Tag Archives: D-Wave Systems

Alberta adds a newish quantum nanotechnology research hub to the Canada’s quantum computing research scene

One of the winners in Canada’s 2017 federal budget announcement of the Pan-Canadian Artificial Intelligence Strategy was Edmonton, Alberta. It’s a fact which sometimes goes unnoticed while Canadians marvel at the wonderfulness found in Toronto and Montréal where it seems new initiatives and monies are being announced on a weekly basis (I exaggerate) for their AI (artificial intelligence) efforts.

Alberta’s quantum nanotechnology hub (graduate programme)

Intriguingly, it seems that Edmonton has higher aims than (an almost unnoticed) leadership in AI. Physicists at the University of Alberta have announced hopes to be just as successful as their AI brethren in a Nov. 27, 2017 article by Juris Graney for the Edmonton Journal,

Physicists at the University of Alberta [U of A] are hoping to emulate the success of their artificial intelligence studying counterparts in establishing the city and the province as the nucleus of quantum nanotechnology research in Canada and North America.

Google’s artificial intelligence research division DeepMind announced in July [2017] it had chosen Edmonton as its first international AI research lab, based on a long-running partnership with the U of A’s 10-person AI lab.

Retaining the brightest minds in the AI and machine-learning fields while enticing a global tech leader to Alberta was heralded as a coup for the province and the university.

It is something U of A physics professor John Davis believes the university’s new graduate program, Quanta, can help achieve in the world of quantum nanotechnology.

The field of quantum mechanics had long been a realm of theoretical science based on the theory that atomic and subatomic material like photons or electrons behave both as particles and waves.

“When you get right down to it, everything has both behaviours (particle and wave) and we can pick and choose certain scenarios which one of those properties we want to use,” he said.

But, Davis said, physicists and scientists are “now at the point where we understand quantum physics and are developing quantum technology to take to the marketplace.”

“Quantum computing used to be realm of science fiction, but now we’ve figured it out, it’s now a matter of engineering,” he said.

Quantum computing labs are being bought by large tech companies such as Google, IBM and Microsoft because they realize they are only a few years away from having this power, he said.

Those making the groundbreaking developments may want to commercialize their finds and take the technology to market and that is where Quanta comes in.

East vs. West—Again?

Ivan Semeniuk in his article, Quantum Supremacy, ignores any quantum research effort not located in either Waterloo, Ontario or metro Vancouver, British Columbia to describe a struggle between the East and the West (a standard Canadian trope). From Semeniuk’s Oct. 17, 2017 quantum article [link follows the excerpts] for the Globe and Mail’s October 2017 issue of the Report on Business (ROB),

 Lazaridis [Mike], of course, has experienced lost advantage first-hand. As co-founder and former co-CEO of Research in Motion (RIM, now called Blackberry), he made the smartphone an indispensable feature of the modern world, only to watch rivals such as Apple and Samsung wrest away Blackberry’s dominance. Now, at 56, he is engaged in a high-stakes race that will determine who will lead the next technology revolution. In the rolling heartland of southwestern Ontario, he is laying the foundation for what he envisions as a new Silicon Valley—a commercial hub based on the promise of quantum technology.

Semeniuk skips over the story of how Blackberry lost its advantage. I came onto that story late in the game when Blackberry was already in serious trouble due to a failure to recognize that the field they helped to create was moving in a new direction. If memory serves, they were trying to keep their technology wholly proprietary which meant that developers couldn’t easily create apps to extend the phone’s features. Blackberry also fought a legal battle in the US with a patent troll draining company resources and energy in proved to be a futile effort.

Since then Lazaridis has invested heavily in quantum research. He gave the University of Waterloo a serious chunk of money as they named their Quantum Nano Centre (QNC) after him and his wife, Ophelia (you can read all about it in my Sept. 25, 2012 posting about the then new centre). The best details for Lazaridis’ investments in Canada’s quantum technology are to be found on the Quantum Valley Investments, About QVI, History webpage,

History-bannerHistory has repeatedly demonstrated the power of research in physics to transform society.  As a student of history and a believer in the power of physics, Mike Lazaridis set out in 2000 to make real his bold vision to establish the Region of Waterloo as a world leading centre for physics research.  That is, a place where the best researchers in the world would come to do cutting-edge research and to collaborate with each other and in so doing, achieve transformative discoveries that would lead to the commercialization of breakthrough  technologies.

Establishing a World Class Centre in Quantum Research:

The first step in this regard was the establishment of the Perimeter Institute for Theoretical Physics.  Perimeter was established in 2000 as an independent theoretical physics research institute.  Mike started Perimeter with an initial pledge of $100 million (which at the time was approximately one third of his net worth).  Since that time, Mike and his family have donated a total of more than $170 million to the Perimeter Institute.  In addition to this unprecedented monetary support, Mike also devotes his time and influence to help lead and support the organization in everything from the raising of funds with government and private donors to helping to attract the top researchers from around the globe to it.  Mike’s efforts helped Perimeter achieve and grow its position as one of a handful of leading centres globally for theoretical research in fundamental physics.

Stephen HawkingPerimeter is located in a Governor-General award winning designed building in Waterloo.  Success in recruiting and resulting space requirements led to an expansion of the Perimeter facility.  A uniquely designed addition, which has been described as space-ship-like, was opened in 2011 as the Stephen Hawking Centre in recognition of one of the most famous physicists alive today who holds the position of Distinguished Visiting Research Chair at Perimeter and is a strong friend and supporter of the organization.

Recognizing the need for collaboration between theorists and experimentalists, in 2002, Mike applied his passion and his financial resources toward the establishment of The Institute for Quantum Computing at the University of Waterloo.  IQC was established as an experimental research institute focusing on quantum information.  Mike established IQC with an initial donation of $33.3 million.  Since that time, Mike and his family have donated a total of more than $120 million to the University of Waterloo for IQC and other related science initiatives.  As in the case of the Perimeter Institute, Mike devotes considerable time and influence to help lead and support IQC in fundraising and recruiting efforts.  Mike’s efforts have helped IQC become one of the top experimental physics research institutes in the world.

Quantum ComputingMike and Doug Fregin have been close friends since grade 5.  They are also co-founders of BlackBerry (formerly Research In Motion Limited).  Doug shares Mike’s passion for physics and supported Mike’s efforts at the Perimeter Institute with an initial gift of $10 million.  Since that time Doug has donated a total of $30 million to Perimeter Institute.  Separately, Doug helped establish the Waterloo Institute for Nanotechnology at the University of Waterloo with total gifts for $29 million.  As suggested by its name, WIN is devoted to research in the area of nanotechnology.  It has established as an area of primary focus the intersection of nanotechnology and quantum physics.

With a donation of $50 million from Mike which was matched by both the Government of Canada and the province of Ontario as well as a donation of $10 million from Doug, the University of Waterloo built the Mike & Ophelia Lazaridis Quantum-Nano Centre, a state of the art laboratory located on the main campus of the University of Waterloo that rivals the best facilities in the world.  QNC was opened in September 2012 and houses researchers from both IQC and WIN.

Leading the Establishment of Commercialization Culture for Quantum Technologies in Canada:

In the Research LabFor many years, theorists have been able to demonstrate the transformative powers of quantum mechanics on paper.  That said, converting these theories to experimentally demonstrable discoveries has, putting it mildly, been a challenge.  Many naysayers have suggested that achieving these discoveries was not possible and even the believers suggested that it could likely take decades to achieve these discoveries.  Recently, a buzz has been developing globally as experimentalists have been able to achieve demonstrable success with respect to Quantum Information based discoveries.  Local experimentalists are very much playing a leading role in this regard.  It is believed by many that breakthrough discoveries that will lead to commercialization opportunities may be achieved in the next few years and certainly within the next decade.

