Tag Archives: Defense Advanced Research Projects Agency

NBD Nano startup company and the Namib desert beetle

In 2001, Andrew Parker and Chris Lawrence published an article in Nature magazine about work which has inspired a US startup company in 2012 to develop a water bottle that fills itself up with water by drawing moisture from the air. Parker’s and Lawrence’s article was titled Water capture by a desert beetle. Here’s the abstract (over 10 years later the article is still behind a paywall),

Some beetles in the Namib Desert collect drinking water from fog-laden wind on their backs1. We show here that these large droplets form by virtue of the insect’s bumpy surface, which consists of alternating hydrophobic, wax-coated and hydrophilic, non-waxy regions. The design of this fog-collecting structure can be reproduced cheaply on a commercial scale and may find application in water-trapping tent and building coverings, for example, or in water condensers and engines.

Some five years later, there was a June 15, 2006 news item on phys.org about the development of a new material based on the Namib desert beetle,

When that fog rolls in, the Namib Desert beetle is ready with a moisture-collection system exquisitely adapted to its desert habitat. Inspired by this dime-sized beetle, MIT [Massachusetts Institute of Technology] researchers have produced a new material that can capture and control tiny amounts of water.

The material combines a superhydrophobic (water-repelling) surface with superhydrophilic (water-attracting) bumps that trap water droplets and control water flow. The work was published in the online version of Nano Letters on Tuesday, May 2 [2006] {behind a paywall}.

Potential applications for the new material include harvesting water, making a lab on a chip (for diagnostics and DNA screening) and creating microfluidic devices and cooling devices, according to lead researchers Robert Cohen, the St. Laurent Professor of Chemical Engineering, and Michael Rubner, the TDK Professor of Polymer Materials Science and Engineering.

The MIT June 14, 2006 news release by Anne Trafton, which originated the news item about the new material, indicates there was some military interest,

The U.S. military has also expressed interest in using the material as a self-decontaminating surface that could channel and collect harmful substances.

The researchers got their inspiration after reading a 2001 article in Nature describing the Namib Desert beetle’s moisture-collection strategy. Scientists had already learned to copy the water-repellent lotus leaf, and the desert beetle shell seemed like another good candidate for “bio-mimicry.”

When fog blows horizontally across the surface of the beetle’s back, tiny water droplets, 15 to 20 microns, or millionths of a meter, in diameter, start to accumulate on top of bumps on its back.

The bumps, which attract water, are surrounded by waxy water-repelling channels. “That allows small amounts of moisture in the air to start to collect on the tops of the hydrophilic bumps, and it grows into bigger and bigger droplets,” Rubner said. “When it gets large, it overcomes the pinning force that holds it and rolls down into the beetle’s mouth for a fresh drink of water.”

To create a material with the same abilities, the researchers manipulated two characteristics — roughness and nanoporosity (spongelike capability on a nanometer, or billionths of a meter, scale).

By repeatedly dipping glass or plastic substrates into solutions of charged polymer chains dissolved in water, the researchers can control the surface texture of the material. Each time the substrate is dipped into solution, another layer of charged polymer coats the surface, adding texture and making the material more porous. Silica nanoparticles are then added to create an even rougher texture that helps trap water droplets.

The material is then coated with a Teflon-like substance, making it superhydrophobic. Once that water-repellent layer is laid down, layers of charged polymers and nanoparticles can be added in certain areas, using a properly formulated water/alcohol solvent mixture, thereby creating a superhydrophilic pattern. The researchers can manipulate the technique to create any kind of pattern they want.

The research is funded by the Defense Advanced Research Projects Agency and the National Science Foundation.

I’m not sure what happened with the military interest or the group working out of MIT in 2006 but on Nov. 23, 2012, BBC News online featured an article about a US startup company, NBD Nano, which aims to bring a self-filling water bottle based on Namib desert beetle to market,

NBD Nano, which consists of four recent university graduates and was formed in May, looked at the Namib Desert beetle that lives in a region that gets about half an inch of rainfall per year.

Using a similar approach, the firm wants to cover the surface of a bottle with hydrophilic (water-attracting) and hydrophobic (water-repellent) materials.

The work is still in its early stages, but it is the latest example of researchers looking at nature to find inspiration for sustainable technology.

“It was important to apply [biomimicry] to our design and we have developed a proof of concept and [are] currently creating our first fully-functional prototype,” Miguel Galvez, a co-founder, told the BBC.

“We think our initial prototype will collect anywhere from half a litre of water to three litres per hour, depending on local environments.”

According to the Nov. 25, 2012 article by Nancy Owano for phys.org, the company is at the prototype stage now,

NBD Nano plans to enter the worldwide marketplace between 2014 and 2015.

You can find out more about NBD Nano here.

Organ chips for DARPA (Defense Advanced Research Projects Agency)

The Wyss Institute will receive up to  $37M US for a project that integrates ten different organ-on-a-chip projects into one system. From the July 24, 2012 news release on EurekAlert,

With this new DARPA funding, Institute researchers and a multidisciplinary team of collaborators seek to build 10 different human organs-on-chips, to link them together to more closely mimic whole body physiology, and to engineer an automated instrument that will control fluid flow and cell viability while permitting real-time analysis of complex biochemical functions. As an accurate alternative to traditional animal testing models that often fail to predict human responses, this instrumented “human-on-a-chip” will be used to rapidly assess responses to new drug candidates, providing critical information on their safety and efficacy.

