Tag Archives: Dan Luo

Better and greener oil recovery

A June 27, 2016 news item on phys.org describes research on achieving better oil recovery,

As oil producers struggle to adapt to lower prices, getting as much oil as possible out of every well has become even more important, despite concerns from nearby residents that some chemicals used to boost production may pollute underground water resources.

Researchers from the University of Houston have reported the discovery of a nanotechnology-based solution that could address both issues – achieving 15 percent tertiary oil recovery at low cost, without the large volume of chemicals used in most commercial fluids.

A June 27, 2016 University of Houston news release (also on EurekAlert) by Jeannie Kever, which originated the news item, provides more detail,

The solution – graphene-based Janus amphiphilic nanosheets – is effective at a concentration of just 0.01 percent, meeting or exceeding the performance of both conventional and other nanotechnology-based fluids, said Zhifeng Ren, MD Anderson Chair professor of physics. Janus nanoparticles have at least two physical properties, allowing different chemical reactions on the same particle.

The low concentration and the high efficiency in boosting tertiary oil recovery make the nanofluid both more environmentally friendly and less expensive than options now on the market, said Ren, who also is a principal investigator at the Texas Center for Superconductivity at UH. He is lead author on a paper describing the work, published June 27 [2016] in the Proceedings of the National Academy of Sciences.

“Our results provide a novel nanofluid flooding method for tertiary oil recovery that is comparable to the sophisticated chemical methods,” they wrote. “We anticipate that this work will bring simple nanofluid flooding at low concentration to the stage of oilfield practice, which could result in oil being recovered in a more environmentally friendly and cost-effective manner.”

In addition to Ren, researchers involved with the project include Ching-Wu “Paul” Chu, chief scientist at the Texas Center for Superconductivity at UH; graduate students Dan Luo and Yuan Liu; researchers Feng Wang and Feng Cao; Richard C. Willson, professor of chemical and biomolecular engineering; and Jingyi Zhu, Xiaogang Li and Zhaozhong Yang, all of Southwest Petroleum University in Chengdu, China.

The U.S. Department of Energy estimates as much as 75 percent of recoverable reserves may be left after producers capture hydrocarbons that naturally rise to the surface or are pumped out mechanically, followed by a secondary recovery process using water or gas injection.

Traditional “tertiary” recovery involves injecting a chemical mix into the well and can recover between 10 percent and 20 percent, according to the authors.

But the large volume of chemicals used in tertiary oil recovery has raised concerns about potential environmental damage.

“Obviously simple nanofluid flooding (containing only nanoparticles) at low concentration (0.01 wt% or less) shows the greatest potential from the environmental and economic perspective,” the researchers wrote.

Previously developed simple nanofluids recover less than 5 percent of the oil when used at a 0.01 percent concentration, they reported. That forces oil producers to choose between a higher nanoparticle concentration – adding to the cost – or mixing with polymers or surfactants.

In contrast, they describe recovering 15.2 percent of the oil using their new and simple nanofluid at that concentration – comparable to chemical methods and about three times more efficient than other nanofluids.

Dan Luo, a UH graduate student and first author on the paper, said when the graphene-based fluid meets with the brine/oil mixture in the reservoir, the nanosheets in the fluid spontaneously go to the interface, reducing interfacial tension and helping the oil flow toward the production well.

Ren said the solution works in a completely new way.

“When it is injected, the solution helps detach the oil from the rock surface,” he said. Under certain hydrodynamic conditions, the graphene-based fluid forms a strong elastic and recoverable film at the oil and water interface, instead of forming an emulsion, he said.

Researchers said the difference is due to the asymmetric property of the 2-dimensional material. Nanoparticles are usually either hydrophobic – water-repelling, like oil – or hydrophilic, water-like, said Feng Wang, a post-doctoral researcher who shared first author-duties with Luo.

“Ours is both,” he said. “Ours is Janus and also strictly amphiphilic.”

Here’s a link to and a citation for the paper,

Nanofluid of graphene-based amphiphilic Janus nanosheets for tertiary or enhanced oil recovery: High performance at low concentration by Dan Luo, Feng Wang, Jingyi Zhu, Feng Cao, Yuan Liu, Xiaogang Li, Richard C. Willson, Zhaozhong Yang, Ching-Wu Chu, and Zhifeng Ren. PNAS 2016 doi: 10.1073/pnas.1608135113 published ahead of print June 27, 2016,

This paper is behind a paywall.

Buildable, bendable, and biological; a kirigami-based project at Cornell University

A May 18, 2013 news item on Azonano highlights a new project at Cornell University,

Cornell researchers Jenny Sabin, assistant professor of architecture, and Dan Luo, professor of biological and environmental engineering, are among the lead investigators on a new research project to produce “buildable, bendable and biological materials” for a wide range of applications.