Recognizing the unique challenges for the commercialization of quantum technologies (including risk associated with uncertainty of success, complexity of the underlying science and high capital / equipment costs) Mike and Doug have chosen to once again lead by example.  The Quantum Valley Investment Fund will provide commercialization funding, expertise and support for researchers that develop breakthroughs in Quantum Information Science that can reasonably lead to new commercializable technologies and applications.  Their goal in establishing this Fund is to lead in the development of a commercialization infrastructure and culture for Quantum discoveries in Canada and thereby enable such discoveries to remain here.

Semeniuk goes on to set the stage for Waterloo/Lazaridis vs. Vancouver (from Semeniuk’s 2017 ROB article),

… as happened with Blackberry, the world is once again catching up. While Canada’s funding of quantum technology ranks among the top five in the world, the European Union, China, and the US are all accelerating their investments in the field. Tech giants such as Google [also known as Alphabet], Microsoft and IBM are ramping up programs to develop companies and other technologies based on quantum principles. Meanwhile, even as Lazaridis works to establish Waterloo as the country’s quantum hub, a Vancouver-area company has emerged to challenge that claim. The two camps—one methodically focused on the long game, the other keen to stake an early commercial lead—have sparked an East-West rivalry that many observers of the Canadian quantum scene are at a loss to explain.

Is it possible that some of the rivalry might be due to an influential individual who has invested heavily in a ‘quantum valley’ and has a history of trying to ‘own’ a technology?

Getting back to D-Wave Systems, the Vancouver company, I have written about them a number of times (particularly in 2015; for the full list: input D-Wave into the blog search engine). This June 26, 2015 posting includes a reference to an article in The Economist magazine about D-Wave’s commercial opportunities while the bulk of the posting is focused on a technical breakthrough.

Semeniuk offers an overview of the D-Wave Systems story,

D-Wave was born in 1999, the same year Lazaridis began to fund quantum science in Waterloo. From the start, D-Wave had a more immediate goal: to develop a new computer technology to bring to market. “We didn’t have money or facilities,” says Geordie Rose, a physics PhD who co0founded the company and served in various executive roles. …

The group soon concluded that the kind of machine most scientists were pursing based on so-called gate-model architecture was decades away from being realized—if ever. …

Instead, D-Wave pursued another idea, based on a principle dubbed “quantum annealing.” This approach seemed more likely to produce a working system, even if the application that would run on it were more limited. “The only thing we cared about was building the machine,” says Rose. “Nobody else was trying to solve the same problem.”

D-Wave debuted its first prototype at an event in California in February 2007 running it through a few basic problems such as solving a Sudoku puzzle and finding the optimal seating plan for a wedding reception. … “They just assumed we were hucksters,” says Hilton [Jeremy Hilton, D.Wave senior vice-president of systems]. Federico Spedalieri, a computer scientist at the University of Southern California’s [USC} Information Sciences Institute who has worked with D-Wave’s system, says the limited information the company provided about the machine’s operation provoked outright hostility. “I think that played against them a lot in the following years,” he says.

It seems Lazaridis is not the only one who likes to hold company information tightly.

Back to Semeniuk and D-Wave,

Today [October 2017], the Los Alamos National Laboratory owns a D-Wave machine, which costs about $15million. Others pay to access D-Wave systems remotely. This year , for example, Volkswagen fed data from thousands of Beijing taxis into a machine located in Burnaby [one of the municipalities that make up metro Vancouver] to study ways to optimize traffic flow.

But the application for which D-Wave has the hights hope is artificial intelligence. Any AI program hings on the on the “training” through which a computer acquires automated competence, and the 2000Q [a D-Wave computer] appears well suited to this task. …

Yet, for all the buzz D-Wave has generated, with several research teams outside Canada investigating its quantum annealing approach, the company has elicited little interest from the Waterloo hub. As a result, what might seem like a natural development—the Institute for Quantum Computing acquiring access to a D-Wave machine to explore and potentially improve its value—has not occurred. …

I am particularly interested in this comment as it concerns public funding (from Semeniuk’s article),

Vern Brownell, a former Goldman Sachs executive who became CEO of D-Wave in 2009, calls the lack of collaboration with Waterloo’s research community “ridiculous,” adding that his company’s efforts to establish closer ties have proven futile, “I’ll be blunt: I don’t think our relationship is good enough,” he says. Brownell also point out that, while  hundreds of millions in public funds have flowed into Waterloo’s ecosystem, little funding is available for  Canadian scientists wishing to make the most of D-Wave’s hardware—despite the fact that it remains unclear which core quantum technology will prove the most profitable.

There’s a lot more to Semeniuk’s article but this is the last excerpt,

The world isn’t waiting for Canada’s quantum rivals to forge a united front. Google, Microsoft, IBM, and Intel are racing to develop a gate-model quantum computer—the sector’s ultimate goal. (Google’s researchers have said they will unveil a significant development early next year.) With the U.K., Australia and Japan pouring money into quantum, Canada, an early leader, is under pressure to keep up. The federal government is currently developing  a strategy for supporting the country’s evolving quantum sector and, ultimately, getting a return on its approximately $1-billion investment over the past decade [emphasis mine].

I wonder where the “approximately $1-billion … ” figure came from. I ask because some years ago MP Peter Julian asked the government for information about how much Canadian federal money had been invested in nanotechnology. The government replied with sheets of paper (a pile approximately 2 inches high) that had funding disbursements from various ministries. Each ministry had its own method with different categories for listing disbursements and the titles for the research projects were not necessarily informative for anyone outside a narrow specialty. (Peter Julian’s assistant had kindly sent me a copy of the response they had received.) The bottom line is that it would have been close to impossible to determine the amount of federal funding devoted to nanotechnology using that data. So, where did the $1-billion figure come from?

In any event, it will be interesting to see how the Council of Canadian Academies assesses the ‘quantum’ situation in its more academically inclined, “The State of Science and Technology and Industrial Research and Development in Canada,” when it’s released later this year (2018).

Finally, you can find Semeniuk’s October 2017 article here but be aware it’s behind a paywall.

Whither we goest?

Despite any doubts one might have about Lazaridis’ approach to research and technology, his tremendous investment and support cannot be denied. Without him, Canada’s quantum research efforts would be substantially less significant. As for the ‘cowboys’ in Vancouver, it takes a certain temperament to found a start-up company and it seems the D-Wave folks have more in common with Lazaridis than they might like to admit. As for the Quanta graduate  programme, it’s early days yet and no one should ever count out Alberta.

Meanwhile, one can continue to hope that a more thoughtful approach to regional collaboration will be adopted so Canada can continue to blaze trails in the field of quantum research.

Machine learning software and quantum computers that think

A Sept. 14, 2017 news item on phys.org sets the stage for quantum machine learning by explaining a few basics first,

Language acquisition in young children is apparently connected with their ability to detect patterns. In their learning process, they search for patterns in the data set that help them identify and optimize grammar structures in order to properly acquire the language. Likewise, online translators use algorithms through machine learning techniques to optimize their translation engines to produce well-rounded and understandable outcomes. Even though many translations did not make much sense at all at the beginning, in these past years we have been able to see major improvements thanks to machine learning.

Machine learning techniques use mathematical algorithms and tools to search for patterns in data. These techniques have become powerful tools for many different applications, which can range from biomedical uses such as in cancer reconnaissance, in genetics and genomics, in autism monitoring and diagnosis and even plastic surgery, to pure applied physics, for studying the nature of materials, matter or even complex quantum systems.

Capable of adapting and changing when exposed to a new set of data, machine learning can identify patterns, often outperforming humans in accuracy. Although machine learning is a powerful tool, certain application domains remain out of reach due to complexity or other aspects that rule out the use of the predictions that learning algorithms provide.