This unique platform could help ensure that safe and effective therapeutics are identified sooner, and ineffective or toxic ones are rejected early in the development process. As a result, the quality and quantity of new drugs moving successfully through the pipeline and into the clinic may be increased, regulatory decision-making could be better informed, and patient outcomes could be improved.

Jesse Goodman, FDA Chief Scientist and Deputy Commissioner for Science and Public Health, commented that the automated human-on-chip instrument being developed “has the potential to be a better model for determining human adverse responses. FDA looks forward to working with the Wyss Institute in its development of this model that may ultimately be used in therapeutic development.”

Wyss Founding Director, Donald Ingber, M.D., Ph.D., and Wyss Core Faculty member, Kevin Kit Parker, Ph.D., will co-lead this five-year project.

I note that Kevin Kit Parker was mentioned in an earlier posting today (July 26, 2012) titled, Medusa, jellyfish, and tissue engineering, and Donald Ingber in my Dec.1e, 2011 posting about Shrilk and insect skeletons.

As for the Wyss Institute, here’s a description from the news release,

The Wyss Institute for Biologically Inspired Engineering at Harvard University (http://wyss.harvard.edu) uses Nature’s design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Working as an alliance among Harvard’s Schools of Medicine, Engineering, and Arts & Sciences, and in partnership with Beth Israel Deaconess Medical Center, Boston Children’s Hospital, Brigham and Women’s Hospital, , Dana Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, Tufts University, and Boston University, the Institute crosses disciplinary and institutional barriers to engage in high-risk research that leads to transformative technological breakthroughs. By emulating Nature’s principles for self-organizing and self-regulating, Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing. These technologies are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and new start-ups.

I hadn’t thought of an organ-on-a-chip as particularly bioinspired so I’ll have to think about that one for a while.

DARPA/Google and Regina Dugan

One of my more recent (Nov. 22, 2011) postings on DARPA (Defense Advanced Research Projects Agency) highlighted their entrepreneurial focus and the person encouraging that focus, agency director Regina Dugan. Given that she’s held the position for roughly 2.5 years, I was surprised to see that she has left to joint Google. From the Mar.13, 2012 news item on physorg.com,

Google on Monday [March 12, 2012] confirmed that Defense Advanced Research Projects Agency chief Regina Dugan is taking a yet-to-be-revealed role at the Internet powerhouse.

Dugan’s Wikipedia entry has already been updated,

Regina E. Dugan was the 19th Director of Defense Advanced Research Projects Agency (DARPA). She was appointed to that position on July 20, 2009. In March 2012, she left her position to take an executive role at Google. She was the first female director of DARPA.

Much of her working career (1996-2012) seems to have been spent at DARPA. I don’t think I’m going to draw too many conclusions from this move but I am intrigued especially in light of an essay about a departing Google employee, James Whitaker. From Whitaker’s March 13, 2012 posting on his JW on Tech blog,

The Google I was passionate about was a technology company that empowered its employees to innovate. The Google I left was an advertising company with a single corporate-mandated focus.

Technically I suppose Google has always been an advertising company, but for the better part of the last three years, it didn’t feel like one. Google was an ad company only in the sense that a good TV show is an ad company: having great content attracts advertisers.

He lays out the situation here,

It turns out that there was one place where the Google innovation machine faltered and that one place mattered a lot: competing with Facebook. Informal efforts produced a couple of antisocial dogs in Wave and Buzz. Orkut never caught on outside Brazil. Like the proverbial hare confident enough in its lead to risk a brief nap, Google awoke from its social dreaming to find its front runner status in ads threatened.

Google could still put ads in front of more people than Facebook, but Facebook knows so much more about those people. Advertisers and publishers cherish this kind of personal information, so much so that they are willing to put the Facebook brand before their own. Exhibit A: www.facebook.com/nike, a company with the power and clout of Nike putting their own brand after Facebook’s? No company has ever done that for Google and Google took it personally.

Larry Page himself assumed command to right this wrong. Social became state-owned, a corporate mandate called Google+. It was an ominous name invoking the feeling that Google alone wasn’t enough. Search had to be social. Android had to be social. You Tube, once joyous in their independence, had to be … well, you get the point.  [emphasis mine] Even worse was that innovation had to be social. Ideas that failed to put Google+ at the center of the universe were a distraction.

That point about YouTube really strikes home as I’ve become quite dismayed with the advertising on the videos. The consequence is that I’m starting to search for clips on Vimeo first as it doesn’t have intrusive advertising.

Getting back to Whitaker, he notes this about Google and advertising,

The old Google made a fortune on ads because they had good content. It was like TV used to be: make the best show and you get the most ad revenue from commercials. The new Google seems more focused on the commercials themselves.

It’s interesting to contrast Whitaker’s take on the situation, which suggests that the company has lost its entrepreneurial spirit as it focuses on advertising, with the company’s latest hire, Regina Dugan who seems to have introduced entrepreneurship into DARPA’s activities.

As for the military connection (DARPA is US Dept. of Defense agency), I remain mindful that the military and the intelligence communities have an interest in gathering data but would need something more substantive than a hiring decision to draw any conclusions.

For anyone who’s interested in these types of queries, I would suggest reading a 2007 posting, Facebook, the CIA, and You on the Brainsturbator blog, for a careful unpacking of the connections (extremely tenuous) between Facebook and the CIA (US Central Intelligence Agency). The blog owner and essayist, Jordan Boland, doesn’t dismiss the surveillance concern; he’s simply pointing out that it’s difficult to make an unequivocal claim while displaying a number of intriguing connections between agencies and organizations.

