Tag Archives: Deepwater Horizon oil spill

Technology for mopping up oil spills

It’s a little disheartening to write about technology for mopping up oils spills as there doesn’t to be much improvement in the situation as Adele Peters notes in her June 4, 2021 article (A decade after Deepwater Horizon, we’re still cleaning up oil spills the same way) for Fast Company (Note: Links have been removed),

Off the coastline of Sri Lanka, where a burning cargo ship has been spilling toxic chemicals and plastic pellets over the past two weeks, the government is preparing for the next possible stage of the disaster: As the ship sinks, it may also spill some of the hundreds of tons of oil in its fuel tanks.

The government is readying oil dispersants, booms, and oil skimmers, all tools that were used in the massive Deepwater Horizon oil spill in the Gulf of Mexico in 2010. They didn’t work perfectly then—more than 1,000 miles of shoreline were polluted—and more than a decade later, they’re still commonly used. But solutions that might work better are under development, including reusable sponges that can suck up oil both on the surface and underwater.

Dispersants, one common tool now, are chemicals designed to break up the oil into tiny droplets so that, in theory, microorganisms in the water can break down the oil more easily. But at least one study found that dispersant could harm those organisms. Deep-sea coral also appears to suffer more from the mix of dispersant and oil than oil alone. Booms are designed to contain oil on the surface so it can be scraped off with a skimmer, but that only works if the water’s relatively calm, and it doesn’t deal with oil below the surface. The oil on the surface can also be burned, but it creates a plume of thick black smoke. “That does get rid of the oil from the water, but then it turns a water pollution problem into an air pollution problem,” says Seth Darling, a senior scientist at Argonne National Laboratory who developed an alternative called the Oleo Sponge [emphasis mine].

… a team from two German universities that developed a system of wood chips that can be dropped in the water to collect oil even in rough weather, when current tools don’t work well. The system is ready for deployment if a spill happens in the Baltic Sea. Another earlier-stage solution proposes using a robot to detect and capture oil.

I’m glad to see at least one new oil spill cleanup technology being readied for deployment in Peters’ June 4, 2021 article, we should be preparing for more spills as the Arctic melts and plans are made to develop new shipping routes.

Amongst other oil spill cleanup technologies, Peters mentions the ‘Oleo Sponge’, which was featured here in a March 30, 2017 posting when researchers were looking for investors to commercialize the product. According to Peters the oleo sponge hasn’t yet made it to market; it’s a fate many of these technologies are destined to meet. Meanwhile, scientists continue to develop new methods and techniques for mopping up oil spills as safely as possible. For example, there’s an oil spill sucking robot mentioned in my October 30, 2020 posting, which features yet another article by Peters.

In the summer of 2020 there were two major oil spills, one in the Russian Arctic and one in an ecologically sensitive area near Mauritius. For more about those events, there’s an August 14, 2020 posting, which starts with news of an oil spill technology featuring dog fur and then focuses primarily on the oil spill in the Russian Arctic with a brief mention of the spill near Mauritius in June 2020 (scroll down to the ‘Exceptionally warm weather’ subhead and see the paragraph above it for the mention and a link to a story).

A GEnIuS approach to oil spill remediation at 18th European Forum on Eco-innovation

In light of recent local events (an oil spill in Vancouver’s [Canada] English Bay, a popular local beach [more details in my April 16, 2015 post]), it seems appropriate to mention an* environmentally friendly solution to mopping up oil spills (oil spill remediation). A May 21, 2015 news item on Azonano features a presentation on the topic at hand (Note: A link has been removed),

Directa Plus at 18th European Forum on Eco-innovation to present GEnIuS, the innovative project that leads to the creation of a graphene-based product able to remove hydrocarbons from polluted water and soil.

The Forum untitled “Boosting competitiveness and innovation” is being held by the European Commission on 20th and 21st of May in Barcelona. The main purpose of this event is presenting the last developments in the eco-innovation field: an important moment where emerging and cutting-edge innovators will get in contact with new promising solutions under political, financial and technological point of view.

Directa Plus research has driven to the creation of an ecologic, innovative and highly effective oil-adsorbent, characterized by unique performances in oil adsorbency, and at the same time absence of toxicity and flammability, and the possibility to recover oil.

