiations that inform the development of science and scientific cultures within an increasingly globalized landscape. A detailed description of the project can be found at: www.CosmoLocal.org.

Funding and Duration:
The position provides a base salary equivalent to $35,220 plus benefits (EI, CPP, Medical and Dental), and with the possibility of augmenting the salary through teaching or other awards, depending on the host department. The fellow would be entitled to benefits offered by University of King’s College or Dalhousie University. The successful applicant will begin their 12-month appointment between April 1st and July 1st, 2015, subject to negotiation and candidate’s schedule. Contingent on budget and project requirements, the fellowship may be extended for a second year with an annual increase as per institutional standards.

The appointment will be housed at University of King’s College and/or in one of the departments of the Faculty of Arts and Social Sciences at Dalhousie University. The successful applicant is expected to have completed a Ph.D. in STS, HPS or a cognate field, within the last five years and before taking up the fellowship. Please note that the Postdoctoral Fellowship can only be held at Dalhousie University in the six years following completion of his or her PhD. For example a person who finished his or her PhD in 2010 is eligible to be a Postdoctoral Fellow until December 2016.

In addition to carrying out independent or collaborative research under the supervision of one or more of the Cosmopolitanism co-applicants, the successful candidate will be expected to take a leadership role in the Cosmopolitanism project, to actively coordinate the development of the project, and participate in its activities as well as support networking and outreach.International candidates need a work permit and SIN.

While the research topic is open and we encourage applications from a wide range of subfields, we particularly welcome candidates with expertise and interest in the topics addressed in the Cosmopolitanism project. The candidate will be expected to work under the supervision of one of the Cosmopolitanism co-applicants. Information on each is available on the “About” page of the project’s website (www.CosmoLocal.org).

Good luck! You can find more application information here.

Now for the summer school opportunity in India, (from a Feb. 18, 2015 Cosmopolitanism announcement).

Call for applications:
“Scientific Objects and Digital Cosmopolitanism” Summer School

Manipal Centre for Philosophy and Humanities,
Manipal, India
July 20-24, 2015

Please spread the word in your communities.


Scientific Objects and Digital Cosmopolitanism

Co-organized by the Manipal Centre for Philosophy and Humanities and Cosmopolitanism and the Local in Science and Nature.

July 20-24, 2015

Deadline for applications
Monday March 23, 2015

Sundar Sarukkai, Manipal Centre for Philosophy and Humanities
Gordon McOuat, University of King’s College

Varun Bhatta, Manipal Centre for Philosophy and Humanities

Applications from post-graduate and doctoral students in the fields of philosophy, philosophy of science and social sciences, history and philosophy of science, science and technology studies, and cognate fields are invited to a five-day summer school in India, made possible by collaborations between institutions and scholars in Canada, India and Southeast Asia. This will be an excellent opportunity for graduate students interested in receiving advanced training in the philosophy of science and science and technology studies, with a focus on scientific objects and their relation to cosmopolitanism.

The paradigm of scientific objects has undergone a major transformation in recent times. Today, scientific objects are not limited to microscopic or major astronomical objects. A new category of objects involves ontological modes of data, grids, simulation, visualization, etc. Such modes of objects are not merely peripheral props or outcomes of scientific endeavour. They actively constitute scientific theorizing, experimentation and instrumentation, and catalyze notions of cosmopolitanism in the digital world. Cosmopolitanism in this context is defined as a model of cultural and political engagement based on multidirectional exchange and contact across borders. A cosmopolitan approach treats science as a contingent, multifaceted and multicultural network of exchange. The summer school will engage with philosophical themes around the nature of new scientific objects and digital cosmopolitanism.

“The event is organized by the Manipal Centre for Philosophy and Humanities (Manipal University) and by the Social Sciences and Humanities Research Council of Canada-funded Cosmopolitanism and the Local in Science and Nature, a three-year project to establish a research network on cosmopolitanism in science with partners in Canada, India, and Southeast Asia. The project closely examines the actual types of negotiations that go into the making of science and its culture within an increasingly globalized landscape.

Program and Faculty:
Each of the days will be split among:
(a) Background sessions led by Arun Bala, Gordon McOuat and Sundar Sarukkai,
(b) Sessions led by other faculty members with recognized expertise in the theme, and
(c) Sessions devoted to student research projects.

There will be plenty of opportunities for interaction and participation. The seminar will be held in English and readings will be circulated in advance. Special events will be organized to complement session content. There also will be opportunities for exploring the incredible richness and diversity of the region.