The project is intended to bring new ideas, motifs, portability and design to the formation of intricate chemical, biological and architectural materials.

Based on Kirigami (from the Japanese word kiru, “to cut”), the project “offers a previously unattainable level of design, dynamics and deployability” to self-folding and unfolding materials from the molecular scale to the architectural level, according to the researchers.

The May 16, 2013 Cornell University news release by Daniel Aloi, which originated the news item, describes the project’s intent,

The project is intended to illuminate new principles of architecture, materials synthesis and biological structures, and advance several technologies – including meta-materials, sensors, stealth aircraft and adaptive and sustainable buildings. A complementary goal is to generate public interest through an enhanced impact on science, art and engineering.

“Like the opening and closing of flowers, satellites and even greeting cards, our research will offer a rich and diverse set of intricate surprises, problems and challenges for students at all levels, and broaden their interest and awareness of emerging science and engineering,” according to the project proposal, “Cutting and Pasting: Kirigami in Architecture, Technology and Science” (KATS).

The Emerging Frontiers in Research Innovation grant from the NSF is in the research category of Origami Design for Integration of Self-assembling Systems for Engineering Innovation.

I wish they had a few sample illustrations of how this project might look as a macroscale architectural (or other type of) project even it is a complete fantasy.

Industrial Biotechnology highlights nanotechnology applied to food and agriculture in the US

The Dec. 2012 issue of Industrial Biotechnology featured a special research section highlighting innovative uses of nanotechnology in agriculture and food in the US. The Jan. 28, 2013 news release on EurekAlert provides more detail,

The U.S. Department of Agriculture (USDA) invests nearly $10 million a year to support about 250 nanoscale science and engineering projects that could lead to revolutionary advances in agriculture and food systems. …

In their introductory article, “Overview: Nanoscale Science and Engineering for Agriculture and Food Systems,” Co-Guest Editors Norman Scott, PhD, Professor, Cornell University (Ithaca, NY) and Hongda Chen, PhD, National Program Leader, National Institute of Food and Agriculture, USDA (Washington, DC), describe the promising early advances nanotechnology is enabling all along the food supply chain, from production through consumption, and especially in the area of food safety.

This special issue of IB [Industrial Biotechnology] includes the review article “Bioactivity and Biomodification of Ag, ZnO, and CuO Nanoparticles with Relevance to Plant Performance in Agriculture” by Anne Anderson and coauthors, Utah State University, Logan, in which they discuss the environmental factors that affect the biological activity and potential agricultural utility of nanoparticle. In the original research article “Effect of Silver Nanoparticles on Soil Denitrification Kinetics” Allison Rick VandeVoort and Yuji Arai, Clemson University (South Carolina), describe the effects of three different silver nanoparticles on native bacteria-mediated soil denitrification.

The short communication “Soft Lithography-Based Fabrication of Biopolymer Microparticles for Nutrient Microencapsulation” by Natalia Higuita-Castro, et al., The Ohio State University and Abbott Nutrition Products Division, Columbus, OH, describes a high-throughput microfabrication method to encapsulate nutrients that can enhance food nutritional value and appearance. Dan Luo and colleagues, Cornell University, Ithaca, NY, present a promising microfluidic-based scale-up method for cell-free protein production in the methods article “Cell-Free Protein Expression from DNA-Based Hydrogel (P-Gel) Droplets for Scale-Up Production.”

“The rapid expansion in nanoscale science and technology in our community with new insights and methods in biomolecular and cellular processing will spur industrial biotechnology innovation in a number of important sectors,” says Larry Walker, PhD, Co-Editor-in-Chief and Professor, Biological & Environmental Engineering, Cornell University, Ithaca, NY.

These articles are open access although I don’t believe that the journal is necessarily open access. Before I explain that further, here’s a bit more about the editors and the publisher,

About the Journal

Industrial Biotechnology, led by Co-Editors-in-Chief Larry Walker, PhD, and Glenn Nedwin, PhD, MBA, is an authoritative journal focused on biobased industrial and environmental products and processes, published bimonthly in print and online. The Journal reports on the science, business, and policy developments of the emerging global bioeconomy, including biobased production of energy and fuels, chemicals, materials, and consumer goods. The articles published include critically reviewed original research in all related sciences (biology, biochemistry, chemical and process engineering, agriculture), in addition to expert commentary on current policy, funding, markets, business, legal issues, and science trends. Industrial Biotechnology offers the premier forum bridging basic research and R&D with later-stage commercialization for sustainable biobased industrial and environmental applications.