Thus, in recent years, quantum machine learning has become a matter of interest because of is vast potential as a possible solution to these unresolvable challenges and quantum computers show to be the right tool for its solution.

A Sept. 14, 2017 Institute of Photonic Sciences ([Catalan] Institut de Ciències Fotòniques] ICFO) press release, which originated the news item, goes on to detail a recently published overview of the state of quantum machine learning,

In a recent study, published in Nature, an international team of researchers integrated by Jacob Biamonte from Skoltech/IQC, Peter Wittek from ICFO, Nicola Pancotti from MPQ, Patrick Rebentrost from MIT, Nathan Wiebe from Microsoft Research, and Seth Lloyd from MIT have reviewed the actual status of classical machine learning and quantum machine learning. In their review, they have thoroughly addressed different scenarios dealing with classical and quantum machine learning. In their study, they have considered different possible combinations: the conventional method of using classical machine learning to analyse classical data, using quantum machine learning to analyse both classical and quantum data, and finally, using classical machine learning to analyse quantum data.

Firstly, they set out to give an in-depth view of the status of current supervised and unsupervised learning protocols in classical machine learning by stating all applied methods. They introduce quantum machine learning and provide an extensive approach on how this technique could be used to analyse both classical and quantum data, emphasizing that quantum machines could accelerate processing timescales thanks to the use of quantum annealers and universal quantum computers. Quantum annealing technology has better scalability, but more limited use cases. For instance, the latest iteration of D-Wave’s [emphasis mine] superconducting chip integrates two thousand qubits, and it is used for solving certain hard optimization problems and for efficient sampling. On the other hand, universal (also called gate-based) quantum computers are harder to scale up, but they are able to perform arbitrary unitary operations on qubits by sequences of quantum logic gates. This resembles how digital computers can perform arbitrary logical operations on classical bits.

However, they address the fact that controlling a quantum system is very complex and analyzing classical data with quantum resources is not as straightforward as one may think, mainly due to the challenge of building quantum interface devices that allow classical information to be encoded into a quantum mechanical form. Difficulties, such as the “input” or “output” problems appear to be the major technical challenge that needs to be overcome.

The ultimate goal is to find the most optimized method that is able to read, comprehend and obtain the best outcomes of a data set, be it classical or quantum. Quantum machine learning is definitely aimed at revolutionizing the field of computer sciences, not only because it will be able to control quantum computers, speed up the information processing rates far beyond current classical velocities, but also because it is capable of carrying out innovative functions, such quantum deep learning, that could not only recognize counter-intuitive patterns in data, invisible to both classical machine learning and to the human eye, but also reproduce them.

As Peter Wittek [emphasis mine] finally states, “Writing this paper was quite a challenge: we had a committee of six co-authors with different ideas about what the field is, where it is now, and where it is going. We rewrote the paper from scratch three times. The final version could not have been completed without the dedication of our editor, to whom we are indebted.”

It was a bit of a surprise to see local (Vancouver, Canada) company D-Wave Systems mentioned but i notice that one of the paper’s authors (Peter Wittek) is mentioned in a May 22, 2017 D-Wave news release announcing a new partnership to foster quantum machine learning,

Today [May 22, 2017] D-Wave Systems Inc., the leader in quantum computing systems and software, announced a new initiative with the Creative Destruction Lab (CDL) at the University of Toronto’s Rotman School of Management. D-Wave will work with CDL, as a CDL Partner, to create a new track to foster startups focused on quantum machine learning. The new track will complement CDL’s successful existing track in machine learning. Applicants selected for the intensive one-year program will go through an introductory boot camp led by Dr. Peter Wittek [emphasis mine], author of Quantum Machine Learning: What Quantum Computing means to Data Mining, with instruction and technical support from D-Wave experts, access to a D-Wave 2000Q™ quantum computer, and the opportunity to use a D-Wave sampling service to enable machine learning computations and applications. D-Wave staff will be a part of the committee selecting up to 40 individuals for the program, which begins in September 2017.

For anyone interested in the paper, here’s a link to and a citation,

Quantum machine learning by Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, & Seth Lloyd. Nature 549, 195–202 (14 September 2017) doi:10.1038/nature23474 Published online 13 September 2017

This paper is behind a paywall.

Cornwall (UK) connects with University of Southern California for performance by a quantum computer (D-Wave) and mezzo soprano Juliette Pochin

The upcoming performance of a quantum computer built by D-Wave Systems (a Canadian company) and Welsh mezzo soprano Juliette Pochin is the première of “Superposition” by Alexis Kirke. A July 13, 2016 news item on phys.org provides more detail,

What happens when you combine the pure tones of an internationally renowned mezzo soprano and the complex technology of a $15million quantum supercomputer?

The answer will be exclusively revealed to audiences at the Port Eliot Festival [Cornwall, UK] when Superposition, created by Plymouth University composer Alexis Kirke, receives its world premiere later this summer.

A D-Wave 1000 Qubit Quantum Processor. Credit: D-Wave Systems Inc

A D-Wave 1000 Qubit Quantum Processor. Credit: D-Wave Systems Inc

A July 13, 2016 Plymouth University press release, which originated the news item, expands on the theme,

Combining the arts and sciences, as Dr Kirke has done with many of his previous works, the 15-minute piece will begin dark and mysterious with celebrated performer Juliette Pochin singing a low-pitched slow theme.

But gradually the quiet sounds of electronic ambience will emerge over or beneath her voice, as the sounds of her singing are picked up by a microphone and sent over the internet to the D-Wave quantum computer at the University of Southern California.

It then reacts with behaviours in the quantum realm that are turned into sounds back in the performance venue, the Round Room at Port Eliot, creating a unique and ground-breaking duet.

And when the singer ends, the quantum processes are left to slowly fade away naturally, making their final sounds as the lights go to black.

Dr Kirke, a member of the Interdisciplinary Centre for Computer Music Research at Plymouth University, said:

“There are only a handful of these computers accessible in the world, and this is the first time one has been used as part of a creative performance. So while it is a great privilege to be able to put this together, it is an incredibly complex area of computing and science and it has taken almost two years to get to this stage. For most people, this will be the first time they have seen a quantum computer in action and I hope it will give them a better understanding of how it works in a creative and innovative way.”

Plymouth University is the official Creative and Cultural Partner of the Port Eliot Festival, taking place in South East Cornwall from July 28 to 31, 2016 [emphasis mine].

And Superposition will be one of a number of showcases of University talent and expertise as part of the first Port Eliot Science Lab. Being staged in the Round Room at Port Eliot, it will give festival goers the chance to explore science, see performances and take part in a range of experiments.

The three-part performance will tell the story of Niobe, one of the more tragic figures in Greek mythology, but in this case a nod to the fact the heart of the quantum computer contains the metal named after her, niobium. It will also feature a monologue from Hamlet, interspersed with terms from quantum computing.

This is the latest of Dr Kirke’s pioneering performance works, with previous productions including an opera based on the financial crisis and a piece using a cutting edge wave-testing facility as an instrument of percussion.

Geordie Rose, CTO and Founder, D-Wave Systems, said:

“D-Wave’s quantum computing technology has been investigated in many areas such as image recognition, machine learning and finance. We are excited to see Dr Kirke, a pioneer in the field of quantum physics and the arts, utilising a D-Wave 2X in his next performance. Quantum computing is positioned to have a tremendous social impact, and Dr Kirke’s work serves not only as a piece of innovative computer arts research, but also as a way of educating the public about these new types of exotic computing machines.”

