Tag Archives: Daniel Lidar

Cornwall (UK) connects with University of Southern California for performance by a quantum computer (D-Wave) and mezzo soprano Juliette Pochin

The upcoming performance of a quantum computer built by D-Wave Systems (a Canadian company) and Welsh mezzo soprano Juliette Pochin is the première of “Superposition” by Alexis Kirke. A July 13, 2016 news item on phys.org provides more detail,

What happens when you combine the pure tones of an internationally renowned mezzo soprano and the complex technology of a $15million quantum supercomputer?

The answer will be exclusively revealed to audiences at the Port Eliot Festival [Cornwall, UK] when Superposition, created by Plymouth University composer Alexis Kirke, receives its world premiere later this summer.

A D-Wave 1000 Qubit Quantum Processor. Credit: D-Wave Systems Inc

A D-Wave 1000 Qubit Quantum Processor. Credit: D-Wave Systems Inc

A July 13, 2016 Plymouth University press release, which originated the news item, expands on the theme,

Combining the arts and sciences, as Dr Kirke has done with many of his previous works, the 15-minute piece will begin dark and mysterious with celebrated performer Juliette Pochin singing a low-pitched slow theme.

But gradually the quiet sounds of electronic ambience will emerge over or beneath her voice, as the sounds of her singing are picked up by a microphone and sent over the internet to the D-Wave quantum computer at the University of Southern California.

It then reacts with behaviours in the quantum realm that are turned into sounds back in the performance venue, the Round Room at Port Eliot, creating a unique and ground-breaking duet.

And when the singer ends, the quantum processes are left to slowly fade away naturally, making their final sounds as the lights go to black.

Dr Kirke, a member of the Interdisciplinary Centre for Computer Music Research at Plymouth University, said:

“There are only a handful of these computers accessible in the world, and this is the first time one has been used as part of a creative performance. So while it is a great privilege to be able to put this together, it is an incredibly complex area of computing and science and it has taken almost two years to get to this stage. For most people, this will be the first time they have seen a quantum computer in action and I hope it will give them a better understanding of how it works in a creative and innovative way.”

Plymouth University is the official Creative and Cultural Partner of the Port Eliot Festival, taking place in South East Cornwall from July 28 to 31, 2016 [emphasis mine].

And Superposition will be one of a number of showcases of University talent and expertise as part of the first Port Eliot Science Lab. Being staged in the Round Room at Port Eliot, it will give festival goers the chance to explore science, see performances and take part in a range of experiments.

The three-part performance will tell the story of Niobe, one of the more tragic figures in Greek mythology, but in this case a nod to the fact the heart of the quantum computer contains the metal named after her, niobium. It will also feature a monologue from Hamlet, interspersed with terms from quantum computing.

This is the latest of Dr Kirke’s pioneering performance works, with previous productions including an opera based on the financial crisis and a piece using a cutting edge wave-testing facility as an instrument of percussion.

Geordie Rose, CTO and Founder, D-Wave Systems, said:

“D-Wave’s quantum computing technology has been investigated in many areas such as image recognition, machine learning and finance. We are excited to see Dr Kirke, a pioneer in the field of quantum physics and the arts, utilising a D-Wave 2X in his next performance. Quantum computing is positioned to have a tremendous social impact, and Dr Kirke’s work serves not only as a piece of innovative computer arts research, but also as a way of educating the public about these new types of exotic computing machines.”

Professor Daniel Lidar, Director of the USC Center for Quantum Information Science and Technology, said:

“This is an exciting time to be in the field of quantum computing. This is a field that was purely theoretical until the 1990s and now is making huge leaps forward every year. We have been researching the D-Wave machines for four years now, and have recently upgraded to the D-Wave 2X – the world’s most advanced commercially available quantum optimisation processor. We were very happy to welcome Dr Kirke on a short training residence here at the University of Southern California recently; and are excited to be collaborating with him on this performance, which we see as a great opportunity for education and public awareness.”

Since I can’t be there, I’m hoping they will be able to successfully livestream the performance. According to Kirke who very kindly responded to my query, the festival’s remote location can make livecasting a challenge. He did note that a post-performance documentary is planned and there will be footage from the performance.

He has also provided more information about the singer and the technical/computer aspects of the performance (from a July 18, 2016 email),

Juliette Pochin: I’ve worked with her before a couple of years ago. She has an amazing voice and style, is musically adventurousness (she is a music producer herself), and brings great grace and charisma to a performance. She can be heard in the Harry Potter and Lord of the Rings soundtracks and has performed at venues such as the Royal Albert Hall, Proms in the Park, and Meatloaf!