Morpho butterflies detect heat for GE

One wonders if Morpho butterflies are going to decide that they need to protect their intellectual property. Yet another scientific group has found a way to exploit the nanostructures on the Morpho butterfly’s wing.  From the Feb. 13, 2012 news item on Nanowerk,

GE [General Electric] scientists are exploring many potential thermal imaging and sensing applications with their new detection concept such as medical diagnostics, surveillance, non-destructive inspection and others, where visual heat maps of imaged areas serve as a valuable condition indicator. Some examples include:

  • Thermal Imaging for advanced medical diagnosis – to better visualize inflammation in the body and understand changes in a patient’s health earlier.
  • Advanced thermal vision – to see things at night and during the day in much greater detail than what is possible today.
  • Fire thermal Imaging – to aid firefighters with new handheld devices to enhance firefighter safety in operational situations
  • Thermal security surveillance – to improve public safety and homeland protection
  • Thermal characterization of wound infections – to facilitate early diagnosis.

“The iridescence of Morpho butterflies has inspired our team for yet another technological opportunity. This time we see the potential to develop the next generation of thermal imaging sensors that deliver higher sensitivity and faster response times in a more simplified, cost-effective design,” said Dr. Radislav Potyrailo, Principal Scientist at GE Global Research who leads GE’s bio-inspired photonics programs. “This new class of thermal imaging sensors promises significant improvements over existing detectors in their image quality, speed, sensitivity, size, power requirements, and cost.”

GE has provided a video and description that illustrates this newest biomimicry work. First the description then the video (from http://www.youtube.com/watch?v=UoaILSCzlTo&feature=youtu.be)

This is a thermographic video of a Morpho butterfly structure in response to heat pulses produced by breathing onto the whole butterfly structure (video part 1) and onto its localized areas (video part 2). Nanostructures on Morpho butterfly wings coated with carbon nanotubes can sense temperature chances down to .02 degrees Celsius, at a response rate of 1/40 of a second. This is a demonstration of how new bio-inspired designs by GE scientists could enable more advanced applications for industrial inspection, medical diagnostics and military. This video was filmed by Bryan Whalen in the Electronics Cooling Lab at GE Global Research.

This newest work seems to have its origins in a DARPA-funded (US Defense Advanced Research Projects Agency) GE project. From the Aug. 12, 2010 GE news release,

Scientists at GE Global Research, GE’s technology development arm, in collaboration with Air Force Research Laboratory, State University at Albany, and University of Exeter, have received a four-year, $6.3 million award from the Defense Advanced Research Projects Agency (DARPA) to develop new bio-inspired nanostructured sensors that would enable faster, more selective detection of dangerous warfare agents and explosives.

Three years ago, GE scientists discovered that nanostructures from wing scales of butterflies exhibited acute chemical sensing properties. [emphasis bold] Since then, GE scientists have been developing a dynamic, new sensing platform that replicates these unique properties.  Recognizing the potential of GE’s sensing technologies for improving homeland protection, DARPA is supporting further research. [emphasis mine]

For anyone who’s particularly interested in the technical details, Dexter Johnson offers more in his Feb. 13, 2012 posting about this research on the Nanoclast blog for the IEEE (Institute of Electrical and Electronics Engineers).

DARPA and the Panopticon

Before I get to DARPA’s (Defense Advanced Research Project Agency) new spy satellite, here’s a brief description of the Panopticon from the Wikipedia essay,

The Panopticon is a type of institutional building designed by English philosopher and social theorist Jeremy Bentham in the late eighteenth century. The concept of the design is to allow an observer to observe (-opticon) all (pan-) inmates of an institution without them being able to tell whether or not they are being watched.

Although the Panopticon prison design did not come to fruition during Bentham’s time, it has been seen as an important development. It was invoked by Michel Foucault (in Discipline and Punish) as metaphor for modern “disciplinary” societies and their pervasive inclination to observe and normalise. Foucault proposes that not only prisons but all hierarchical structures like the army, schools, hospitals and factories have evolved through history to resemble Bentham’s Panopticon. The notoriety of the design today (although not its lasting influence in architectural realities) stems from Foucault’s famous analysis of it.

Building on Foucault, contemporary social critics often assert that technology has allowed for the deployment of panoptic structures invisibly throughout society. [emphasis mine] Surveillance by closed-circuit television (CCTV) cameras in public spaces is an example of a technology that brings the gaze of a superior into the daily lives of the populace. Furthermore, a number of cities in the United Kingdom, including Middlesbrough, Bristol, Brighton and London have recently added loudspeakers to a number of their existing CCTV cameras. They can transmit the voice of a camera supervisor to issue audible messages to the public. Similarly,critical analyses of internet practice have suggested that the internet allows for a panopticon form of observation. ISPs are able to track users’ activities, while user-generated content means that daily social activity may be recorded and broadcast online.

And now,  DARPA’s new satellite as described by Nancy Atkinson (Universe Today) in a Dec. 21, 2011 news item on Physorg,

“It sees you when you’re sleeping and knows when you’re awake” could be the theme song for a new spy satellite being developed by DARPA. The Defense Advanced Research Projects Agency’s latest proof-of-concept project is called the Membrane Optical Imager for Real-Time Exploitation (MOIRE), and would provide real-time images and video of any place on Earth at any time — a capability that, so far, only exists in the realm of movies and science fiction. The details of this huge eye-in-the-sky look like something right out of science fiction, as well, and it would be interesting to determine if it could have applications for astronomy as well.