Professor Daniel Lidar, Director of the USC Center for Quantum Information Science and Technology, said:

“This is an exciting time to be in the field of quantum computing. This is a field that was purely theoretical until the 1990s and now is making huge leaps forward every year. We have been researching the D-Wave machines for four years now, and have recently upgraded to the D-Wave 2X – the world’s most advanced commercially available quantum optimisation processor. We were very happy to welcome Dr Kirke on a short training residence here at the University of Southern California recently; and are excited to be collaborating with him on this performance, which we see as a great opportunity for education and public awareness.”

Since I can’t be there, I’m hoping they will be able to successfully livestream the performance. According to Kirke who very kindly responded to my query, the festival’s remote location can make livecasting a challenge. He did note that a post-performance documentary is planned and there will be footage from the performance.

He has also provided more information about the singer and the technical/computer aspects of the performance (from a July 18, 2016 email),

Juliette Pochin: I’ve worked with her before a couple of years ago. She has an amazing voice and style, is musically adventurousness (she is a music producer herself), and brings great grace and charisma to a performance. She can be heard in the Harry Potter and Lord of the Rings soundtracks and has performed at venues such as the Royal Albert Hall, Proms in the Park, and Meatloaf!

Score: The score is in 3 parts of about 5 minutes each. There is a traditional score for parts 1 and 3 that Juliette will sing from. I wrote these manually in traditional music notation. However she can sing in free time and wait for the computer to respond. It is a very dramatic score, almost operatic. The computer’s responses are based on two algorithms: a superposition chord system, and a pitch-loudness entanglement system. The superposition chord system sends a harmony problem to the D-Wave in response to Juliette’s approximate pitch amongst other elements. The D-Wave uses an 8-qubit optimizer to return potential chords. Each potential chord has an energy associated with it. In theory the lowest energy chord is that preferred by the algorithm. However in the performance I will combine the chord solutions to create superposition chords. These are chords which represent, in a very loose way, the superposed solutions which existed in the D-Wave before collapse of the qubits. Technically they are the results of multiple collapses, but metaphorically I can’t think of a more beautiful representation of superposition: chords. These will accompany Juliette, sometimes clashing with her. Sometimes giving way to her.

The second subsystem generates non-pitched noises of different lengths, roughnesses and loudness. These are responses to Juliette, but also a result of a simple D-Wave entanglement. We know the D-Wave can entangle in 8-qubit groups. I send a binary representation of the Juliette’s loudness to 4 qubits and one of approximate pitch to another 4, then entangle the two. The chosen entanglement weights are selected for their variety of solutions amongst the qubits, rather than by a particular musical logic. So the non-pitched subsystem is more of a sonification of entanglement than a musical algorithm.

Thank you Dr. Kirke for a fascinating technical description and for a description of Juliette Pochin that makes one long to hear her in performance.

For anyone who’s thinking of attending the performance or curious, you can find out more about the Port Eliot festival here, Juliette Pochin here, and Alexis Kirke here.

For anyone wondering about data sonficiatiion, I also have a Feb. 7, 2014 post featuring a data sonification project by Dr. Domenico Vicinanza which includes a sound clip of his Voyager 1 & 2 spacecraft duet.

Café Scientifique (Vancouver, Canada) April 26, 2016 talk about why food security is contentious and TEDx East Van has some science speakers for April 23, 2016

Café Scientifique

It seems Vancouver’s (Canada) Café Scientifique has found a new venue after having to cancel last month’s (March 2016) talk when their previous venue, The Railway Club, abruptly closed its doors after some 80 years. The Big Rock Urban Brewery (310 West Fourth Avenue, just east of Cambie St.) is hosting the next Café Scientifique talk, from the April 6, 2016 notice received via email,

Our next café will happen on Tuesday April 26th, 7:30pm at Big Rock Urban Brewery. Our speaker for the evening will be Dr. Navin Ramankutty, a Professor of Global Food Security and Sustainability at UBC [University of British Columbia]. The title of his talk is:

A Framework for Understanding Why Food Security Discussions are Contentious

There is a contentious debate regarding the best approach to achieving food security in an environmentally sustainable and socially just manner. Some advocate for new technological systems, such as genetic modification or vertical farming, while others argue for organic agricuture or local food systems. Still others argue that agriculture does not need a revolution and that we simply need to improve current farming practices. Even the overall objectives are unclear, with some arguing that we need to double food production by 2050 while others suggest that we already have enough food on this planet to feed 10 billion. In this talk, I will use an assessment framework to explore the available evidence supporting or opposing the various claims about the most sustainable way to farm on our planet. The broad assessment offers some insights on why we argue about food security.

You can find out more about Dr. Ramankutty here,

Navin Ramankutty is Professor in Global Food Security and Sustainability, Liu Institute for Global Issues and Institute for Resources, Environment and Sustainability (IRES) at the University of British Columbia Vancouver campus. His research addresses the overarching question of how to improve food security for 9-10 billion people while reducing agriculture’s environmental footprint.  To address this challenge, he develops global data sets of agricultural land use practices, conducts global analysis of the environmental outcomes of agriculture (using statistical analysis and agroecosystem models), and identifies solutions and leverage points.

There is more about Raminkutty on his UBC Liu Institute profile page,

Navin Ramankutty is Professor in Global Food Security and Sustainability, Liu Institute for Global Issues and Institute for Resources, Environment and Sustainability (IRES) at the University of British Columbia Vancouver campus. His research addresses the overarching question of how to improve food security for 9-10 billion people while reducing agriculture’s environmental footprint.  To address this challenge, he develops global data sets of agricultural land use practices, conducts global analysis of the environmental outcomes of agriculture (using statistical analysis and agroecosystem models), and identifies solutions and leverage points.

TEDxEastVan 2016

This event is taking place Sunday, April 23, 2016 at the York Theatre from 9 am to 4:30 pm with an after party at the Big Rock Urban Brewery. For science types, two speakers are of particular interest, assuming they will be talking about science and not their personal life journeys From the TEDxEastVan 2016 Speakers page,

Dr. Sam Wadsworth

Sam is a scientist, inventor, and entrepreneur. He completed his Ph.D. in respiratory cell biology in the UK before relocating to Vancouver in 2007 to work as an academic researcher at St. Paul’s Hospital. In 2013, Sam co-founded a biotechnology company that uses a unique bioprinting technology that has the potential to revolutionise how we treat disease and the ageing process. He sees a future where human tissues can be provided on demand, where donor organs are built, not harvested, and where drugs are tested on bioprinted artificial tissues, not animals.

Dominic Walliman

Dominic Walliman is a physicist, and award-winning science writer. He received his PhD in quantum device physics from the University of Birmingham and currently works at D-Wave Systems Inc., a quantum computing company in Vancouver. Dominic grew up reading science books and remembers vividly the excitement of discovering the mind-boggling explanations that science gives us about the Universe. If he can pass on this wonder and enjoyment to the next generation, he will consider it a job well done.

There are 12 speakers in total and they are hoping for 250 audience members. The TEDxEastVan 2016 ticket page notes this,

TEDxEastVan is a day-long event that brings together creators, catalysts, designers, and thinkers to share their ideas on the TEDx stage. A day of listening that invites thought, discussion, and play — the TEDx talks are interspersed with activities, performances, and food worth eating. Our theme this year is “MOVE.”

TEDxEastVan is dedicated to discovering great ideas and sharing them with the rest of the world. Acting as a hub of energy and inspiration, the TEDxEastVan stage will bring unique thinkers together in a platform for sharing wisdom and experiences. It is a chance to welcome interesting people into the community and to showcase and celebrate the dynamic ideas which exist in East Vancouver.

WHAT’S INCLUDED IN YOUR TICKET?

