Tag Archives: CQD

Colloidal quantum dot film from the University of Toronto and KAUST certified world’s most efficient

In my Sept. 20, 2011 posting, I featured an item about Ted Sargent ‘s (University of Toronto, Canada) work on colloidal quantum dot films. These films have now been certified as the world’s most efficient. There seems to be a lot of excitement given that these films have achieved a 7% efficiency rating. From the July 30, 2012 news item by Will Soutter on Azonano,

A team of scientists from the King Abdullah University of Science & Technology (KAUST) and University of Toronto (U of T) headed by Ted Sargent, an U of T Engineering Professor, has achieved a significant progress in the advancement of colloidal quantum dot (CQD) films, which in turn results in a CQD solar cell with an unprecedented efficiency of 7%.

The July 30, 2012 news release from the University of Toronto provides more detail,

“Previously, quantum dot solar cells have been limited by the large internal surface areas of the nanoparticles in the film, which made extracting electricity difficult,” said Dr. Susanna Thon, a lead co-author of the paper. “Our breakthrough was to use a combination of organic and inorganic chemistry to completely cover all of the exposed surfaces.”

The U of T cell represents a 37% increase in efficiency over the previous certified record. In order to improve efficiency, the researchers needed a way to both reduce the number of “traps” for electrons associated with poor surface quality while simultaneously ensuring their films were very dense to absorb as much light as possible. The solution was a so-called “hybrid passivation” scheme.

“By introducing small chlorine atoms immediately after synthesizing the dots, we’re able to patch the previously unreachable nooks and crannies that lead to electron traps,” explained doctoral student and lead co-author Alex Ip. “We follow that by using short organic linkers to bind quantum dots in the film closer together.”

Work led by Professor Aram Amassian of KAUST showed that the organic ligand exchange was necessary to achieve the densest film.

“The KAUST group used state-of-the-art synchrotron methods with sub-nanometer resolution to discern the structure of the films and prove that the hybrid passivation method led to the densest films with the closest-packed nanoparticles,” stated Professor Amassian.

I think the excitement over 7% indicates just how much hard work the researchers have accomplished to achieve this efficiency. It reminds me of reading about the early development of electricity (Power struggles; Scientific authority and the creation of practical electricity before Edison by Michael Brian Schiffer)  where accomplishments we would now consider minuscule built careers.

University of Toronto, KAUST, Pennsylvania State University and quantum colloidal dots

I’ve written about colloidal quantum dot solar cells and University of Toronto professor Ted Sargent’s work before (June 28, 2011). He and his team have been busy again. From the Sept. 18, 2011 news item on Nanowerk,

Researchers from the University of Toronto (U of T), King Abdullah University of Science & Technology (KAUST) and Pennsylvania State University (Penn State) have created the most efficient colloidal quantum dot (CQD) solar cell ever.

The discovery is reported in the latest issue of Nature Materials.

The first time (June 28)  I wrote about the colloidal quantum dot (CQD) solar cells, the team had made a breakthrough with the architecture of the solar cell by creating what they called a ‘graded recombination layer’ allowing infrared and visible light harvesters to be linked without compromising either layer. The next time I wrote about Sargent’s work  (July 11, 2011),  it concerned self-assembling quantum dots and DNA.

The very latest work is focussed on making the CQD solar cells more efficient by packing them closer together,

Until now, quantum dots have been capped with organic molecules that separate the nanoparticles by a nanometer. On the nanoscale, that is a long distance for electrons to travel.

To solve this problem, the researchers utilized inorganic ligands, sub-nanometer-sized atoms that bind to the surfaces of the quantum dots and take up less space. The combination of close packing and charge trap elimination enabled electrons to move rapidly and smoothly through the solar cells, thus providing record efficiency.

I gather this last breakthrough has made commercialization possible,

As a result of the potential of this research discovery, a technology licensing agreement has been signed by U of T and KAUST, brokered by MaRS Innovations (MI), which will enable the global commercialization of this new technology.

Here’s the competitive advantage that a CQD solar cell offers,

Quantum dots are nanoscale semiconductors that capture light and convert it into electrical energy. Because of their small scale, the dots can be sprayed onto flexible surfaces, including plastics. This enables the production of solar cells that are less expensive than the existing silicon-based version.

Congratulations!

There are more details about this latest breakthrough both in the Nanowerk news item and in this University of Toronto Sept.19, 2011 news release credited to Liam Mitchell. For anyone who’s curious about MaRS, it’s located in Toronto, Ontario and seems to be some sort of technology company incubator or here’s how they describe themselves (from their How did MaRS get started page?),

A charitable organization could be created to better connect the worlds of science, business and government. A public-private partnership with a mission to remove the barriers between silos. Nurture a culture of innovation. And help create global enterprises that would contribute to Canada’s economic and social development.

University of Toronto research team’s efficient tandem solar cell with colloidal quantum dots (CQD)

Professor Ted Sargent, electrical and computer engineering professor at the University of Toronto, heads an engineering research team which recently published a paper about solar cells and colloidal quantum dots (CQD) in Nature Photonics. From Wayne MacPhail’s June 27, 2011 news release for the University of Toronto,

The researchers, led by Professor Ted Sargent of electrical and computer engineering, report the first efficient tandem solar cell based on colloidal quantum dots (CQD). “The U of T device is a stack of two light-absorbing layers – one tuned to capture the sun’s visible rays, the other engineered to harvest the half of the sun’s power that lies in the infrared,” said lead co-author Xihua Wang, a post-doctoral fellow.

“We needed a breakthrough in architecting the interface between the visible and infrared junction,” said Sargent, Canada Research Chair in Nanotechnology. “The team engineered a cascade – really a waterfall – of nanometers-thick materials to shuttle electrons between the visible and infrared layers.”

According to doctoral student Ghada Koleilat, lead co-author of the paper, “We needed a new strategy – which we call the graded recombination layer – so that our visible and infrared light harvesters could be linked together efficiently, without any compromise to either layer.” [emphasis mine]

The team pioneered solar cells made using CQDs, nanoscale materials that can readily be tuned to respond to specific wavelengths of the visible and invisible spectrum. By capturing such a broad range of light waves – wider than normal solar cells – tandem CQD solar cells can in principle reach up to 42 per cent efficiencies. The best single-junction solar cells are constrained to a maximum of 31 per cent efficiency. In reality, solar cells that are on the roofs of houses and in consumer products have 14 to 18 per cent efficiency. The work expands the Toronto team’s world-leading 5.6 per cent efficient colloidal quantum dot solar cells.

According to the University of Toronto news item and the June 28, 2011 news item by Cameron Chai on Azonano, Sargent believes that this ‘graded recombination layer’ will be found in building materials and mobile devices in five years.

It’s always informative to look at the funding agencies for these projects. The CQD project received its funding from King Abdullah University of Science and Technology (KAUST) [mentioned in my Sept. 24, 2009 posting—scroll down 1/2 way), by the Ontario Research Fund Research Excellence Program and by the Natural Sciences and Engineering Research Council (NSERC) of Canada.

ETA July 4, 2011: You can get another take on this work from Dexter Johnson, Nanoclast blog on the IEEE website in his June 28, 2011 posting, Harvesting Visible and Invisible Light in PVs with Colloidal Quantum Dots.