Selection Criteria:
We seek outstanding graduate students from Canada, India and Southeast Asia. We will prioritize applications from graduate students in disciplines or with experience in philosophy, philosophy of science, social studies, the history and philosophy of science, or science and technology studies.

Location and Accommodations:
The event will be hosted by the Manipal Centre for Philosophy and Humanities in the picturesque ocean-side state of Karnataka in south-western India. Students will be housed in student residences. The space is wheelchair accessible.

A registration fee of Rs 1500 for Indian students and $100 CAD for international students will be charged. This fee will include accommodations and some meals.

Financial Coverage:

Students from India:
Travel for India-based students will be covered by the summer school sponsors.

Students from Canada and Southeast Asia:
Pending government funding, travel costs may be defrayed for students from Canada or Southeast Asia. Students should indicate in their applications whether they have access to travel support (confirmed or unconfirmed) from home institutions or funding agencies. This will not affect the selection process. Acceptance letters will include more information on travel support.

Students from outside Canada, India and Southeast Asia:
Students from outside Canada, India and Southeast Asia will be expected to provide their own funding.

Students at home institutions of “Cosmopolitanism and the Local in Science and Nature” team members are strongly encouraged to contact the local team member to discuss funding options. Information on the project’s partners and team members is available on the project’s “About Us” page: www.CosmoLocal.org/about-us.

Any travel support will be considered as co-sponsorship to this international training event and acknowledged accordingly. Further information on funding will be included with acceptance letters.

Deadline for applications: March 23, 2015
Notification of acceptance: Week of April 6, 2015
Deadline for registration forms: May 11, 2015

Applications should include the following, preferably sent as PDFs:
1. Description of research interests and their relevance to the school (max. 300 words)
2. Brief Curriculum Vitae / resume highlighting relevant skills, experience and training,
3. One signed letter of recommendation from a supervisor, director of graduate studies, or other faculty member familiar with applicant’s research interests.

Applications should be sent to:
MCPH Office, mcphoffice@gmail.com
with a copy to
Varun Bhatta, varunsbhatta@gmail.com

For more information, please contact :
Greta Regan
Project Manager
Cosmopolitanism and the Local
University of King’s College


Dr. Gordon McOuat, History of Science and Technology Programme,
University of King’s College

The last bit of information for this post concerns the Situating Science research cluster mentioned here many times. Situating Science was a seven-year project funded by the Social Sciences and Humanities Research Council (SSHRC) which has become the Canadian Consortium for Situating Science and Technology (CCSST) and has some sort of a relationship (some of the Situating Science organizers have moved over) to the Cosmopolitanism project. The consortium seems to be a somewhat diminished version of the cluster so you may want to check it out now while some of the information is still current.

Part 2 (a) of 3: Science Culture: Where Canada Stands; an expert assessment (reconstructed)

Losing over 2000 words, i.e., part 2 of this commentary on the Science Culture: Where Canada Stands assessment by the Council of Canadian Academies (CAC) on New Year’s Eve 2014 was a bit of blow. So, here’s my attempt at reconstructing my much mourned part 2.

There was acknowledgement of Canada as a Arctic country and an acknowledgement of this country’s an extraordinary geographical relationship to the world’s marine environment,

Canada’s status as an Arctic nation also has a bearing on science and science culture. Canada’s large and ecologically diverse Arctic landscape spans a substantial part of the circumpolar Arctic, and comprises almost 40% of the country’s landmass (Statistics Canada, 2009). This has influenced the development of Canadian culture more broadly, and also created opportunities in the advancement of Arctic science. Canada’s northern inhabitants, the majority of whom are Indigenous peoples, represent a source of knowledge that contributes to scientific research in the North (CCA, 2008).

These characteristics have contributed to the exploration of many scientific questions including those related to environmental science, resource development, and the health and well-being of northern populations. Canada also has the longest coastline of any country, and these extensive coastlines and marine areas give rise to unique research opportunities in ocean science (CCA, 2013a). (p. 55 PDF; p. 23 print)

Canada’s aging population is acknowledged in a backhand way,

Like most developed countries, Canada’s population is also aging. In 2011 the median age in Canada was 39.9 years, up from 26.2 years in 1971 (Statistics Canada, n.d.). This ongoing demographic transition will have an impact on science culture in Canada in years to come. An aging population will be increasingly interested in health and medical issues. The ability to make use of this kind of information will depend in large part on the combination of access to the internet, skill in navigating it, and a conceptual toolbox that includes an understanding of genes, probability, and related constructs (Miller, 2010b). (p. 56 PDF; p. 24 print)

Yes, the only science topics of interest for an old person are health and medicine. Couldn’t they have included one sentence suggesting an aging population’s other interests and other possible impacts on science culture?