The creation of this graphene-based oil-adsorbent product, commercialized as Grafysorber, has been promoted by GEnIuS project and already approved by the Italian Ministry of Enviroment to be used in occasion of oil spills clean-up activities.

Giulio Cesareo, Directa Plus President and CEO, commented:

“Grafysorber embodies the nano-carbon paradox -in fact, with a nano-carbon material we are able to cut down part of damages caused by hydrocarbons, derived from carbon itself.

“Moreover, our product, once exhausted after depuration of water, finishes positively its life cycle inside the asphalt and bitumen, introducing new properties as thermal conductivity and mechanical reinforcement. I believe that every company is obliged to work following a sustainable approach to guarantee a balanced use of resources and their reuse, where possible.”

I have mentioned a Romanian project employing Directa Plus’s solution, Grafysorber in a December 30, 2014 post. At the time, the product name was called Graphene Plus and Grafysorber was a constituent of the product.

You can find more information about Graphene Eco Innovative Sorbent (GENIUS) here and about Directa Plus here. The company is located in Italy.

One final bit about oil spills and remediation, the Deepwater Horizon/Gulf/BP oil spill has spawned, amongst many others, a paper from the University of Georgia (US) noting that we don’t know that much about the dispersants used to clean up, from a May 14, 2015 University of Georgia news release on EurekAlert,

New commentary in Nature Reviews Microbiology by Samantha Joye of the University of Georgia and her colleagues argues for further in-depth assessments of the impacts of dispersants on microorganisms to guide their use in response to future oil spills.

Chemical dispersants are widely used in emergency responses to oil spills in marine environments as a means of stimulating microbial degradation of oil. After the Deepwater Horizon spill in 2010, dispersants were applied to the sea surface and deep waters of the Gulf of Mexico, the latter of which was unprecedented. Dispersants were used as a first line of defense even though little is known about how they affect microbial communities or the biodegradation activities they are intended to spur.

The researchers document historical context for the use of dispersants, their approval by the Environmental Protection Agency and the uncertainty about whether they stimulate or in fact inhibit the microbial degradation of oil in marine ecosystems.

One challenge of testing the toxicity from the use of dispersants on the broader ecosystem is the complex microbial communities of the different habitats represented in a large marine environment, such as the Gulf of Mexico. Development of model microbial communities and type species that reflect the composition of surface water, deep water, deep-sea sediments, beach sediments and marsh sediments is needed to evaluate the toxicity effects of dispersants.

“The bottom line is that we do not truly understand the full range of impacts that dispersants have on microbial communities, and we must have this knowledge in hand before the next marine oil spill occurs to support the decision-making process by the response community,” Joye said.

I hope the Canadians who are overseeing our waterways are taking note.

*’a’ changed to ‘an’ for grammatical correctness on Dec. 18, 2015.

Naimor: innovative nanostructured material for water remediation and oil recovery (crowdfunding project)

The NAIMOR crowdfunding project on indiegogo might be of particular interest to those of us on the West Coast of Canada where there is much talk about a project to create twin pipelines (Enbridge Northern Gateway Pipelines) between the provinces of  Alberta and British Columbia to export oil and import natural gas. The oil will be shipped to Asia by tanker and presumably so will the natural gas. In all the discussion about possible environmental disasters, I haven’t seen any substantive mention of remediation efforts or research to improve the technologies associated with environmental cleanups (remediation of water, soil, and/or air). At any rate, all this talk about the pipelines and oil tankers along Canada’s West Coast brought to mind the BP oil spill, aka the Deepwater Horizon oil spill, from the Wikipedia essay (Note: Links have been removed),

The Deepwater Horizon oil spill (also referred to as the BP oil spill, the BP oil disaster, the Gulf of Mexico oil spill, and the Macondo blowout) began on 20 April 2010 in the Gulf of Mexico on the BP-operated Macondo Prospect. It claimed eleven lives[5][6][7][8] and is considered the largest accidental marine oil spill in the history of the petroleum industry, an estimated 8% to 31% larger in volume than the previously largest, the Ixtoc I oil spill. Following the explosion and sinking of the Deepwater Horizon oil rig, a sea-floor oil gusher flowed for 87 days, until it was capped on 15 July 2010.[7][9] The total discharge has been estimated at 4.9 million barrels (210 million US gal; 780,000 m3).[3]

