Tag Archives: D-Wave 2X™ system with 1000+ qubits

Google announces research results after testing 1,097-qubit D-Wave 2X™ quantum computers

If you’ve been reading this blog over the last few months, you’ll know that I’ve mentioned D-Wave Systems, a Vancouver (Canada)-based quantum computing company, frequently. The company seems to be signing all kinds of deals lately including one with Google (my Oct. 5, 2015 posting). Well, a Dec. 9, 2015 news item on Nanotechnology Now sheds more light on how Google is using D-Wave’s quantum computers,

Harris & Harris Group, Inc. (NASDAQ: TINY), an investor in transformative companies enabled by disruptive science, notes that yesterday [Dec. 8, 2015] NASA, Google and the Universities Space Research Association (USRA) hosted a tour of the jointly run Quantum Artificial Intelligence Laboratory located at the NASA’s Ames Research Center which houses one of D-Wave’s 1,097-qubit D-Wave 2X™ quantum computers. At this event, Google announced that D-Wave’s quantum computer was able to find solutions to complicated problems of nearly 1,000 variables up to 108 (100,000,000) times faster than classical computers.

A Dec. 8, 2015 posting by Hartmut Neven for the Google Research blog describes the research and the results (Note: Links have been removed),

During the last two years, the Google Quantum AI [artificial intelligence] team has made progress in understanding the physics governing quantum annealers. We recently applied these new insights to construct proof-of-principle optimization problems and programmed these into the D-Wave 2X quantum annealer that Google operates jointly with NASA. The problems were designed to demonstrate that quantum annealing can offer runtime advantages for hard optimization problems characterized by rugged energy landscapes. We found that for problem instances involving nearly 1000 binary variables, quantum annealing significantly outperforms its classical counterpart, simulated annealing. It is more than 108 times faster than simulated annealing running on a single core. We also compared the quantum hardware to another algorithm called Quantum Monte Carlo. This is a method designed to emulate the behavior of quantum systems, but it runs on conventional processors. While the scaling with size between these two methods is comparable, they are again separated by a large factor sometimes as high as 108.

For anyone (like me) who needs an explanation of quantum annealing, there’s this from its Wikipedia entry (Note: Links have been removed),

Quantum annealing (QA) is a metaheuristic for finding the global minimum of a given objective function over a given set of candidate solutions (candidate states), by a process using quantum fluctuations. Quantum annealing is used mainly for problems where the search space is discrete (combinatorial optimization problems) with many local minima; such as finding the ground state of a spin glass.[1] It was formulated in its present form by T. Kadowaki and H. Nishimori in “Quantum annealing in the transverse Ising model”[2] though a proposal in a different form had been proposed by A. B. Finilla, M. A. Gomez, C. Sebenik and J. D. Doll, in “Quantum annealing: A new method for minimizing multidimensional functions”.[3]

Not as helpful as I’d hoped but sometimes its necessary to learn a new vocabulary and a new set of basic principles, which takes time and requires the ability to ‘not know’ and/or ‘not understand’ until one day, you do.

In the meantime, here’s more possibly befuddling information from the researchers in the form of a paper on arXiv.org,

What is the Computational Value of Finite Range Tunneling? by Vasil S. Denchev, Sergio Boixo, Sergei V. Isakov, Nan Ding, Ryan Babbush, Vadim Smelyanskiy, John Martinis, Hartmut Neven. http://arxiv.org/abs/1512.02206

This paper is open access.

Lockheed Martin upgrades to 1000+ Qubit D-Wave system

D-Wave Systems, a Canadian quantum computing company, seems to be making new business announcements on a weekly basis. After last week’s US Los Alamos National Laboratory announcement (Nov. 12, 2015 posting) , there’s a Nov. 16, 2015 news item on Nanotechnology Now,

Harris & Harris Group, Inc. (NASDAQ:TINY), an investor in transformative companies enabled by disruptive science, notes that its portfolio company, D-Wave Systems, Inc., announced that it has entered into a multi-year agreement with Lockheed Martin to upgrade the company’s 512-qubit D-Wave Two™ quantum computer to the new D-Wave 2X™ system with 1,000+ qubits.