  • Morning coffee/tea and light snack at the York Theatre during registration
  • SESSION ONE Talks and Performances inside the York Theatre
  • Lunchtime meal and drink at the Aboriginal Friendship Centre
  • Lunchtime activities at the Aboriginal Friendship Centre
  • SESSION TWO Talks and Performances inside the York Theatre
  • Afternoon break with coffee/tea and light snack at the Aboriginal Friendship Centre
  • SESSION THREE Talks and Performances inside the York Theatre

Your ticket will also include a free ticket to the Taste of East Van TEDxEastVan exclusive AFTER-PARTY at Big Rock Urban Brewery ( 310 W 4th Ave.). Ticket includes beer tastings from 13 East Van breweries that have partnered with the event, live musical and dance performances and plenty of snacks! Keep the conversation going with a chance to mingle directly with speakers, brewers, partners and the conference organizers.

We’re so looking forward to meeting you all! 🙂

ALL TICKET SALES END APRIL 15, 2016 AT 11:30PM PST.  << Updated
ALL TICKET SALES ARE FINAL. NO REFUNDS AT ANYTIME.

Tickets are $67.88 (student) and $83.40, respectively. I imagine taxes will be added.

Hopefully one or other of these events will appeal.

Prime Minister Trudeau, the quantum physicist

Prime Minister Justin Trudeau’s apparently extemporaneous response to a joking (non)question about quantum computing by a journalist during an April 15, 2016 press conference at the Perimeter Institute for Theoretical Physics in Waterloo, Ontario, Canada has created a buzz online, made international news, and caused Canadians to sit taller.

For anyone who missed the moment, here’s a video clip from the Canadian Broadcasting Corporation (CBC),

Aaron Hutchins in an April 15, 2016 article for Maclean’s magazine digs deeper to find out more about Trudeau and quantum physics (Note: A link has been removed),

Raymond Laflamme knows the drill when politicians visit the Perimeter Institute. A photo op here, a few handshakes there and a tour with “really basic, basic, basic facts” about the field of quantum mechanics.

But when the self-described “geek” Justin Trudeau showed up for a funding announcement on Friday [April 15, 2016], the co-founder and director of the Institute for Quantum Computing at the University of Waterloo wasn’t met with simple nods of the Prime Minister pretending to understand. Trudeau immediately started talking about things being waves and particles at the same time, like cats being dead and alive at the same time. It wasn’t just nonsense—Trudeau was referencing the famous thought experiment of the late legendary physicist Erwin Schrödinger.

“I don’t know where he learned all that stuff, but we were all surprised,” Laflamme says. Soon afterwards, as Trudeau met with one student talking about superconductivity, the Prime Minister asked her, “Why don’t we have high-temperature superconducting systems?” something Laflamme describes as the institute’s “Holy Grail” quest.

“I was flabbergasted,” Laflamme says. “I don’t know how he does in other subjects, but in quantum physics, he knows the basic pieces and the important questions.”

Strangely, Laflamme was not nearly as excited (tongue in cheek) when I demonstrated my understanding of quantum physics during our interview (see my May 11, 2015 posting; scroll down about 40% of the way to the Ramond Laflamme subhead).

As Jon Butterworth comments in his April 16, 2016 posting on the Guardian science blog, the response says something about our expectations regarding politicians,

This seems to have enhanced Trudeau’s reputation no end, and quite right too. But it is worth thinking a bit about why.

The explanation he gives is clear, brief, and understandable to a non-specialist. It is the kind of thing any sufficiently engaged politician could pick up from a decent briefing, given expert help. …

Butterworth also goes on to mention journalists’ expectations,

The reporter asked the question in a joking fashion, not unkindly as far as I can tell, but not expecting an answer either. If this had been an announcement about almost any other government investment, wouldn’t the reporter have expected a brief explanation of the basic ideas behind it? …

As for the announcement being made by Trudeau, there is this April 15, 2016 Perimeter Institute press release (Note: Links have been removed),

Prime Minister Justin Trudeau says the work being done at Perimeter and in Canada’s “Quantum Valley” [emphasis mine] is vital to the future of the country and the world.

Prime Minister Justin Trudeau became both teacher and student when he visited Perimeter Institute today to officially announce the federal government’s commitment to support fundamental scientific research at Perimeter.

Joined by Minister of Science Kirsty Duncan and Small Business and Tourism Minister Bardish Chagger, the self-described “geek prime minister” listened intensely as he received brief overviews of Perimeter research in areas spanning from quantum science to condensed matter physics and cosmology.

“You don’t have to be a geek like me to appreciate how important this work is,” he then told a packed audience of scientists, students, and community leaders in Perimeter’s atrium.

The Prime Minister was also welcomed by 200 teenagers attending the Institute’s annual Inspiring Future Women in Science conference, and via video greetings from cosmologist Stephen Hawking [he was Laflamme’s PhD supervisor], who is a Perimeter Distinguished Visiting Research Chair. The Prime Minister said he was “incredibly overwhelmed” by Hawking’s message.

“Canada is a wonderful, huge country, full of people with big hearts and forward-looking minds,” Hawking said in his message. “It’s an ideal place for an institute dedicated to the frontiers of physics. In supporting Perimeter, Canada sets an example for the world.”

The visit reiterated the Government of Canada’s pledge of $50 million over five years announced in last month’s [March 2016] budget [emphasis mine] to support Perimeter research, training, and outreach.

It was the Prime Minister’s second trip to the Region of Waterloo this year. In January [2016], he toured the region’s tech sector and universities, and praised the area’s innovation ecosystem.

This time, the focus was on the first link of the innovation chain: fundamental science that could unlock important discoveries, advance human understanding, and underpin the groundbreaking technologies of tomorrow.

As for the “quantum valley’ in Ontario, I think there might be some competition here in British Columbia with D-Wave Systems (first commercially available quantum computing, of a sort; my Dec. 16, 2015 post is the most recent one featuring the company) and the University of British Columbia’s Stewart Blusson Quantum Matter Institute.

Getting back to Trudeau, it’s exciting to have someone who seems so interested in at least some aspects of science that he can talk about it with a degree of understanding. I knew he had an interest in literature but there is also this (from his Wikipedia entry; Note: Links have been removed),

Trudeau has a bachelor of arts degree in literature from McGill University and a bachelor of education degree from the University of British Columbia…. After graduation, he stayed in Vancouver and he found substitute work at several local schools and permanent work as a French and math teacher at the private West Point Grey Academy … . From 2002 to 2004, he studied engineering at the École Polytechnique de Montréal, a part of the Université de Montréal.[67] He also started a master’s degree in environmental geography at McGill University, before suspending his program to seek public office.[68] [emphases mine]

Trudeau is not the only political leader to have a strong interest in science. In our neighbour to the south, there’s President Barack Obama who has done much to promote science since he was elected in 2008. David Bruggeman in an April 15, 2016  post (Obama hosts DNews segments for Science Channel week of April 11-15, 2016) and an April 17, 2016 post (Obama hosts White House Science Fair) describes two of Obama’s most recent efforts.

ETA April 19, 2016: I’ve found confirmation that this Q&A was somewhat staged as I hinted in the opening with “Prime Minister Justin Trudeau’s apparently extemporaneous response … .” Will Oremus’s April 19, 2016 article for Slate.com breaks the whole news cycle down and points out (Note: A link has been removed),

Over the weekend, even as latecomers continued to dine on the story’s rapidly decaying scraps, a somewhat different picture began to emerge. A Canadian blogger pointed out that Trudeau himself had suggested to reporters at the event that they lob him a question about quantum computing so that he could knock it out of the park with the newfound knowledge he had gleaned on his tour.