A massive response ensued to protect beaches, wetlands and estuaries from the spreading oil utilizing skimmer ships, floating booms, controlled burns and 1.84 million US gallons (7,000 m3) of Corexit oil dispersant.[10] After several failed efforts to contain the flow, the well was declared sealed on 19 September 2010.[11] Some reports indicate the well site continues to leak.[12][13] Due to the months-long spill, along with adverse effects from the response and cleanup activities, extensive damage to marine and wildlife habitats, fishing and tourism industries, and human health problems have continued through 2013.[14][15] Three years after the spill, tar balls could still be found on the Mississippi coast.[16] In July 2013, the discovery of a 40,000 pound tar mat near East Grand Terre, Louisiana prompted the closure of waters to commercial fishing.[17][18]

While Canada’s Northern Gateway project does not include any plans for ocean oil rigs, there is still the potential for massive spills either from the tankers or the pipelines. For those old enough to remember or those interested in history, this latest project raises the spectre of the Exxon Valdes oil spill, from the Wikipedia essay (Note: Links have been removed),

The Exxon Valdez oil spill occurred in Prince William Sound, Alaska, on March 24, 1989, when Exxon Valdez, an oil tanker bound for Long Beach, California, struck Prince William Sound’s Bligh Reef at 12:04 a.m.[1] local time and spilled 260,000 to 750,000 barrels (41,000 to 119,000 m3) of crude oil[2][3] over the next few days. It is considered to be one of the most devastating human-caused environmental disasters.[4] The Valdez spill was the largest ever in US waters until the 2010 Deepwater Horizon oil spill, in terms of volume released.[5]  [emphasis mine] However, Prince William Sound’s remote location, accessible only by helicopter, plane, or boat, made government and industry response efforts difficult and severely taxed existing plans for response. The region is a habitat for salmon, sea otters, seals and seabirds. The oil, originally extracted at the Prudhoe Bay oil field, eventually covered 1,300 miles (2,100 km) of coastline,[6] and 11,000 square miles (28,000 km2) of ocean.[7] Exxon’s CEO, Lawrence Rawl, shaped the company’s response.[8]

Some of that ‘difficult to reach’ coastline and habitat was Canadian (province of British Columbia). Astonishingly, given the 20 year gap between the Exxon Valdes spill and the Deepwater Horizon spill, the technology for remediation and cleanup had not changed much, although it seems that the measures* used to stop the oil spill were even older, from my June 4, 2010 posting,

I found a couple more comments relating to the BP oil spill  in the Gulf. Pasco Phronesis offers this May 30, 2010 blog post, Cleaning With Old Technology, where the blogger, Dave Bruggeman, asks why there haven’t been any substantive improvements to the technology used for clean up,

The relatively ineffective measures have changed little since the last major Gulf of Mexico spill, the Ixtoc spill in 1979. While BP has solicited for other solutions to the problem (Ixtoc was eventually sealed with cement and relief wells after nine months), they appear to have been slow to use them.

It is a bit puzzling to me why extraction technology has improved but cleanup technology has not.

An excellent question.

I commented a while back (here) about another piece of nano reporting from* Andrew Schneider. Since then, Dexter Johnson at Nanoclast has offered some additional thoughts (independent of reading Andrew Maynard’s 2020 Science post) about the Schneider report regarding ‘nanodispersants’ in the Gulf. From Dexter’s post,

Now as to the efficacy or dangers of the dispersant, I have to concur that it [nanodispersant] has not been tested. But it seems that the studies on the 118 oil-controlling products that have been approved for use by the EPA are lacking in some details as well. These chemicals were approved so long ago in some cases that the EPA has not been able to verify the accuracy of their toxicity data, and so far BP has dropped over a million gallons of this stuff into the Gulf.

Point well taken.

In looking at this website: gatewayfacts.ca, it seems the proponents for the Enbridge Northern Gateway project have supplied some additional information. Here’s what they’ve supplied regarding the project’s spill response (from the Gateway Facts environmental-responsibility/marine-protection page),

A spill response capacity 3x better than required

Emergency response equipment, crews and training staff will be stationed at key points and communities along the marine routes.

I did find a bit more on the website’s What if? page,

Marine response in action

Our spill response capacity will be more than 3x the current Canadian regulation. In addition, tanker escort tugs will carry emergency response and firefighting equipment to be able to respond immediately.