On the plus side, the report offers a list of selected Canadian science culture milestones,

• 1882 – Royal Society of Canada is established.
• 1916 – National Research Council is established.
• 1923 – Association canadienne-française pour l’avancement des sciences (ACFAS) is established.
• 1930 – Canadian Geographic is first published by the Royal Canadian Geographical Society.
• 1951 – Massey–Lévesque Commission calls for the creation of a national science and technology museum.
• 1959 – Canada sees its first science fairs in Winnipeg, Edmonton, Hamilton, Toronto, Montréal, and Vancouver; volunteer coordination eventually grows into Youth Science Canada.
• 1960 – CBC’s Nature of Things debuts on television; Fernand Séguin hosts “Aux frontières de la science.”
• 1962 – ACFAS creates Le Jeune scientifique, which becomes Québec Science in 1970.
• 1966 – Science Council of Canada is created to advise Parliament on science and technology issues.
• 1967 – Canada Museum of Science and Technology is created.
• 1969 – Ontario Science Centre opens its doors (the Exploratorium in San Francisco opens the same year).
• 1971 – Canadian Science Writers’ Association is formed.
• 1975 – Symons Royal Commission on Canadian Studies speaks to how understanding the role of science in society is important to understanding Canadian culture and identity.
• 1975 – Quirks and Quarks debuts on CBC Radio.
• 1976 – OWL children’s magazine begins publication.
• 1977 – Association des communicateurs scientifiques du Québec is established.
• 1978 – L’Agence Science-Presse is created.
• 1981 – Association des communicateurs scientifiques creates the Fernand-Séguin scholarship to identify promising young science journalists.
• 1982 – Les Débrouillards is launched in Quebec. (p. 58 PDF; p. 26 print)

The list spills onto the next page and into the 2000’s.

It’s a relief to see the Expert Panel give a measured response to the claims made about science culture and its various impacts, especially on the economy (in my book, some of the claims have bordered on hysteria),

The Panel found little definitive empirical evidence of causal relationships between the dimensions of science culture and higher-level social objectives like stronger economic performance or more effective public policies. As is the case with much social science research, isolating the impacts of a single variable on complex social phenomena is methodologically challenging, and few studies have attempted to establish such relationships in any detail. As noted in 1985 by the Bodmer report (a still-influential report on public understanding of science in the United Kingdom), although there is good reason prima facie to believe that improving public understanding of science has national economic benefits, empirical proof for such a link is often elusive (RS & Bodmer, 1985). This remains the case today. Nevertheless, many pieces of evidence suggest why a modern, industrialized society should cultivate a strong science culture. Literature from the domains of cognitive science, sociology, cultural studies, economics, innovation, political science, and public policy provides relevant insights. (p. 63 PDF; p. 31 print)

Intriguingly, while the panel has made extensive use of social science methods for this assessment there are some assumptions made about skill sets required for the future,

Technological innovation depends on the presence of science and technology skills in the workforce. While at one point it may have been possible for relatively low-skilled individuals to substantively contribute to technological development, in the 21st century this is no longer the case. [emphasis mine] Advanced science and technology skills are now a prerequisite for most types of technological innovation. (p. 72 PDF; p. 40 print)

Really, it’s no longer possible for relatively low-skilled individuals to contribute to technological development? Maybe the expert panel missed this bit in my March 27, 2013 post,

Getting back to Bittel’s Slate article, he mentions Foldit (here’s my first piece in an Aug. 6, 2010 posting [scroll down about 1/2 way]), a protein-folding game which has generated some very exciting science. He also notes some of that science was generated by older, ‘uneducated’ women. Bittel linked to Jeff Howe’s Feb. 27, 2012 article about Foldit and other crowdsourced science projects for Slate where I found this very intriguing bit,

“You’d think a Ph.D. in biochemistry would be very good at designing protein molecules,” says Zoran Popović, the University of Washington game designer behind Foldit. Not so. “Biochemists are good at other things. But Foldit requires a narrow, deeper expertise.”