The Canadian blogger who tracked this down is J. J. McCullough (Jim McCullough) and you can read his Oct. 16, 2016 posting on the affair here. McCullough has a rather harsh view of the media response to Trudeau’s lecture. Oremus is a bit more measured,

… Monday brought the countertake parade—smaller and less pompous, if no less righteous—led by Gawker with the headline, “Justin Trudeau’s Quantum Computing Explanation Was Likely Staged for Publicity.”

But few of us in the media today are immune to the forces that incentivize timeliness and catchiness over subtlety, and even Gawker’s valuable corrective ended up meriting a corrective of its own. Author J.K. Trotter soon updated his post with comments from Trudeau’s press secretary, who maintained (rather convincingly, I think) that nothing in the episode was “staged”—at least, not in the sinister way that the word implies. Rather, Trudeau had joked that he was looking forward to someone asking him about quantum computing; a reporter at the press conference jokingly complied, without really expecting a response (he quickly moved on to his real question before Trudeau could answer); Trudeau responded anyway, because he really did want to show off his knowledge.

Trotter deserves credit, regardless, for following up and getting a fuller picture of what transpired. He did what those who initially jumped on the story did not, which was to contact the principals for context and comment.

But my point here is not to criticize any particular writer or publication. The too-tidy Trudeau narrative was not the deliberate work of any bad actor or fabricator. Rather, it was the inevitable product of today’s inexorable social-media machine, in which shareable content fuels the traffic-referral engines that pay online media’s bills.

I suggest reading both McCullough’s and Oremus’s posts in their entirety should you find debates about the role of media compelling.

University of British Columbia gets $3.5M in funding for nanoscience and other sciences

One-third to one-half of the researchers getting grants are working on nanotechnology projects. From a March 1, 2016 University of British Columbia (UBC) news release (received via email),

Research into forest renewal, quantum computer nanotechnology, solar power, high-tech manufacturing, forestry products and the Subarctic ocean climate gained a boost today, with the announcement of $3.5 million in funding for six UBC projects from the Natural Sciences and Engineering Research Council of Canada (NSERC).

The funding comes from NSERC’s Strategic Partnership Grants, which support scientific partnerships to strengthen the Canadian economy, society and environment.

Konrad Walus, Associate Professor, Department of Electrical and Computer Engineering

A framework for embedding, simulation and design of computational nanotechnology using a quantum annealing processor [emphasis mine] — $394,500

This project will work with Quantum Silicon Inc. [emphasis mine] to conduct experiments that provide better insight into the potential of quantum computing, and will develop design rules for future designers of the technology.

Alireza Nojeh, Professor, Department of Electrical and Computer Engineering

Thermionic solar energy converter — $510,500

In close collaboration with four Canadian industrial partners, this project will establish a novel approach to solar electricity generation using recent discoveries in nanostructured materials.

With mention of quantum annealing, I would have expected their industrial partner to be D-Wave Systems, a Vancouver-based company which has gotten a lot of attention for its quantum annealing processor (a Dec. 16, 2015 post titled: Google announces research results after testing 1,097-qubit D-Wave 2X™ quantum computers is one of my most recent pieces about the company). The company mentioned, Quantum Silicon, is based in Alberta.

There is one project where I believe at least some of the work is being done at the nanoscale or less (from the March 1, 2016 news release0,

Harry Brumer, Professor, Michael Smith Laboratories at UBC

Biorefining of novel cellulosics from forest fibre resources — $532,812

Working with a Canadian forest products company, this project will use genomic and biochemical methods to develop new technology for wood-fibre modification.

And for the curious, here are the other projects (from the March 1, 2016 news release),

Suzanne Simard, Professor, Department of Forest and Conservation Sciences

Designing successful forest renewal practices for our changing climate — $929,000

This project will investigate novel forest renewal methods, and establish recommendations for best harvesting and regeneration practices under changing climate conditions.

Chadwick Sinclair, Professor, Faculty of Applied Science – Materials Engineering

Through-process modeling for optimized electron beam additive manufacturing — $484,400

Working in collaboration with Canadian electron-beam processor PAVAC Industries Inc. [emphasis mine], this project will develop a through-process model for additive manufacturing that will link machine control to material microstructure and properties.

Philippe Tortell, Professor, Department of Earth, Ocean and Atmospheric Sciences

Quantifying climate-dependent and anthropogenic impacts on ecosystem services in the Subarctic Pacific Ocean; State-of-the-art observational tools to inform policy and management — $707,100

University scientists and Fisheries and Oceans Canada will use field-based observations to generate satellite-based models of ecosystem productivity to examine fish yields and environmental variability.

PAVAC Industries is headquartered in Richmond, BC, Canada,.

Congratulations to the researchers!

Lockheed Martin upgrades to 1000+ Qubit D-Wave system

D-Wave Systems, a Canadian quantum computing company, seems to be making new business announcements on a weekly basis. After last week’s US Los Alamos National Laboratory announcement (Nov. 12, 2015 posting) , there’s a Nov. 16, 2015 news item on Nanotechnology Now,

Harris & Harris Group, Inc. (NASDAQ:TINY), an investor in transformative companies enabled by disruptive science, notes that its portfolio company, D-Wave Systems, Inc., announced that it has entered into a multi-year agreement with Lockheed Martin to upgrade the company’s 512-qubit D-Wave Two™ quantum computer to the new D-Wave 2X™ system with 1,000+ qubits.

A Nov. 16, 2015 D-Wave Systems news release provides more details about the deal,

D-Wave Systems Inc., the world’s first quantum computing company, today announced that it has entered into a multi-year agreement with Lockheed Martin (NYSE: LMT) to upgrade the company’s 512-qubit D-Wave Two™ quantum computer to the new D-Wave 2X™ system with 1,000+ qubits. This represents the second system upgrade since Lockheed Martin became D-Wave’s first customer in 2011 with the purchase of a 128 qubit D-Wave One™ system. The agreement includes the system, maintenance and associated professional services.

“Our mission is to solve complex challenges, advance scientific discovery and deliver innovative solutions to our customers, which requires expertise in the most advanced technologies,” said Greg Tallant, Lockheed Martin fellow and lead for the University of Southern California-Lockheed Martin Quantum Computation Center (QCC). “Through our continued investment in D-Wave technology, we are able to push the boundaries of quantum computing and apply the latest technologies to address the real-world problems being faced by our customers.”

For quantum computing, the performance gain over traditional computing is most evident in exceedingly complex computational problems. This could be in areas such as validating the performance of software or vehicle planning and scheduling. With the new D-Wave system, Lockheed Martin researchers will be able to explore solutions for significantly larger computational problems with improved accuracy and execution time.

The new system will be hosted at the University of Southern California-Lockheed Martin Quantum Computation Center, which first began exploring the power of quantum computing with the D-Wave One, the world’s first quantum computer.

The installation of the D-Wave 2X system will be completed in January 2016.

Who knows what next week will bring for D-Wave, which by the way is located in Vancouver, Canada or, more accurately, Burnaby?

US Los Alamos National Laboratory catches the D-Wave (buys a 1000+ Qubit quantum computer from D-Wave)

It can be euphoric experience making a major technical breakthrough (June 2015), selling to a new large customer (Nov. 2015) and impressing your important customers so they upgrade to the new system (Oct. 2015) within a few short months.* D-Wave Systems (a Vancouver-based quantum computer company) certainly has cause to experience it given the events of the last six weeks or so. Yesterday, in a Nov. 11, 2015, D-Wave news release, the company trumpeted its sale of a 1000+ Qubit system (Note: Links have been removed),

D-Wave Systems Inc., the world’s first quantum computing company, announced that Los Alamos National Laboratory will acquire and install the latest D-Wave quantum computer, the 1000+ qubit D-Wave 2X™ system. Los Alamos, a multidisciplinary research institution engaged in strategic science on behalf of national security, will lead a collaboration within the Department of Energy and with select university partners to explore the capabilities and applications of quantum annealing technology, consistent with the goals of the government-wide National Strategic Computing Initiative. The National Strategic Computing Initiative, created by executive order of President Obama in late July [2015], is intended “to maximize [the] benefits of high-performance computing (HPC) research, development, and deployment.”