I don’t feel that any real concerns have been addressed by this minimalist approach to communication. Here are some of my questions,

  • What does 3x the current Canadian regulation mean in practical terms and how does this compare with the best safety regulations from an international perspective? Will there be efforts at continuous improvement?
  • Are there going to be any audits by outside parties of the company’s emergency response during the life of the project?
  • How will those audits be conducted? i.e., Will there be notice or are inspectors likely to spring the occasional surprise inspection?
  • What technologies are the proponents planning to use for the cleanup?
  • Is there any research being conducted on new remediation and cleanup technologies?
  • How much money is being devoted to this research and where is it being conducted (university labs, company labs, which countries)?

In light of concerns about environmental remediation technologies, it’s heartening to see this project on indiegogo which according to a Dec. 27, 2013 news item on Nanowerk focuses on an improved approach to remediation for water contaminated by oil,,

Environmental oil spill disasters such as BP’s Deepwater Horizon oil rig in the Gulf of Mexico have enormous environmental consequences, leading to the killing of marine creatures and contamination of natural water streams, storm water systems or even drinking water supplies. Emergency management organizations must be ready to confront such turbulences with effective and eco-friendly solutions to minimize the short term or long term issues.

There are many ineffective and costly conventional technologies for the remedy of oil spills like using of dispersants, oil skimmers, sand barrier berms, oil containment booms, by controlled burning of surface oil, bioremediation and natural degradation.

NAIMOR® – NAnostructure Innovative Material for Oil Recovery – is a three dimensional, nanostructure carbon material that can be produced in different shapes, dimensions. It is highly hydrophobic and can absorb a quantity of oil around 150 times its weight. Light, strong, and flexible, the material can be reused many times without losing its absorption capacity.

I’m not familiar with the researcher who’s making this proposal so I can’t comment on the legitimacy of the project but this does look promising (I have heard of other similar research using carbon-based materials), from the Naimor campaign on indiegogo,

Ivano Aglietto, an Italian engineer with a PhD in Environmental Engineering has devoted his profession for the production of most advanced and innovative nanostructure carbon materials and the industrial development of their proper use in applications for the environmental remediation.

His first invention was RECAM® (REactive Carbon Material), a revolutionary solution for oil spill recovery which had shown extraordinary results but with limitations of usage.

RECAM® is inert, non toxic, regenerable, reusable, eco friendly material and can absorb oil 90 times its weight. It is ferromagnetic in nature and can be recovered from water using magnetic field. The hydrocarbons absorbed can be burnt inorder to reuse the material and no toxic gases are released because of its inert and non-flammable nature. Their is also possibility of extracting the absorbed oil by squeezing the material or by vacuum filtration. Oil recovered does not contain any water because of the hydrophobic behaviour of RECAM®. Recovered oil can be reused as resource and the RECAM® for recovering oil. RECAM® is used for oil spill remediation and successfully passed the Artemia test.

RECAM® is being replaced with his new innovative nanostructure material, NAIMOR®.

NAIMOR® (NAnostructure Innovative Material for Oil Recovery) is a nanostructure material that can be produced in different shapes and dimensions with an incredible efficiency for oil recovery.

Main Characteristics and Properties

Can absorb quantity of oil 150 times its weight.
Inert, made of pure carbon, environmental friendly and no chemicals involved.
Highly hydrophobic and the absorbed oil does not contain any water.
Regenerable and can be used several times without producing any wastes.
It is a three dimensional nanostructure and can be produced in different shapes, dimensions [carpets, booms, sheets’.
Capable of recovering gallons of oil depending on the shape and dimensions of the carpet.

This indiegogo campaign is almost the antithesis of the gatewayfacts.ca website offering a wealth of information and detail including a discussion about the weaknesses associated with the various cleanup technologies that represent the ‘state of the art’. Here’s an image from the Naimor campaign page,

[downloaded from http://www.indiegogo.com/projects/naimor-nanostructure-innovative-material-for-oil-recovery]

[downloaded from http://www.indiegogo.com/projects/naimor-nanostructure-innovative-material-for-oil-recovery]

I believe this is a pelican somewhere on the Gulf of Mexico coastline where it was affected by the 2010 Deepwater Horizon oil spill. As for Aglietto’s project, you can find the NAIMOR website here.

* Changed ‘measure’ to ‘measures’ and ‘form’ to ‘from’ May 6, 2014.