Or as it turns out, more than one. Some gamers have a preternatural ability to recognize patterns, an innate form of spatial reasoning most of us lack. Others—often “grandmothers without a high school education,” says Popovic—exercise a particular social skill. “They’re good at getting people unstuck. They get them to approach the problem differently.” What big pharmaceutical company would have anticipated the need to hire uneducated grandmothers? (I know a few, if Eli Lilly HR is thinking of rejiggering its recruitment strategy.) [emphases mine]

It’s not the idea that technical and scientific skills are needed that concerns me; it’s the report’s hard line about ‘low skills’ (which is a term that is not defined). In addition to the notion that future jobs require only individuals with ‘high level’ skills; there’s the notion (not mentioned in this report but gaining general acceptance in the media) that we shouldn’t ever have to perform repetitive and boring activities. It’s a notion which completely ignores a certain aspect of the learning process. Very young children repeat over and over and over and over … . Apprenticeships in many skills-based crafts were designed with years of boring, repetitive work as part of the training. It seems counter-intuitive but boring, repetitive activities can lead to very high level skills such as the ability to ‘unstick’ a problem for an expert with a PhD in biochemistry.

Back to the assessment, the panel commissioned a survey, conducted in 2013, to gather data about science culture in Canada,

The Panel’s survey of Canadian science culture, designed to be comparable to surveys undertaken in other countries as well as to the 1989 Canadian survey, assessed public attitudes towards science and technology, levels and modes of public engagement in science, and public science knowledge or understanding. (The evidence reported in this chapter on the fourth dimension, science and technology skills, is drawn from other sources such as Statistics Canada and the OECD).

Conducted in April 2013, the survey relied on a combination of landline and mobile phone respondents (60%) and internet respondents (40%), randomly recruited from the general population. In analyzing the results, responses to the survey were weighted based on Statistics Canada data according to region, age, education, and gender to ensure that the sample was representative of the Canadian public. 7 A total of 2,004 survey responses were received, with regional breakdowns presented in Table 4.1. At a national level, survey results are accurate within a range of plus or minus 2.2% 19 times out of 20 (i.e., at the 95% confidence interval), and margins of error for regional results range from 3.8% to 7.1%). Three open-ended questions were also included in the survey, which were coded using protocols previously applied to these questions in other international surveys. 8 All open-ended questions were coded independently by at least three bilingual coders, and any discrepancies in coding were settled through a review by a fourth coder. (p. 79 PDF; p. 47 print)

The infographic’s data in part 1 of this commentary, What Do Canadians Think About Science and Technology (S&T)? is based on the survey and other statistical information included in the report especially Chapter four focused on measurements (pp. 77  – 127 PDF; pp. 45 – 95 print). While the survey presents a somewhat rosier picture of the Canadian science culture than the one I experience on a daily basis, the data seems to have been gathered in a thoughtful fashion. Regardless of the assessment’s findings and my opinions,  how Canadians view science became a matter of passionate debate in the Canadian science blogging community (at least parts of it) in late 2014 as per a Dec. 3, 2014 posting by the Science Borealis team on their eponymous blog (Note: Links have been removed),

The CBC’s Rick Mercer is a staunch science advocate, and his November 19th rant was no exception. He addressed the state of basic science in Canada, saying that Canadians are “passionate and curious about science.”

In response, scientist David Kent wrote a post on the Black Hole Blog in which he disagreed with Mercer, saying, “I do not believe Mr. Mercer’s idea that Canadians as a whole are interested although I, like him, would wish it to be the case.”

Kent’s post has generated some fierce discussion, both in the comments on his original post and in the comments on a Facebook post by Evidence for Democracy.

Here at Science Borealis, we rely on a keen and enthusiastic public to engage with the broad range of science-based work our bloggers share, so we decided to address some of the arguments Kent presented in his post.

Anecdotal evidence versus data

Kent says “Mr. Mercer’s claims about Canadians’ passions are anecdotal at best, and lack any evidence – indeed it is possible that Canadians don’t give a hoot about science for science’s sake.”

Unfortunately, Kent’s own argument is based on anecdotal evidence (“To me it appears that… the average Canadian adult does not particularly care about how or why something works.”).

If you’re looking for data, they’re available in a recent Council of Canadian Academies report that specifically studied science culture in Canada. Results show that Canadians are very interested in science.

You can find David Kent’s Nov. 26, 2014 post about Canadians, Rick Mercer and science here. Do take a look at the blog’s comments which feature a number of people deeply involved in promoting and producing Canadian science culture.