It’s not here yet (from the physorg.com news item),

The MOIRE program began in March 2010 is now in the first phase of development, where DARPA is testing the concept’s viability. Phase 2 would entail system design, with Ball Aerospace doing the design and building to test a 16-foot (5 m) telescope, and an option for a Phase 3 …

You can read more about the MOIRE program here and about Universe Today here.

Portable x-ray machine

It’s all about the adhesive tape according to the researchers at Tribogenics. Yes, they can create x-rays by unrolling scotch tape in a vacuum. Neal Ungerleider’s Dec. 8, 2011 article for Fast Company,

Tribogenics’ products rely on a counterintuitive discovery: X-rays are generated when unrolling Scotch tape in a vacuum. In a Nature article, UCLA researchers Carlos Camara, Juan Escobar, Jonathan Hird, and Seth Putterman detailed how Scotch tape can generate surprisingly large amounts of X-rays thanks to visible radiation generated by static electricity between two contacting surfaces. The research encountered challenges thanks to the fact that Scotch tape and generic brand adhesive tapes generated slightly different energy signatures; the composition of Scotch tape adhesive is a closely guarded 3M trade secret. …

Fox [Dale Fox, Tribogenics’ Chief Scientist] told Fast Company that “every other X-ray source in the world uses a high-voltage transformer connected to a vacuum tube. In contrast, we’ve harnessed the power of the immense voltages in static electricity to create tiny, low-cost, battery-operated X-ray sources for the first time in history. It’s like the jump the electronics industry took when it moved from vacuum tubes to transistors.” According to Fox, Tribogenics has already developed X-ray energy sources the size of a USB memory stick. While Tribogenics representatives declined to discuss pricing for upcoming products, the firm “very comfortably” promised that the cost would be less than 10% than that of any existing X-ray technology.

This technology can be traced back to DARPA (Defense Advanced Research Projects Agency) in 2007 when the agency funded the company’s first research, according to the company website. There have been other military funds as well, the US Army Telemedicine and Advanced Research Center in 2010.

The company describes itself this way (from the home page),

Tribogenics patented technology enables portable, compact x-ray solutions for applications in precious metal, mining, military, medical imaging, security and other industries. By miniaturizing X-ray sources and eliminating the need for high voltage, we can create products and solutions unattainable using existing X-ray technology. Tribogenics revolutionary X-ray solution emerged from DARPA and TATRC-funded initiatives at UCLA and was developed by prominent scientists.

Ungerleider notes that the company has not launched any commercial products yet but this one sure looks interesting,

… ultra-portable X-ray machines show the greatest potential for becoming a disruptive medical technology. Tribogenics’ methods have revolutionary ramifications for catheterized radiation therapy, which currently poses significant radiation risks for patients, doctors, and nurses. According to Fox, the company’s products eliminate the need for radioactive isotopes.

If you are interested in this technology, I would suggest reading Ungerleider’s article for additional details.

DARPA, innovation, passwords, people, and nanotherapeutics

There have been a few articles recently about (US) DARPA (Defense Advance Research Projects Agency) that have roused my interest in how they view innovation and business. The first piece I’m mentioning is a request for a proposal (RFP) on nanotherapeutics in a Nov. 22, 2011 news item on Nanowerk,

Through the U.S. Department of Defense’s Small Business Innovation Research (SBIR) program, DARPA is currently soliciting research proposals to develop a platform capable of rapidly synthesizing therapeutic nanoparticles targeted against evolving and engineered pathogens (SB121-003: Rapidly Adaptable Nanotherapeutics pdf).

Here’s part of the problem they’re trying to solve,

Acquired resistance compromises our ability to fight emergent bacterial threats in injured warfighters and our military treatment facilities. For burn patients in particular, multidrug-resistant Acinetobacter calcoaceticus-baumannii complex (ABC) is a common cause of nosocomial infection, causing severe morbidity as well as longer hospital stays. Typically, antimicrobial resistant infections require a hospital stay three times as long and are in excess of four times as expensive. Therefore, new and innovative methods to control bacterial infection in the military health system are of critical importance.

Here’s what they want,

Recent advances in nanomaterials, genome sequencing, nucleotide synthesis, and bioinformatics could converge in nanotherapeutics with tailored sequence, specificity, and function that can overcome earlier challenges. Collectively, these core technologies could permit the development of an innovative pharmaceutical platform composed of nanoparticles with tethered small interfering RNA (siRNA) oligonucelotides whose sequence and objective can be reprogrammed “on-the-fly” to inhibit multiple targets within multiple classes of pathogens.

This topic is focused on the development of a revolutionary rapidly adaptable nanotherapeutic platform effective against evolving and engineered pathogens. The biocompatible materials used to fabricate the nanoparticle should optimize cellular targeting, intracellular concentration, target sequence affinity, resistance to nuclease, and knockdown of target genes. The platform should leverage state-of-the-art genomic sequencing and oligonucleotide synthesis technologies to permit rapid programmability against evolving biologic threats.

I have taken a look at the RFP and, predictably, there’s a militaristic element to the introduction,

DARPA’s mission is to prevent technological surprise for the United States and to create technological surprise for its adversaries. The DARPA SBIR [Small Business Innovation Research] and STTR [Small Business Technology Transfer] Programs are designed to provide small, high-tech businesses and academic institutions the opportunity to propose radical, innovative, high-risk approaches to address existing and emerging national security threats; thereby supporting DARPA’s overall strategy to bridge the gap between fundamental discoveries and the provision of new military capabilities. (p. 1)

In short, we should never be caught with our pants down but we would like to catch our enemies in that position.