About the Publisher

Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative medical and biomedical peer-reviewed journals, including Metabolic Syndrome and Related Disorders, Population Health Management, Diabetes Technology & Therapeutics, and Journal of Women’s Health. Its biotechnology trade magazine, Genetic Engineering & Biotechnology News (GEN), was the first in its field and is today the industry’s most widely read publication worldwide. A complete list of the firm’s 70 journals, newsmagazines, and books is available on the Mary Ann Liebert, Inc., publishers website at http://www.liebertpub.com.

The publisher, Mary Ann Liebert, offers an open access option to authors and research funders, which means that for a fee, an article will be freely available online but (I strongly suspect) not all the articles in a journal issue are necessarily published under an open access agreement. In contrast, if it’s an article in a Wiley or Elsevier journal, you can be pretty much guaranteed that the online article is behind a paywall.

From Cornell University, a liquid that remembers its shape

Sometimes one experiences a frisson (shiver) when reading about a piece of research. Let’s see how you do with this Dec. 4, 2012 news item on Nanowerk,

A bit reminiscent of the Terminator T-1000, a new material created by Cornell researchers is so soft that it can flow like a liquid and then, strangely, return to its original shape.

Rather than liquid metal, it is a hydrogel, a mesh of organic molecules with many small empty spaces that can absorb water like a sponge. It qualifies as a “metamaterial” with properties not found in nature and may be the first organic metamaterial with mechanical meta-properties.

The Dec. 3, 2012 Cornell University news article by Bill Steele, which originated the news item,goes on to explain the interest in hydrogels and what makes this particular formulation so special,

Hydrogels have already been considered for use in drug delivery — the spaces can be filled with drugs that release slowly as the gel biodegrades — and as frameworks for tissue rebuilding. The ability to form a gel into a desired shape further expands the possibilities. For example, a drug-infused gel could be formed to exactly fit the space inside a wound.

The new hydrogel is made of synthetic DNA. In addition to being the stuff genes are made of, DNA can serve as a building block for self-assembling materials. Single strands of DNA will lock onto other single stands that have complementary coding, like tiny organic Legos. By synthesizing DNA with carefully arranged complementary sections Luo’s [Dan Luo, professor of biological and environmental engineering] research team previously created short stands that link into shapes such as crosses or Y’s, which in turn join at the ends to form meshlike structures to form the first successful all-DNA hydrogel. Trying a new approach, they mixed synthetic DNA with enzymes that cause DNA to self-replicate and to extend itself into long chains, to make a hydrogel without DNA linkages.

“During this process they entangle, and the entanglement produces a 3-D network,” Luo explained. But the result was not what they expected: The hydrogel they made flows like a liquid, but when placed in water returns to the shape of the container in which it was formed.

“This was not by design,” Luo said.

See the material for yourself,

Hydrogels made in the form of the letters D, N and A collapse into a liquid-like state on their own but return to the original shape when surrounded by water Provided/Luo Lab

Nature Nanotechnology published the team’s research online Dec. 2, 2012 and, unusually, the article is open access (at least for now),

A mechanical metamaterial made from a DNA hydrogel by Jong Bum Lee, Songming Peng, Dayong Yang,  Young Hoon Roh, Hisakage Funabashi, Nokyoung Park, Edward J. Rice, Liwei Chen, Rong Long, Mingming Wu & Dan Luo in Nature Nanotechnology  (2012) doi:10.1038/nnano.2012.211 published online Dec. 2, 2012

Depending on your reading interests and time available, Bill Steele’s Cornell University article has more detail than I’ve provided here or you can check out the well illustrated article in Nature Nanotechnology. As these things go, it’s quite readable as you can see with the abstract (Note: I have removed footnotes),

Metamaterials are artificial substances that are structurally engineered to have properties not typically found in nature. To date, almost all metamaterials have been made from inorganic materials such as silicon and copper, which have unusual electromagnetic or acoustic properties that allow them to be used, for example, as invisible cloaks superlenses or super absorbers for sound. Here, we show that metamaterials with unusual mechanical properties can be prepared using DNA as a building block. We used a polymerase enzyme to elongate DNA chains and weave them non-covalently into a hydrogel. The resulting material, which we term a meta-hydrogel, has liquid-like properties when taken out of water and solid-like properties when in water. Moreover, upon the addition of water, and after complete deformation, the hydrogel can be made to return to its original shape. The meta-hydrogel has a hierarchical internal structure and, as an example of its potential applications, we use it to create an electric circuit that uses water as a switch.

For anyone not familiar with the Terminator movies, here’s an essay in Wikipedia about the ‘franchise’. Pay special note to the second movie in the series, Terminator 2: Judgment Day which introduced a robot (played by Robert Patrick) that could morph from a liquidlike state into various lethal entities.