I promised disturbing statistics in the head for this posting and here they are in the second paragraph,

Canadian students perform well in PISA [Organization for Economic Cooperation and Development’s (OECD) Programme for International Student Assessment (PISA)] , with relatively high scores on all three of the major components of the assessment (reading, science, and mathematics) compared with students in other countries (Table 4.4). In 2012 only seven countries or regions had mean scores on the science assessment higher than Canada on a statistically significant basis: Shanghai–China, Hong Kong–China, Singapore, Japan, Finland, Estonia, and Korea (Brochu et al., 2013). A similar pattern holds for mathematics scores, where nine countries had mean scores higher than Canada on a statistically significant basis: Shanghai–China, Singapore, Hong Kong–China, Chinese Taipei, Korea, Macao–China, Japan, Lichtenstein, and Switzerland (Brochu et al., 2013). Regions scoring higher than Canada are concentrated in East Asia, and tend to be densely populated, urban areas. Among G8 countries, Canada ranks second on mean science and mathematics scores, behind Japan.

However, the 2012 PISA results also show statistically significant declines in Canada’s scores on both the mathematics and science components. Canada’s science score declined by nine points from its peak in 2006 (with a fall in ranking from 3rd to 10th), and the math score declined by 14 points since first assessed in 2003 (a fall from 7th to 13th) (Brochu et al., 2013). Changes in Canada’s standing relative to other countries reflect both the addition of new countries or regions over time (i.e., the addition of regions such as Hong Kong–China and Chinese Taipei in 2006, and of Shanghai–China in 2009) and statistically significant declines in mean scores.

My Oct. 9, 2013 post discusses the scores in more detail and as the Expert Panel notes, the drop is disconcerting and disturbing. Hopefully, it doesn’t indicate a trend.

Part 2 (b) follows immediately.

Science Culture: Where Canada Stands; an expert assessment, Part 3 of 3: where were …?

I did have some major issues with this report. I’ve already touched on the makeup of the Expert Panel in my Feb. 22, 2013 post (Expert panel to assess the state of Canada’s science culture—not exactly whelming). There could have been more women on the panel (also noted in part 2 of this commentary) and they could have included a few culture makers (writers, visual artists, performing artists). Also mentioned in part 2 of this commentary, it would have been nice to have seen a few people from the aboriginal communities and a greater age range represented on the panel or on advisory committees.

In a discussion about science culture, I am somewhat shocked that the Situating Science; Science in Human Contexts research cluster was never mentioned. From the programme’s About Us page,

Created in 2007 with the generous funding of the Social Sciences and Humanities Research Council of Canada Strategic Knowledge Cluster grant, Situating Science is a seven-year project promoting communication and collaboration among humanists and social scientists that are engaged in the study of science and technology.

A Social Sciences and Humanities Research Council (SSHRC) seven-year programme devoted to Canada’s science culture and it wasn’t mentioned??? An oversight or a symptom of a huge disconnection within Canada’s science culture? I vote for disconnection but please do let me know what you think in the comments section.

As for the assessment’s packaging (cover, foreword, and final words), yikes! The theme colour (each CAC assessment has a theme colour; their policing assessment is blue) for Canada’s science culture is red, perhaps evoking the Canadian maple leaf on the flag. The picture on the cover depicts a very sweet, blond(e), white child with glasses too big for his/her face rimmed in thick black. Glasses are a long established symbol for nerds/intellectual people. So, it would seem Canada’s science culture is blond, nerdy, and, given the child’s clothing, likely male, though in this day and age not definitively so. Or perhaps the child’s hair is meant to signify the maple leaf on the flag with a reversed field (the cover) being red and the leaf being white.

The problem here is not a single image of a blond(e) child, the problem is the frequency with which blond(e) children are used to signify Canadians. Thankfully, advertising images are becoming more diverse but there’s still a long way to go.

There are also issues with the beginning and the end of the report. Two scientists bookend the report: both male, both physicists, one from the UK and the other from the US.

C. P. Snow and his 1959 lecture ‘Two Cultures’ about science and society is mentioned by the Expert Panel’s Chair, Arthur Carty (himself from the UK). In his foreword/message, Carty speculates about how C. P. Snow would respond to today’s science culture environment in a fashion that brings to mind William Lyon MacKenzie King, Canada’s Prime Minister from December 1921 – June 1926;  September 1926 – August 1930; and October 1935 – November 1948, Mackenzie King regularly communed with the dead. From the Wikipedia entry on William Lyon Mackenzie King (Note: Links have been removed),

Privately, he was highly eccentric, with his preference for communing with spirits, using seances and table-rapping, including those of Leonardo da Vinci, Sir Wilfrid Laurier, his dead mother, his grandfather William Lyon Mackenzie, and several of his Irish Terrier dogs, all named Pat except for one named Bob. He also claimed to commune with the spirit of the late President Roosevelt. He sought personal reassurance from the spirit world, rather than seeking political advice. Indeed, after his death, one of his mediums said that she had not realized that he was a politician. King asked whether his party would win the 1935 election, one of the few times politics came up during his seances. His occult interests were kept secret during his years in office, and only became publicized later. Historians have seen in his occult activities a penchant for forging unities from antitheses, thus having latent political import. In 1953, Time stated that he owned—and used—both an Ouija board and a crystal ball.