I was surprised to find that the responders are expected to create a business plan that includes information about markets, customers, and sales (from the RFP),

5. Market/Customer Sets/Value Proposition – Describe the market and customer sets you propose to target, their size, and their key reasons they would consider procuring the technology.

• What is the current size of the broad market you plan to enter and the “niche” market opportunity you are addressing?

• What are the growth trends for the market and the key trends in the industry that you are planning to target?

• What features of your technology will allow you to provide a compelling value proposition?


• Have you validated the significance of these features and if not, how do you plan to validate?

6. Competition Assessment – Describe the competition in these markets/customer sets and your anticipated advantage (e.g., function, performance, price, quality, etc.)

7. Funding Requirements – List your targeted funding sources (e.g., federal, state and local, private (internal, loan, angel, venture capital, etc.) and your proposed plan and schedule to secure this funding.

Provide anticipated funding requirements both during and after Phase II required to:

• mature the technology

• as required, mature the manufacturing processes

• test and evaluate the technology

• receive required certifications

• secure patents, or other protections of intellectual property

• manufacture the technology to bring the technology to market for use in operational environments

• market/sell technology to targeted customers

8. Sales Projections – Provide a schedule that outlines your anticipated sales projections and indicate when you anticipate breaking even. (pp. 2-3)

I do understand that the US has a military-industrial complex which fuels much of the country’s economic growth; I just hadn’t expected that the military would care as much as they do (as per this RFP) about  their suppliers’ business plans and financial health. It makes sense. After all, you want your suppliers to stay in business as it’s expensive and time-consuming to find new ones.

I don’t know if this is a new philosophy for the agency but it does seem to fit nicely with the current director’s Regina Dugan’s approach. From a Q & A between Dugan and Adam L. Penenberg for an Oct. 19, 2011 article in Fast Company,

That seems a key part of your mission since you got here–that it’s not enough to be doing cutting-edge research.
When deputy director Kaigham Gabriel and I got here, we understood that DARPA is one of the gems of the nation. We had been asked to take good care of her. For me, part of that meant really understanding why DARPA has this half-century of success in innovation. And the first element in DARPA’s success is the power that lies at the intersection of basic science and application, in the so-called Pasteur’s Quadrant. Do you know Stokes’s theory of innovation?

Absolutely not.
Donald E. Stokes wrote a theory of innovation in the late 1990s. Till then, most people thought of innovation as a linear process. You do basic science; then you do more advanced science; then you do the application work; then you commercialize it. What Stokes suggested is that it doesn’t happen that way at all. He preferred to think of it in a quadrant fashion, defining one row as very deep science and the other as light science; the two columns were a low-application drive and a high-application drive. Pasteur’s Quadrant happens at the deep-science-, high-application-drive quadrant. That’s DARPA’s absolute power lane. It’s called Pasteur’s Quadrant because serious concerns about food safety drove his research.

A very recent example of how it works for us is the blast-gauge work that we do. Here’s a big problem: TBI, traumatic brain injuries. So the way we approach it at DARPA is to say, “Okay, let’s understand the basic science, the phenomenology. How is it that an encounter with a blast injures the brain? What levels of blasts cause what levels of injury? Is it the overpressure? Is it the acceleration? What is it?” A medical person from DARPA researched this and discovered it was the overpressure. And the DARPA physicist says, “We know how to measure that.” Together, they devise this little blast gauge that’s the size of a couple stacks of quarters [the gauge helps doctors measure a soldier's blast-exposure level, enabling better assessment of injuries]. They develop it in one year, going through four iterations of the electronics. That’s fast.

All of this leads back to the idea of shipping products. The defense world is like a mini-society. It has to deploy to anyplace in the world on a moment’s notice, and it has to work in a life-or-death situation. That kind of focus, that kind of drive to ship an application, really does inspire greater genius. And the constancy of funding that comes with that–in good times or bad, whether this party or that party is in power–also helps inspire innovation.

Dugan later goes on to describe her first weeks at DARPA (she was sworn in July 2009) where she and the deputy director made it their mission to meet every single person on staff, all 217 of them.

Still on the theme of innovation and DARPA, there’s a Nov. 16, 2011 article, DARPA Is After Your Password, by Neal Ungerleider in Fast Company which has to be of huge interest to anyone who has passwords,

According to DARPA press materials, the agency is focusing on creating cutting-edge biometric identification products that can identify an individual user through their individual typing style. In the future, DARPA hopes smart computers will be able to verify account-holders’ identities through their typing speed, finger motions and quirks of movement.

Materials published by DARPA seem to indicate that researchers at the agency believe most contemporary account passwords–at least those adhering to best practices–are clunky, hard to remember, and ultimately insecure. According to program manager Richard Guidorizzi, “My house key will get you into my house, but the dog in my living room knows you’re not me. No amount of holding up my key and saying you’re me is going to convince my dog you’re who you say you are. My dog knows you don’t look like me, smell like me or act like me. What we want out of this program is to find those things that are unique to you, and not some single aspect of computer security that an adversary can use to compromise your system.”