“Los Alamos is a global leader in high performance computing and a pioneer in the application of new architectures to solve critical problems related to national security, energy, the environment, materials, health and earth science,” said Robert “Bo” Ewald, president of D-Wave U.S. “As we work jointly with scientists and engineers at Los Alamos we expect to be able to accelerate the pace of quantum software development to advance the state of algorithms, applications and software tools for quantum computing.”

A Nov. 11, 2015 news item on Nanotechnology Now is written from the company’s venture capitalist’s perspective,

Harris & Harris Group, Inc. (NASDAQ:TINY), an investor in transformative companies enabled by disruptive science, notes that its portfolio company, D-Wave Systems, Inc., announced that Los Alamos National Laboratory will acquire and install the latest D-Wave quantum computer, the 1000+ qubit D-Wave 2X™ system.

The news about the Los Alamos sale comes only weeks after D-Wave announced renewed agreements with Google, NASA (US National Aeronautics and Space Administration), and the Universities Space Research Association (USRA) in the aftermath of a technical breakthrough. See my Oct. 5, 2015 posting for more details about the agreements, the type of quantum computer D-Wave sells, and news of interesting and related research in Australia. Cracking the 512 qubit barrier also occasioned a posting here (June 26, 2015) where I described the breakthrough, the company, and included excerpts from an Economist article which mentioned D-Wave in its review of research in the field of quantum computing.

Congratulations to D-Wave!

*’It can be euphoric selling to your first large and/or important customers and D-Wave Systems (a Vancouver-based quantum computer company) certainly has cause to experience it. ‘ changed to more accurately express my thoughts to ‘It can be euphoric experience making a major technical breakthrough (June 2015), selling to a new large customer (Nov. 2015) and impressing your important customers so they upgrade to the new system (Oct. 2015) within a few short months.’ on Nov. 12, 2015 at 1025 hours PST.

D-Wave upgrades Google’s quantum computing capabilities

Vancouver-based (more accurately, Burnaby-based) D-Wave systems has scored a coup as key customers have upgraded from a 512-qubit system to a system with over 1,000 qubits. (The technical breakthrough and concomitant interest from the business community was mentioned here in a June 26, 2015 posting.) As for the latest business breakthrough, here’s more from a Sept. 28, 2015 D-Wave press release,

D-Wave Systems Inc., the world’s first quantum computing company, announced that it has entered into a new agreement covering the installation of a succession of D-Wave systems located at NASA’s Ames Research Center in Moffett Field, California. This agreement supports collaboration among Google, NASA and USRA (Universities Space Research Association) that is dedicated to studying how quantum computing can advance artificial intelligence and machine learning, and the solution of difficult optimization problems. The new agreement enables Google and its partners to keep their D-Wave system at the state-of-the-art for up to seven years, with new generations of D-Wave systems to be installed at NASA Ames as they become available.

“The new agreement is the largest order in D-Wave’s history, and indicative of the importance of quantum computing in its evolution toward solving problems that are difficult for even the largest supercomputers,” said D-Wave CEO Vern Brownell. “We highly value the commitment that our partners have made to D-Wave and our technology, and are excited about the potential use of our systems for machine learning and complex optimization problems.”

Cade Wetz’s Sept. 28, 2015 article for Wired magazine provides some interesting observations about D-Wave computers along with some explanations of quantum computing (Note: Links have been removed),

Though the D-Wave machine is less powerful than many scientists hope quantum computers will one day be, the leap to 1000 qubits represents an exponential improvement in what the machine is capable of. What is it capable of? Google and its partners are still trying to figure that out. But Google has said it’s confident there are situations where the D-Wave can outperform today’s non-quantum machines, and scientists at the University of Southern California [USC] have published research suggesting that the D-Wave exhibits behavior beyond classical physics.

A quantum computer operates according to the principles of quantum mechanics, the physics of very small things, such as electrons and photons. In a classical computer, a transistor stores a single “bit” of information. If the transistor is “on,” it holds a 1, and if it’s “off,” it holds a 0. But in quantum computer, thanks to what’s called the superposition principle, information is held in a quantum system that can exist in two states at the same time. This “qubit” can store a 0 and 1 simultaneously.

Two qubits, then, can hold four values at any given time (00, 01, 10, and 11). And as you keep increasing the number of qubits, you exponentially increase the power of the system. The problem is that building a qubit is a extreme difficult thing. If you read information from a quantum system, it “decoheres.” Basically, it turns into a classical bit that houses only a single value.

D-Wave claims to have a found a solution to the decoherence problem and that appears to be borne out by the USC researchers. Still, it isn’t a general quantum computer (from Wetz’s article),

… researchers at USC say that the system appears to display a phenomenon called “quantum annealing” that suggests it’s truly operating in the quantum realm. Regardless, the D-Wave is not a general quantum computer—that is, it’s not a computer for just any task. But D-Wave says the machine is well-suited to “optimization” problems, where you’re facing many, many different ways forward and must pick the best option, and to machine learning, where computers teach themselves tasks by analyzing large amount of data.

It takes a lot of innovation before you make big strides forward and I think D-Wave is to be congratulated on producing what is to my knowledge the only commercially available form of quantum computing of any sort in the world.

ETA Oct. 6, 2015* at 1230 hours PST: Minutes after publishing about D-Wave I came across this item (h/t Quirks & Quarks twitter) about Australian researchers and their quantum computing breakthrough. From an Oct. 6, 2015 article by Hannah Francis for the Sydney (Australia) Morning Herald,

For decades scientists have been trying to turn quantum computing — which allows for multiple calculations to happen at once, making it immeasurably faster than standard computing — into a practical reality rather than a moonshot theory. Until now, they have largely relied on “exotic” materials to construct quantum computers, making them unsuitable for commercial production.

But researchers at the University of New South Wales have patented a new design, published in the scientific journal Nature on Tuesday, created specifically with computer industry manufacturing standards in mind and using affordable silicon, which is found in regular computer chips like those we use every day in smartphones or tablets.

“Our team at UNSW has just cleared a major hurdle to making quantum computing a reality,” the director of the university’s Australian National Fabrication Facility, Andrew Dzurak, the project’s leader, said.

“As well as demonstrating the first quantum logic gate in silicon, we’ve also designed and patented a way to scale this technology to millions of qubits using standard industrial manufacturing techniques to build the world’s first quantum processor chip.”

According to the article, the university is looking for industrial partners to help them exploit this breakthrough. Fisher’s article features an embedded video, as well as, more detail.

*It was Oct. 6, 2015 in Australia but Oct. 5, 2015 my side of the international date line.

ETA Oct. 6, 2015 (my side of the international date line): An Oct. 5, 2015 University of New South Wales news release on EurekAlert provides additional details.

Here’s a link to and a citation for the paper,

A two-qubit logic gate in silicon by M. Veldhorst, C. H. Yang, J. C. C. Hwang, W. Huang,    J. P. Dehollain, J. T. Muhonen, S. Simmons, A. Laucht, F. E. Hudson, K. M. Itoh, A. Morello    & A. S. Dzurak. Nature (2015 doi:10.1038/nature15263 Published online 05 October 2015

This paper is behind a paywall.

D-Wave passes 1000-qubit barrier

A local (Vancouver, Canada-based, quantum computing company, D-Wave is making quite a splash lately due to a technical breakthrough.  h/t’s Speaking up for Canadian Science for Business in Vancouver article and Nanotechnology Now for Harris & Harris Group press release and Economist article.