However, historian Charles Perry Stacey, author of the 1976 book A Very Double Life, which examined King’s secret life in detail, with work based on intensive examination of the King diaries, concluded, despite long-running interests in the occult and spiritualism, that King did not allow his beliefs to influence his decisions on political matters. Stacey wrote that King entirely gave up his interests in the occult and spiritualism during World War II.[80]

At the end of the report, Carty quotes Brian Greene, a US physicist,  p. 218 (PDF) thereby neatly framing Canada between the UK and the US,

However, as stated by physicist Brian Greene (2008), one of the simplest reasons for developing a stronger science culture is that doing so helps foster a fuller, richer experience of science itself:

Science is a way of life. Science is a perspective. Science is the process that takes us from confusion to understanding in a manner that’s precise, predictive, and reliable — a transformation, for those lucky enough to experience it, that is empowering and emotional. To be able to think through and grasp explanations — for everything from why the sky is blue to how life formed on earth — not because they are declared dogma, but because they reveal patterns confirmed by experiment and observation, is one of the most precious of human experiences.

Couldn’t we have found one Canadian thinker or perhaps a thinker from somewhere else on the globe? Assuming there’s a next time, I hope the approach evolves to something more reflective of Canadian society.

In the meantime there is more, much more in the assessment  including a discussion of science-based policy and including the arts to turn STEM (science, technology, engineering, and mathematics) to STEAM and I encourage you take a look at either the full version, the executive summary, or the abridged version, all of which can be found here.

Science Culture: Where Canada Stands; an expert assessment, Part 1 of 3: Canadians are doing pretty well

After almost two years, Science Culture: Where Canada Stands (256 pp. PDF; 222 pp. print) was released in August  2014 by the Council of Canadian Academies (CAC). The assessment as the CAC calls these reports was first mentioned here in a Dec. 19, 2012 post about the questions being asked and with a follow up Feb. 22, 2013 post when its Expert Panel was announced.

I believe this is the first document of its kind, i.e., assessing science culture in Canada, and it is very welcome. I have mixed feelings about the report; there’s some excellent content packaged in a rather unfortunate manner. (BTW, I was chuffed to find that my blog and I were mentioned in it.)

I will start with the good stuff first. The CAC has provided an infographic of how Canada compares to other countries where science culture is concerned,

[downloaded from http://www.scienceadvice.ca/uploads/eng/assessments%20and%20publications%20and%20news%20releases/science-culture/coca%20rankings-cmyk.jpg]

[downloaded from http://www.scienceadvice.ca/uploads/eng/assessments%20and%20publications%20and%20news%20releases/science-culture/coca%20rankings-cmyk.jpg]

It’s encouraging to see how well we’re doing globally although the report does note that some countries don’t have data for comparison and other countries’ may have older data (Canadian data gathered for this report is relatively recent as per one of the excerpts [further in this post] from Ivan Semeniuk’s August 28, 2014 Globe and Mail article) so the rankings may not reflect a truly accurate global ranking.

Here’s another infographic; this one describing Canadians’ attitudes towards and beliefs about science and technology,

[downloaded from http://www.scienceadvice.ca/uploads/eng/assessments%20and%20publications%20and%20news%20releases/science-culture/coca%20national%20percentages%20infographic-cmyk.jpg]

[downloaded from http://www.scienceadvice.ca/uploads/eng/assessments%20and%20publications%20and%20news%20releases/science-culture/coca%20national%20percentages%20infographic-cmyk.jpg]

As encouraging as these infographics are, Ivan Semeniuk (also namechecked in the report) notes some of the concerns broached in the assessment in his Aug, 28, 2014 Globe and Mail article,

From knowing what a molecule is to endorsing government support for basic research, Canadians as a whole display a clearer understanding of and a more positive attitude toward science than people in most other developed countries.

Overall, the report’s message is a positive one for Canada. “Canadians rank quite highly when it comes to science knowledge, attitudes and engagement in comparison with other countries in the world,” said Arthur Carty, chair of the panel that produced the report and a former national science adviser.

But despite high levels of interest, the report also reveals that in practical terms, most Canadians have an arm’s-length relationship with science. [emphasis mine] Only 20 per cent of first university degrees in Canada are awarded in science and engineering fields and only 30 per cent of employed Canadians work at science and technology related jobs – fewer than in the majority of other countries with a comparable standard of living.