Nobody likes entering passwords. Nobody likes remembering passwords. Nobody likes forgetting passwords. Creating a painless, easy, and secure password-replacement system will be a major cash cow for any firm that can effectively bring it to market. [emphasis mine]

My enthusiasm for a world without passwords aside, I do note the interest in having the technology come to market. I wonder if DARPA will accrue some financial benefit, i.e. a licensing agreement. I did quickly skim the RFP but was unable to confirm or disprove this notion.

Surveillance by design and by accident

In general, one thinks of surveillance as an activity undertaken by the military or the police or some other arm of the state (a spy agency of some kind). The  Nano Hummingbird, a drone from AeroVironment designed for the US Pentagon, would fit into any or all of those categories.

AeroVironment's hummingbird drone // Source: suasnews.com (downloaded from Homeland Security Newswire)

You can see the device in action here,

The inset screen shows you what is being seen via the hummingbird’s camera, while the larger screen image allows you to observe the Nano Hummingbird in action. I don’t know why they’ve used the word nano as part of the product unless it is for marketing purposes. The company’s description of the product is at a fairly high level and makes no mention of the technology, nano or otherwise, that makes the hummingbird drone’s capabilities possible (from the company’s Nano Hummingbird webpage),

AV [AeroVironment] is developing the Nano Air Vehicle (NAV) under a DARPA sponsored research contract to develop a new class of air vehicle systems capable of indoor and outdoor operation. Employing biological mimicry at an extremely small scale, this unconventional aircraft could someday provide new reconnaissance and surveillance capabilities in urban environments.

The Nano Hummingbird could be described as a traditional form surveillance as could the EyeSwipe iris scanners (mentioned in my Dec. 10, 2010 posting). The EyeSwipe allows the police, military, or other state agencies to track you with cameras that scan your retinas (they’ve had trials of this technology in Mexico).

A provocative piece by Nic Fleming for the journal, New Scientist, takes this a step further. Smartphone surveillance: The cop in your pocket can be found in the July 30, 2011 issue of New Scientist (preview here; the whole article is behind a paywall),

While many of us use smartphones to keep our social lives in order, they are also turning out to be valuable tools for gathering otherwise hard-to-get data. The latest smartphones bristle with sensors …

Apparently the police are wanting to crowdsource surveillance by having members of the public use their smartphones to track licence plate numbers, etc. and notify the authorities. Concerns about these activities are noted both in Fleming article and in the August 10, 2011 posting on the Foresight Institute blog,

“Christine Peterson, president of the Foresight Institute based in Palo Alto, California, warns that without safeguards, the data we gather about each other might one day be used to undermine rather than to protect our freedom. ‘We are moving to a new level of data collection that our society is not accustomed to,’ she says.”

Peterson’s comments about data collection struck me most particularly as I’ve noticed over the last several months a number of applications designed to make life ‘easier’ that also feature data collection (i. e., collection of one’s personal data). For example, there’s Percolate. From the July 7, 2011 article by Austin Carr for Fast Company,

Percolate, currently in its “double secret alpha” version, is a blogging platform that provides curated content for you to write about. The service taps into your RSS and Twitter feeds, culls content based on your interests–the stuff that “percolates up”–and then offers you the ability to share your thoughts on the subject with friends. “We’re trying to make it easy for anyone to create content,” Brier says, “to take away from the frustration of staring at that blank box and trying to figure out what to say.”

It not only removes the frustration, it removes at least some of the impetus for creativity. The service is being framed as a convenience. Coincidentally, it makes much easier for marketers or any one or any agency to track your activities.

This data collection can get a little more intimate than just your Twitter and RSS feeds. Your underwear can monitor your bodily functions (from the June 11, 2010 news item on Nanowerk),

A team of U.S. scientists has designed some new men’s briefs that may be comfortable, durable and even stylish but, unlike most underpants, may be able to save lives.

Printed on the waistband and in constant contact with the skin is an electronic biosensor, designed to measure blood pressure, heart rate and other vital signs.

The technology, developed by nano-engineering professor Joseph Wang of University of California San Diego and his team, breaks new ground in the field of intelligent textiles and is part of shift in focus in healthcare from hospital-based treatment to home-based management.

The method is similar to conventional screen-printing although the ink contains carbon electrodes.

The project is being funded by the U.S. military with American troops likely to be the first recipients.

“This specific project involves monitoring the injury of soldiers during battlefield surgery and the goal is to develop minimally invasive sensors that can locate, in the field, and identify the type of injury,” Wang told Reuters Television.

I realize that efforts such as the ‘smart underpants’ are developed with good intentions but if the data can be used to monitor your health status, it can be used to monitor you for other reasons.

While the military can insist its soldiers be monitored, civilian efforts are based on incentives. For example, Foodzy is an application that makes dieting fun. From the July 7, 2011 article by Morgan Clendaniel on Fast Company,

As more and more people join (Foodzy is aiming for 30,000 users by the end of the year and 250,000 by the end of 2012), you’ll also start being able to see what your friends are eating. This could be a good way to keep your intake of bits down, not wanting to embarrass yourself in front of your friends as you binge on some cookies, but Kamphuis [Marjolijn Kamphuis is one of the founders] sees a more social aspect to it: “On my dashboard I am able to see what the ‘food match’ between me and my friends is, the same way Last.FM has been comparing me and my friend’s music taste for ages! I am now able to share recipes with my friends or hook up with them in real life for dinner because I notice we have similar taste.”

That sure takes the discovery/excitement aspect out of getting to know someone. As I noted with my comments about Percolate, with more of our lives being mediated by applications of this nature, the easier we are to track.