A June 22, 2015 article by Tyler Orton for Business in Vancouver describes D-Wave’s latest technical breakthrough,

“This updated processor will allow significantly more complex computational problems to be solved than ever before,” Jeremy Hilton, D-Wave’s vice-president of processor development, wrote in a June 22 [2015] blog entry.

Regular computers use two bits – ones and zeroes – to make calculations, while quantum computers rely on qubits.

Qubits possess a “superposition” that allow it to be one and zero at the same time, meaning it can calculate all possible values in a single operation.

But the algorithm for a full-scale quantum computer requires 8,000 qubits.

A June 23, 2015 Harris & Harris Group press release adds more information about the breakthrough,

Harris & Harris Group, Inc. (Nasdaq: TINY), an investor in transformative companies enabled by disruptive science, notes that its portfolio company, D-Wave Systems, Inc., announced that it has successfully fabricated 1,000 qubit processors that power its quantum computers.  D-Wave’s quantum computer runs a quantum annealing algorithm to find the lowest points, corresponding to optimal or near optimal solutions, in a virtual “energy landscape.”  Every additional qubit doubles the search space of the processor.  At 1,000 qubits, the new processor considers 21000 possibilities simultaneously, a search space which is substantially larger than the 2512 possibilities available to the company’s currently available 512 qubit D-Wave Two. In fact, the new search space contains far more possibilities than there are particles in the observable universe.

A June 22, 2015 D-Wave news release, which originated the technical details about the breakthrough found in the Harris & Harris press release, provides more information along with some marketing hype (hyperbole), Note: Links have been removed,

As the only manufacturer of scalable quantum processors, D-Wave breaks new ground with every succeeding generation it develops. The new processors, comprising over 128,000 Josephson tunnel junctions, are believed to be the most complex superconductor integrated circuits ever successfully yielded. They are fabricated in part at D-Wave’s facilities in Palo Alto, CA and at Cypress Semiconductor’s wafer foundry located in Bloomington, Minnesota.

“Temperature, noise, and precision all play a profound role in how well quantum processors solve problems.  Beyond scaling up the technology by doubling the number of qubits, we also achieved key technology advances prioritized around their impact on performance,” said Jeremy Hilton, D-Wave vice president, processor development. “We expect to release benchmarking data that demonstrate new levels of performance later this year.”

The 1000-qubit milestone is the result of intensive research and development by D-Wave and reflects a triumph over a variety of design challenges aimed at enhancing performance and boosting solution quality. Beyond the much larger number of qubits, other significant innovations include:

  •  Lower Operating Temperature: While the previous generation processor ran at a temperature close to absolute zero, the new processor runs 40% colder. The lower operating temperature enhances the importance of quantum effects, which increases the ability to discriminate the best result from a collection of good candidates.​
  • Reduced Noise: Through a combination of improved design, architectural enhancements and materials changes, noise levels have been reduced by 50% in comparison to the previous generation. The lower noise environment enhances problem-solving performance while boosting reliability and stability.
  • Increased Control Circuitry Precision: In the testing to date, the increased precision coupled with the noise reduction has demonstrated improved precision by up to 40%. To accomplish both while also improving manufacturing yield is a significant achievement.
  • Advanced Fabrication:  The new processors comprise over 128,000 Josephson junctions (tunnel junctions with superconducting electrodes) in a 6-metal layer planar process with 0.25μm features, believed to be the most complex superconductor integrated circuits ever built.
  • New Modes of Use: The new technology expands the boundaries of ways to exploit quantum resources.  In addition to performing discrete optimization like its predecessor, firmware and software upgrades will make it easier to use the system for sampling applications.

“Breaking the 1000 qubit barrier marks the culmination of years of research and development by our scientists, engineers and manufacturing team,” said D-Wave CEO Vern Brownell. “It is a critical step toward bringing the promise of quantum computing to bear on some of the most challenging technical, commercial, scientific, and national defense problems that organizations face.”

A June 20, 2015 article in The Economist notes there is now commercial interest as it provides good introductory information about quantum computing. The article includes an analysis of various research efforts in Canada (they mention D-Wave), the US, and the UK. These excerpts don’t do justice to the article but will hopefully whet your appetite or provide an overview for anyone with limited time,

A COMPUTER proceeds one step at a time. At any particular moment, each of its bits—the binary digits it adds and subtracts to arrive at its conclusions—has a single, definite value: zero or one. At that moment the machine is in just one state, a particular mixture of zeros and ones. It can therefore perform only one calculation next. This puts a limit on its power. To increase that power, you have to make it work faster.

But bits do not exist in the abstract. Each depends for its reality on the physical state of part of the computer’s processor or memory. And physical states, at the quantum level, are not as clear-cut as classical physics pretends. That leaves engineers a bit of wriggle room. By exploiting certain quantum effects they can create bits, known as qubits, that do not have a definite value, thus overcoming classical computing’s limits.

… The biggest question is what the qubits themselves should be made from.

A qubit needs a physical system with two opposite quantum states, such as the direction of spin of an electron orbiting an atomic nucleus. Several things which can do the job exist, and each has its fans. Some suggest nitrogen atoms trapped in the crystal lattices of diamonds. Calcium ions held in the grip of magnetic fields are another favourite. So are the photons of which light is composed (in this case the qubit would be stored in the plane of polarisation). And quasiparticles, which are vibrations in matter that behave like real subatomic particles, also have a following.

The leading candidate at the moment, though, is to use a superconductor in which the qubit is either the direction of a circulating current, or the presence or absence of an electric charge. Both Google and IBM are banking on this approach. It has the advantage that superconducting qubits can be arranged on semiconductor chips of the sort used in existing computers. That, the two firms think, should make them easier to commercialise.

Google is also collaborating with D-Wave of Vancouver, Canada, which sells what it calls quantum annealers. The field’s practitioners took much convincing that these devices really do exploit the quantum advantage, and in any case they are limited to a narrower set of problems—such as searching for images similar to a reference image. But such searches are just the type of application of interest to Google. In 2013, in collaboration with NASA and USRA, a research consortium, the firm bought a D-Wave machine in order to put it through its paces. Hartmut Neven, director of engineering at Google Research, is guarded about what his team has found, but he believes D-Wave’s approach is best suited to calculations involving fewer qubits, while Dr Martinis and his colleagues build devices with more.

It’s not clear to me if the writers at The Economist were aware of  D-Wave’s latest breakthrough at the time of writing but I think not. In any event, they (The Economist writers) have included a provocative tidbit about quantum encryption,

Documents released by Edward Snowden, a whistleblower, revealed that the Penetrating Hard Targets programme of America’s National Security Agency was actively researching “if, and how, a cryptologically useful quantum computer can be built”. In May IARPA [Intellligence Advanced Research Projects Agency], the American government’s intelligence-research arm, issued a call for partners in its Logical Qubits programme, to make robust, error-free qubits. In April, meanwhile, Tanja Lange and Daniel Bernstein of Eindhoven University of Technology, in the Netherlands, announced PQCRYPTO, a programme to advance and standardise “post-quantum cryptography”. They are concerned that encrypted communications captured now could be subjected to quantum cracking in the future. That means strong pre-emptive encryption is needed immediately.

I encourage you to read the Economist article.

Two final comments. (1) The latest piece, prior to this one, about D-Wave was in a Feb. 6, 2015 posting about then new investment into the company. (2) A Canadian effort in the field of quantum cryptography was mentioned in a May 11, 2015 posting (scroll down about 50% of the way) featuring a profile of Raymond Laflamme, at the University of Waterloo’s Institute of Quantum Computing in the context of an announcement about science media initiative Research2Reality.