It seems Semeniuk and the expert panel subscribe to the notion that formal science education is the only true measure of a ;close’ relationship with science. Neither party seems to take much comfort in the fact that Canadians keep up with science once their formal education (scientific or otherwise) is over (from Semeniuk’s article,

Among the most striking results from the survey is that Canada ranks first in science literacy, with 42 per cent of Canadians able to read and understand newspaper stories detailing scientific findings.

The comparatively high interest in science that Canadians express suggests they may be doing better than most at keeping up with the discoveries that have come along since their formal education ended. [emphasis mine] An emphasis on lifelong learning is important for cultivating a national science culture, the report’s authors say, because the leading edge of research is driven by knowledge that was not available 10 or 20 years ago.

The comparatively recent Canadian data, as mentioned earlier, may not provide a true picture of Canada’s ranking (from Semeniuk’s article),

But ongoing research by Dr. Miller [Jon Miller, a panel member and director of the International Center for the Advancement of Scientific Literacy at the University of Michigan] and others suggest that science literacy is on the rise everywhere, and therefore Canada’s high ranking could also be a function of how recently it was surveyed relative to other countries. Whatever the reason, the report’s numbers suggest there is more to be learned about precisely how Canadians are relating to science and how that is changing, says broadcaster and author Jay Ingram, who was also on the panel.

Getting on to the report/assessment proper, I do like the note of skepticism about the impact a strong science culture has on society given the somewhat hysterical claims made by some adherents to this philosophy,

Many claims have been advanced about the impacts of a strong science culture. Such claims are often plausible given the extent to which science and technology feature in most aspects of individual and social life. However, there is limited empirical evidence to substantiate these claims, and in some cases that evidence points to more complexity in the way these impacts are manifested than is typically acknowledged. Much of this evidence suggests that, while a stronger science culture may contribute to a range of personal or social benefits, it is not always in itself sufficient to ensure the realization of those benefits.(p. 24 PDF; p. xxii print]

It’s a thoughtfulness I very much appreciate.

The report offers a definition of science that could include social science but, given a rather egregious omission (more about that in part 3 of this commentary), does not appear to do so,

Science is a systematic means of discovery and exploration that enriches our collective understanding of the world and universe around us. It is a fundamental part of Canadian culture and society, implicated in nearly every aspect of individual and social life. (p. 34 PDF; p. 2 print)

I was intrigued to learn the term ‘science culture’ is specific to Canada,

One of the first challenges faced by the Panel was to define science culture. While often used in Canadian discussions of science and technology policy, the term is rarely defined with precision. It is most frequently used to convey the degree to which society and the public are broadly engaged in, and supportive of, science. For example, at the launch of Canada’s National Science and Technology Week in 1990, the then Minister for Science, William Winegard, stated that “a science culture means a society that embraces science, involves itself in the development, application and use of new technologies, and celebrates national achievements [in science] with pride and enthusiasm” (National Science and Technology Week, 1990).

The use of this term in Canada partly reflects Canada’s bilingual heritage. In other English-speaking countries, terms such as science literacy, public understanding of science, public engagement in science, and public communication of science are more common (Durant, 1993). These terms are not synonymous with each other, or with science culture. However, they are related concepts, representing a range of perspectives that have been applied to the study of how the public relates to, interacts with, and develops views about science and technology. Patterns in the use of these terms in the literature over time also reflect an evolution in the way in which scholars, scientists, and policy-makers discuss science and society issues (Bauer, 2009). In French, the preferred term is generally la culture scientifique or la culture scientifique et technique, and the use of these terms in Quebec may have contributed to the use of the English science culture throughout Canada.

Compared with science literacy or public understanding of science, science culture is a more expansive concept, encompassing different aspects of the relationship between society and science. (p. 39 PDF; p, 7 print)

Globally, discussions about science are necessary,

Public discussions about the role of science in society are now dominated by a number of critical issues. Debates about nuclear power, climate change, biotechnology, nanotechnology, and stem cells are common across many countries and have been frequently the source of both national and international studies. For example, concern about anthropogenic global warming has generated a significant amount of research on public perception and attitudes related to science and technology. … The global reach of many of these issues requires international policy responses involving coordination and alignment of many governments. Both government actions and media coverage of these issues can have an impact on public perception of science and technology on an international scale.