Along a parallel track, there’s a campaign to remove anonymity and/or pseudonymity from the Internet. As David Sirota notes in his August 12, 2011 Salon essay about this trend, the expressed intention is to ensure civility and minimize bullying but there is at least one other consequence,

The big potential benefit of users having to attach real identities to their Internet personas is more constructive dialogue.

As Zuckerberg [Randi Zuckerberg, Facebook executive] and Schmidt [Eric Schmidt, former Google CEO]  correctly suggest, online anonymity is primarily used by hate-mongers to turn constructive public discourse into epithet-filled diatribes. Knowing they are shielded from consequences, trolls feel empowered to spew racist, sexist and other socially unacceptable rhetoric that they’d never use offline. …

The downside, though, is that true whistle-blowers will lose one of their most essential tools.

Though today’s journalists often grant establishment sources anonymity to attack weaker critics, anonymity’s real social value is rooted in helping the powerless challenge the powerful. Think WikiLeaks, which exemplifies how online anonymity provides insiders the cover they need to publish critical information without fear of retribution. Eliminating such cover will almost certainly reduce the kind of leaks that let the public occasionally see inconvenient truths.

It’s not always about whistleblowing, some people prefer pseudonyms.  Science writer and blogger, GrrlScientist, recently suffered a blow to her pseudonymity which was administered by Google (from her July 16, 2011 posting on the Guardian science blogs),

One week ago, my entire Google account was deactivated suddenly and without warning. I was not allowed to access gmail nor any other Google service until I surrendered my personal telephone number in exchange for reinstating access to my gmail account. I still cannot access many of my other accounts, such as Google+, Reader and Buzz. My YouTube account remains locked, too.

I was never notified as to what specifically had warranted this unexpected deactivation of my account. I only learned a few hours later that my account was shut down due to the name I use on my profile page, which you claim is a violation of your “community standards”. However, as stated on your own “display name” pages, I have not violated your community standards. I complied with your stated request: my profile name is “the name that [I] commonly go by in daily life.”

My name is a pseudonym, as I openly state on my profile. I have used GrrlScientist as my pseudonym since 2000 and it has a long track record. I have given public lectures in several countries, received mail in two countries, signed contracts, received monetary payments, published in a number of venues and been interviewed for news stories – all using my pseudonym. A recent Google search shows that GrrlScientist, as spelled, is unique in the world. This meets at least two of your stated requirements; (1) I am not impersonating anyone and (2) my name represents just one person.

GrrlScientist is not the only writer who prefers a pseudonym. Mark Twain did too. His real name was Samuel J. Clemens but widely known as Mark Twain, he was the author of The Adventures of Tom Sawyer, Adventures of Huckleberry Finn, and many more books, short stories, and essays.

Minimzing bullying, ensuring civility, monitoring vital signs in battle situations, encouraging people to write, helping a friend stay on diet are laudable intentions but all of this leads to more data being collected about us and the potential for abusive use of this data.

Informal science education, DARPA and NASA style

I like to mention imaginative science education projects from time to time and this one caught my attention. The US National Aeronautics and Space Administration (NASA) and the Defense Advanced Research Projects Agency (DARPA) are offering students the opportunity to have one of their experiments tested under live conditions in outer space. From the Kit Eaton June 20, 2011 article (How NASA, DARPA Are Keeping Kids Interested In Space),

To keep folks interested [now that the Space Shuttle era is over], NASA and DARPA are pushing (a little) money into a program that’s directly aimed at students themselves.

Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) are an existing experiment that uses tiny ball-shaped robots that fly inside the International Space Station. They test techniques for keeping real satellites maneuvering in sync so that they can rendezvous and work as part of a swarm–a task that’s useful for autonomous satellite servicing, and even the building of future spacecraft.

The offer that NASA’s making is that if you design an interesting experiment, and it wins their approval, it’ll be used to fly the SPHERES robots for real. In space.

There are more details about the 2011 SPHERES Challenge tournament at the Massachusetts Institute of Technology’s (MIT) Zero Robotics website. Here’s a little of the information available on that site,

“Zero Robotics” is a robotics programming competition that opens the world-class research facilities on the International Space Station (ISS) to high-school students. Students will actually write programs at their High School that may control a satellite in space! The goal is to build critical engineering skills for students, such as problem solving, design thought process, operations training, and team work. Ultimately we hope to inspire future scientists and engineers so that they will view working in space as “normal”, and will grow up pushing the limits of engineering and space exploration.

They’ve had annual challenges since 2009 and this year’s is the SPHERES challenge. There are six stages to this year’s competition,

The 2011 SPHERES Challenge tournament has 6 stages:

  1. Learn to program / tutorials / initial programming
  2. 2D Simulation: the game will be played in 2-dimensions. All teams will submit a player and will compete, in a full round robin simulation, against all other teams. Their score will count towards elimination later on, but no teams will be eliminated in this round.
  3. 2D Ground Competition: the top scorers from the 2D simulation will see their players compete against each other on the SPHERES ground satellites, learning directly some of the important differences between simulation and real hardware. Scores in this round will not count towards elimination, as not all teams will compete. All teams will be able  to watch the competition at MIT via webcast.
  4. 3D Simulation: all participating teams will extend their game to 3 dimensions and submit their final individual player. MIT will run a full round robin simulation. The score of this round will be combined with the score of the 2D simulation to seed all teams.
  5. 3D Semi-Finals: the top 48 teams will be required to form alliances of 3 teams per player, creating a total of 16 players. Preference will be given to the choices of higher seeds. These alliances will compete in a full round-robin simulation. The top scoring players/alliances will be invited to submit an entry for the ISS finals.
  6. ISS Finals: the top 9 players of the semi-finals will be invited to participate in the ISS finals (a total of 27 teams, as there will be 3 teams per player).  Teams may visit MIT to see the live feed, or watch via the webcast. Players will compete in a bracketed round-robin aboard the ISS and a champion will be declared.   (note: date depends on astronaut time availability)

This is a competition for US high school students from grades 9 – 12.  The application deadline is Sept. 5, 2011.