Score: The score is in 3 parts of about 5 minutes each. There is a traditional score for parts 1 and 3 that Juliette will sing from. I wrote these manually in traditional music notation. However she can sing in free time and wait for the computer to respond. It is a very dramatic score, almost operatic. The computer’s responses are based on two algorithms: a superposition chord system, and a pitch-loudness entanglement system. The superposition chord system sends a harmony problem to the D-Wave in response to Juliette’s approximate pitch amongst other elements. The D-Wave uses an 8-qubit optimizer to return potential chords. Each potential chord has an energy associated with it. In theory the lowest energy chord is that preferred by the algorithm. However in the performance I will combine the chord solutions to create superposition chords. These are chords which represent, in a very loose way, the superposed solutions which existed in the D-Wave before collapse of the qubits. Technically they are the results of multiple collapses, but metaphorically I can’t think of a more beautiful representation of superposition: chords. These will accompany Juliette, sometimes clashing with her. Sometimes giving way to her.

The second subsystem generates non-pitched noises of different lengths, roughnesses and loudness. These are responses to Juliette, but also a result of a simple D-Wave entanglement. We know the D-Wave can entangle in 8-qubit groups. I send a binary representation of the Juliette’s loudness to 4 qubits and one of approximate pitch to another 4, then entangle the two. The chosen entanglement weights are selected for their variety of solutions amongst the qubits, rather than by a particular musical logic. So the non-pitched subsystem is more of a sonification of entanglement than a musical algorithm.

Thank you Dr. Kirke for a fascinating technical description and for a description of Juliette Pochin that makes one long to hear her in performance.

For anyone who’s thinking of attending the performance or curious, you can find out more about the Port Eliot festival here, Juliette Pochin here, and Alexis Kirke here.

For anyone wondering about data sonficiatiion, I also have a Feb. 7, 2014 post featuring a data sonification project by Dr. Domenico Vicinanza which includes a sound clip of his Voyager 1 & 2 spacecraft duet.

What is a diamond worth?

A couple of diamond-related news items have crossed my path lately causing me to consider diamonds and their social implications. I’ll start first with the news items, according to an April 4, 2012 news item on physorg.com a quantum computer has been built inside a diamond (from the news item),

Diamonds are forever – or, at least, the effects of this diamond on quantum computing may be. A team that includes scientists from USC has built a quantum computer in a diamond, the first of its kind to include protection against “decoherence” – noise that prevents the computer from functioning properly.

I last mentioned decoherence in my July 21, 2011 posting about a joint (University of British Columbia, University of California at Santa Barbara and the University of Southern California) project on quantum computing.

According to the April 5, 2012 news item by Robert Perkins for the University of Southern California (USC),

The multinational team included USC professor Daniel Lidar and USC postdoctoral researcher Zhihui Wang, as well as researchers from the Delft University of Technology in the Netherlands, Iowa State University and the University of California, Santa Barbara. The findings were published today in Nature.

The team’s diamond quantum computer system featured two quantum bits, or qubits, made of subatomic particles.

As opposed to traditional computer bits, which can encode distinctly either a one or a zero, qubits can encode a one and a zero at the same time. This property, called superposition, along with the ability of quantum states to “tunnel” through energy barriers, some day will allow quantum computers to perform optimization calculations much faster than traditional computers.

Like all diamonds, the diamond used by the researchers has impurities – things other than carbon. The more impurities in a diamond, the less attractive it is as a piece of jewelry because it makes the crystal appear cloudy.

The team, however, utilized the impurities themselves.

A rogue nitrogen nucleus became the first qubit. In a second flaw sat an electron, which became the second qubit. (Though put more accurately, the “spin” of each of these subatomic particles was used as the qubit.)

Electrons are smaller than nuclei and perform computations much more quickly, but they also fall victim more quickly to decoherence. A qubit based on a nucleus, which is large, is much more stable but slower.

“A nucleus has a long decoherence time – in the milliseconds. You can think of it as very sluggish,” said Lidar, who holds appointments at the USC Viterbi School of Engineering and the USC Dornsife College of Letters, Arts and Sciences.

Though solid-state computing systems have existed before, this was the first to incorporate decoherence protection – using microwave pulses to continually switch the direction of the electron spin rotation.

“It’s a little like time travel,” Lidar said, because switching the direction of rotation time-reverses the inconsistencies in motion as the qubits move back to their original position.

Here’s an image I downloaded from the USC webpage hosting Perkins’s news item,

The diamond in the center measures 1 mm X 1 mm. Photo/Courtesy of Delft University of Technolgy/UC Santa Barbara

I’m not sure what they were trying to illustrate with the image but I thought it would provide an interesting contrast to the video which follows about the world’s first purely diamond ring,

I first came across this ring in Laura Hibberd’s March 22, 2012 piece for Huffington Post. For anyone who feels compelled to find out more about it, here’s the jeweller’s (Shawish) website.

What with the posting about Neal Stephenson and Diamond Age (aka, The Diamond Age Or A Young Lady’s Illustrated Primer; a novel that integrates nanotechnology into a story about the future and ubiquitous diamonds), a quantum computer in a diamond, and this ring, I’ve started to wonder about role diamonds will have in society. Will they be integrated into everyday objects or will they remain objects of desire? My guess is that the diamonds we create by manipulating carbon atoms will be considered everyday items while the ones which have been formed in the bowels of the earth will retain their status.