Specific events abroad can also have a major impact on science culture around the world. The crisis at the Fukushima nuclear plant in Japan in 2011, for example, caused widespread concern over nuclear safety across many countries and significantly affected public perception of the safety of these technologies (Kim et al., 2013). In Canada this event precipitated a review of all major nuclear facilities and the development of a four-year action plan to strengthen the safety of the nuclear industry (Canadian Nuclear Association, 2012; Canadian Nuclear Safety Commission, 2012) (pp. 46/7 PDF; pp. 14/5 print)

In a description of how new technologies are changing society and affecting the practice of science, the expert panel introduces the notion of ‘citizen science’ (Note: I agree with the notion and have a category for citizen science on this blog),

One such impact concerns how the public can participate in and contribute to scientific work. Canadian physicist Michael Nielsen argues that new possibilities for large-scale scientific collaboration resulting from web-based platforms can potentially transform the practice of science due to changes in how scientists collaborate, and to the development of online platforms for engaging the public in scientific research (Nielsen, 2012). “Citizen science” initiatives allow the public to contribute to many kinds of scientific activity, often through collaborative, web-based platforms … (p. 47 PDF; p. 15 print)

I was pleased to see that the influence of popular culture was also mentioned although I did feel it was a bit lacking,

First, popular culture can influence attitudes towards science and technology and perceptions of scientists and their role in society. The foundation of science is the acquisition of knowledge. Ungar (2000) argues that in some segments of society, attaining highly specialized knowledge is viewed as elitist. [emphasis mine] As such, it is sometimes popular to denigrate intellectualism in favour of a more egalitarian and conversational ethos, which may devalue the contributions of scientists. In a review of U.S. children’s educational science programs, Long and Steinke (1996) report that images of science have emphasized characteristics such as truth, fun, accessibility, and ubiquity. Scientists were portrayed through several stereotypes in these shows, ranging from being omniscient and elite to eccentric and antisocial. (p. 51 PDF; p. 19 print)

The panel adopted a rather interesting approach to a fairly complex topic and, in my view, gave it shorter shrift than it deserved. Frankly, the view that the science community is elitist has some merit. How do you like someone using the term ‘dumbing down’ in your presence?

Getting back to the assessment, I was happy to see that Québec was more or less given its due,

As the only Canadian province with a predominantly French-speaking population, Quebec has its own organizations dedicated to the promotion of science in the public (e.g., Association francophone pour le savoir); its own set of French- language science media organizations and programs (e.g., Agence Science-Presse, “Découverte,” “Le Code Chastenay”); French-language science museums and centres (e.g., Centre des sciences de Montréal); science festivals (e.g., Festival Eurêka!); and many other organizations and programs involved in supporting science culture and communication for the Francophone population. The formal science education and training system also differs in Quebec, given the role of institutions such as the collèges d’enseignement général et professionnel (CEGEP). The historical development of science culture in Quebec is also distinct from that of Anglophone Canada, more firmly rooted in French and European discourses about science, culture, and cultural policies (Chartrand et al., 1987; Schiele et al., 1994). As a result of these differences, past inquiries into science culture in Canada have often treated Quebec as separate from the rest of Canada, and the Quebec government has sponsored its own investigations into science culture in the province (e.g., CST, 2002a). (p. 53 PDF; p. 21 print)

I believe it’s the province with the most support of any for science culture and it cannot be an accident that Seed (a former Canadian and once successful English language science magazine and enterprise) was founded in Montréal, Québec.

The report also notes Aboriginal contributions to Canadian science culture,

Canada’s Aboriginal cultures also play a role in defining the science culture landscape in Canada, both through their own knowledge traditions and their impacts on science education and outreach. Aboriginal knowledge has also been incorporated into some provincial science curricula, and some science textbooks now teach students about both scientific and Aboriginal knowledge systems, as a result of the collaboration between ministries of education, Aboriginal Elders, and one Canadian publisher (Aikenhead & Elliott, 2010). Aboriginal knowledge and traditions have also had impacts on scientific research in Canada, with biologists, ecologists, climatologists, and geologists incorporating Aboriginal knowledge in their research in a number of ways … (pp. 53/4 PDF; pp. 21/2 print)

It would have been nice to know if any experts of Aboriginal origin were included in the expert panel and/or in the group of reviewers as it would have been nice to see more women in those groups. If you’re going to discuss diversity and opening things up then perhaps you should consider ‘being the change’ rather than simply discussing it.

The report also mentioned Canada’s ageing population never once suggesting there might be ways to integrate that population into the larger science culture. The report’s bias was definitely youthful. Again on the subject of ‘being the change’, it might have been interesting to include youth and seniors in an advisory capacity to the panel.

On to part 2 and part 3.