A Nov. 16, 2015 D-Wave Systems news release provides more details about the deal,

D-Wave Systems Inc., the world’s first quantum computing company, today announced that it has entered into a multi-year agreement with Lockheed Martin (NYSE: LMT) to upgrade the company’s 512-qubit D-Wave Two™ quantum computer to the new D-Wave 2X™ system with 1,000+ qubits. This represents the second system upgrade since Lockheed Martin became D-Wave’s first customer in 2011 with the purchase of a 128 qubit D-Wave One™ system. The agreement includes the system, maintenance and associated professional services.

“Our mission is to solve complex challenges, advance scientific discovery and deliver innovative solutions to our customers, which requires expertise in the most advanced technologies,” said Greg Tallant, Lockheed Martin fellow and lead for the University of Southern California-Lockheed Martin Quantum Computation Center (QCC). “Through our continued investment in D-Wave technology, we are able to push the boundaries of quantum computing and apply the latest technologies to address the real-world problems being faced by our customers.”

For quantum computing, the performance gain over traditional computing is most evident in exceedingly complex computational problems. This could be in areas such as validating the performance of software or vehicle planning and scheduling. With the new D-Wave system, Lockheed Martin researchers will be able to explore solutions for significantly larger computational problems with improved accuracy and execution time.

The new system will be hosted at the University of Southern California-Lockheed Martin Quantum Computation Center, which first began exploring the power of quantum computing with the D-Wave One, the world’s first quantum computer.

The installation of the D-Wave 2X system will be completed in January 2016.

Who knows what next week will bring for D-Wave, which by the way is located in Vancouver, Canada or, more accurately, Burnaby?

US Los Alamos National Laboratory catches the D-Wave (buys a 1000+ Qubit quantum computer from D-Wave)

It can be euphoric experience making a major technical breakthrough (June 2015), selling to a new large customer (Nov. 2015) and impressing your important customers so they upgrade to the new system (Oct. 2015) within a few short months.* D-Wave Systems (a Vancouver-based quantum computer company) certainly has cause to experience it given the events of the last six weeks or so. Yesterday, in a Nov. 11, 2015, D-Wave news release, the company trumpeted its sale of a 1000+ Qubit system (Note: Links have been removed),

D-Wave Systems Inc., the world’s first quantum computing company, announced that Los Alamos National Laboratory will acquire and install the latest D-Wave quantum computer, the 1000+ qubit D-Wave 2X™ system. Los Alamos, a multidisciplinary research institution engaged in strategic science on behalf of national security, will lead a collaboration within the Department of Energy and with select university partners to explore the capabilities and applications of quantum annealing technology, consistent with the goals of the government-wide National Strategic Computing Initiative. The National Strategic Computing Initiative, created by executive order of President Obama in late July [2015], is intended “to maximize [the] benefits of high-performance computing (HPC) research, development, and deployment.”

“Los Alamos is a global leader in high performance computing and a pioneer in the application of new architectures to solve critical problems related to national security, energy, the environment, materials, health and earth science,” said Robert “Bo” Ewald, president of D-Wave U.S. “As we work jointly with scientists and engineers at Los Alamos we expect to be able to accelerate the pace of quantum software development to advance the state of algorithms, applications and software tools for quantum computing.”

A Nov. 11, 2015 news item on Nanotechnology Now is written from the company’s venture capitalist’s perspective,

Harris & Harris Group, Inc. (NASDAQ:TINY), an investor in transformative companies enabled by disruptive science, notes that its portfolio company, D-Wave Systems, Inc., announced that Los Alamos National Laboratory will acquire and install the latest D-Wave quantum computer, the 1000+ qubit D-Wave 2X™ system.

The news about the Los Alamos sale comes only weeks after D-Wave announced renewed agreements with Google, NASA (US National Aeronautics and Space Administration), and the Universities Space Research Association (USRA) in the aftermath of a technical breakthrough. See my Oct. 5, 2015 posting for more details about the agreements, the type of quantum computer D-Wave sells, and news of interesting and related research in Australia. Cracking the 512 qubit barrier also occasioned a posting here (June 26, 2015) where I described the breakthrough, the company, and included excerpts from an Economist article which mentioned D-Wave in its review of research in the field of quantum computing.

Congratulations to D-Wave!

*’It can be euphoric selling to your first large and/or important customers and D-Wave Systems (a Vancouver-based quantum computer company) certainly has cause to experience it. ‘ changed to more accurately express my thoughts to ‘It can be euphoric experience making a major technical breakthrough (June 2015), selling to a new large customer (Nov. 2015) and impressing your important customers so they upgrade to the new system (Oct. 2015) within a few short months.’ on Nov. 12, 2015 at 1025 hours PST.