From the bleeding edge to the cutting edge to ubiquitous? The PaperPhone, an innovation case study in progress

This story has it all: military, patents, international competition and cooperation, sex (well, not according to the academics but I think it’s possible), and a bizarre device – the PaperPhone (last mentioned in my May 6, 2011 posting on Human-Computer Interfaces).

“If you want to know what technologies people will be using 10 years in the future, talk to the people who’ve been working on a lab project for 10 years,” said Dr. Roel Vertegaal, Director of the Human Media Lab at Queen’s University in Kingston, Ontario. By the way, 10 years is roughly the length of time Vertegaal and his team have been working on a flexible/bendable phone/computer and he believes that it will be another five to 10 years before the device is available commercially.

Image from Human Media Lab press kit

As you can see in the image, the prototype device looks like a thin piece of plastic that displays a menu. In real life that black bit to the left of the image is the head of a cable with many wires connecting it to a computer. Here’s a physical description of the device copied from the paper (PaperPhone: Understanding the Use of Bend Gestures in Mobile Devices with Flexible Electronic Paper Displays) written by Byron Lahey, Audrey Girouard, Winslow Burleson and Vertegaal,

PaperPhone consists of an Arizona State University Flexible Display Center 3.7” Bloodhound flexible electrophoretic display, augmented with a layer of 5 Flexpoint 2” bidirectional bend sensors. The prototype is driven by an E Ink Broadsheet AM 300 Kit featuring a Gumstix processor. The prototype has a refresh rate of 780 ms for a typical full screen gray scale image.

An Arduino microcontroller obtains data from the Flexpoint bend sensors at a frequency of 20 Hz. Figure 2 shows the back of the display, with the bend sensor configuration mounted on a flexible printed circuit (FPC) of our own design. We built the FPC by printing its design on DuPont Pyralux flexible circuit material with a solid ink printer, then etching the result to obtain a fully functional flexible circuit substrate. PaperPhone is not fully wireless. This is because of the supporting rigid electronics that are required to drive the display. A single, thin cable bundle connects the AM300 and Arduino hardware to the display and sensors. This design maximizes the flexibility and mobility of the display, while keeping its weight to a minimum. The AM300 and Arduino are connected to a laptop running a Max 5 patch that processes sensor data, performs bend gesture recognition and sends images to the display. p. 3

It may look ungainly but it represents a significant step forward for the technology as this team (composed of researchers from Queen’s University, Arizona State University, and E Ink Corporation) appears to have produced the only working prototype in the world for a personal portable flexible device that will let you make phone calls, play music, read a book, and more by bending it. As they continue to develop the product, the device will become wireless.

The PaperPhone and the research about ‘bending’, i.e., the kinds of bending gestures people would find easiest and most intuitive to use when activating the device, were presented in Vancouver in an early session at the CHI 2011 Conference where I got a chance to speak to Dr. Vertegaal and his team.

Amongst other nuggets, I found out the US Department of Defense (not DARPA [Defense Advanced Research Projects Agency] oddly enough) has provided funding for the project. Military interest is focused on the device’s low energy requirements, lowlight screen, and light weight in addition to its potential ability to be folded up and carried like a piece of paper (i. e., it could mould itself to fit a number of tight spaces) as opposed to the rigid, ungiving borders of a standard mobile device. Of course, all of these factors are quite attractive to consumers too.

As is imperative these days, the ‘bends’ that activate the device have been patented and Vertegaal is in the process of developing a startup company that will bring this device and others to market. Queen’s University has an ‘industrial transfer’ office (they probably call it something else) which is assisting him with the startup.

There is international interest in the PaperPhone that is collaborative and competitive. Vertegaal’s team at Queen’s is partnered with a team at Arizona State University led by Dr. Winslow Burleson, professor in the Computer Systems Engineering and the Arts, Media, and Engineering graduate program and with Michael McCreary, Vice President Research & Development of E Ink Corporation representing an industry partner.

On the competitive side of things, the UK’s University of Cambridge and the Finnish Nokia Research Centre have been working on the Morph which as I noted in my May 6, 2011 posting still seems to be more concept than project.

Vertegaal noted that the idea of a flexible screen is not new and that North American companies have gone bankrupt trying to bring the screens to market. These days, you have to go to Taiwan for industrial production of flexible screens such as the PaperPhone’s.

One of my last questions to the team was about pornography. (In the early days of the Internet [which had its origins in military research], there were only two industries that made money online, pornography and gambling. The gambling opportunities seem pretty similar to what we already enjoy.) After an amused response, the consensus was that like gambling it’s highly unlikely a flexible phone could lend itself to anything new in the field of pornography. Personally, I’m not convinced about that one.

So there you have a case study for innovation. Work considered bleeding edge 10 years ago is now cutting edge and, in the next five to 10 years, that work will be become a consumer product. Along the way you have military investment, international collaboration and competition, failure and success, and, possibly, sex.