Tag Archives: Delft University of Technology

China is world leader in nanotechnology and in other fields too?

State of Chinese nanoscience/nanotechnology

China claims to be the world leader in the field in a white paper announced in an August 29, 2017 Springer Nature press release,

Springer Nature, the National Center for Nanoscience and Technology, China and the National Science Library of the Chinese Academy of Sciences (CAS) released in both Chinese and English a white paper entitled “Small Science in Big China: An overview of the state of Chinese nanoscience and technology” at NanoChina 2017, an international conference on nanoscience and technology held August 28 and 29 in Beijing. The white paper looks at the rapid growth of China’s nanoscience research into its current role as the world’s leader [emphasis mine], examines China’s strengths and challenges, and makes some suggestions for how its contribution to the field can continue to thrive.

The white paper points out that China has become a strong contributor to nanoscience research in the world, and is a powerhouse of nanotechnology R&D. Some of China’s basic research is leading the world. China’s applied nanoscience research and the industrialization of nanotechnologies have also begun to take shape. These achievements are largely due to China’s strong investment in nanoscience and technology. China’s nanoscience research is also moving from quantitative increase to quality improvement and innovation, with greater emphasis on the applications of nanotechnologies.

“China took an initial step into nanoscience research some twenty years ago, and has since grown its commitment at an unprecedented rate, as it has for scientific research as a whole. Such a growth is reflected both in research quantity and, importantly, in quality. Therefore, I regard nanoscience as a window through which to observe the development of Chinese science, and through which we could analyze how that rapid growth has happened. Further, the experience China has gained in developing nanoscience and related technologies is a valuable resource for the other countries and other fields of research to dig deep into and draw on,” said Arnout Jacobs, President, Greater China, Springer Nature.

The white paper explores at China’s research output relative to the rest of the world in terms of research paper output, research contribution contained in the Nano database, and finally patents, providing insight into China’s strengths and expertise in nano research. The white paper also presents the results of a survey of experts from the community discussing the outlook for and challenges to the future of China’s nanoscience research.

China nano research output: strong rise in quantity and quality

In 1997, around 13,000 nanoscience-related papers were published globally. By 2016, this number had risen to more than 154,000 nano-related research papers. This corresponds to a compound annual growth rate of 14% per annum, almost four times the growth in publications across all areas of research of 3.7%. Over the same period of time, the nano-related output from China grew from 820 papers in 1997 to over 52,000 papers in 2016, a compound annual growth rate of 24%.

China’s contribution to the global total has been growing steadily. In 1997, Chinese researchers co-authored just 6% of the nano-related papers contained in the Science Citation Index (SCI). By 2010, this grew to match the output of the United States. They now contribute over a third of the world’s total nanoscience output — almost twice that of the United States.

Additionally, China’s share of the most cited nanoscience papers has kept increasing year on year, with a compound annual growth rate of 22% — more than three times the global rate. It overtook the United States in 2014 and its contribution is now many times greater than that of any other country in the world, manifesting an impressive progression in both quantity and quality.

The rapid growth of nanoscience in China has been enabled by consistent and strong financial support from the Chinese government. As early as 1990, the State Science and Technology Committee, the predecessor of the Ministry of Science and Technology (MOST), launched the Climbing Up project on nanomaterial science. During the 1990s, the National Natural Science Foundation of China (NSFC) also funded nearly 1,000 small-scale projects in nanoscience. In the National Guideline on Medium- and Long-Term Program for Science and Technology Development (for 2006−2020) issued in early 2006 by the Chinese central government, nanoscience was identified as one of four areas of basic research and received the largest proportion of research budget out of the four areas. The brain boomerang, with more and more foreign-trained Chinese researchers returning from overseas, is another contributor to China’s rapid rise in nanoscience.

The white paper clarifies the role of Chinese institutions, including CAS, in driving China’s rise to become the world’s leader in nanoscience. Currently, CAS is the world’s largest producer of high impact nano research, contributing more than twice as many papers in the 1% most-cited nanoscience literature than its closest competitors. In addition to CAS, five other Chinese institutions are ranked among the global top 20 in terms of output of top cited 1% nanoscience papers — Tsinghua University, Fudan University, Zhejiang University, University of Science and Technology of China and Peking University.

Nano database reveals advantages and focus of China’s nano research

The Nano database (http://nano.nature.com) is a comprehensive platform that has been recently developed by Nature Research – part of Springer Nature – which contains nanoscience-related papers published in 167 peer-reviewed journals including Advanced Materials, Nano Letters, Nature, Science and more. Analysis of the Nano database of nanomaterial-containing articles published in top 30 journals during 2014–2016 shows that Chinese scientists explore a wide range of nanomaterials, the five most common of which are nanostructured materials, nanoparticles, nanosheets, nanodevices and nanoporous materials.

In terms of the research of applications, China has a clear leading edge in catalysis research, which is the most popular area of the country’s quality nanoscience papers. Chinese nano researchers also contributed significantly to nanomedicine and energy-related applications. China is relatively weaker in nanomaterials for electronics applications, compared to other research powerhouses, but robotics and lasers are emerging applications areas of nanoscience in China, and nanoscience papers addressing photonics and data storage applications also see strong growth in China. Over 80% of research from China listed in the database explicitly mentions applications of the nanostructures and nanomaterials described, notably higher than from most other leading nations such as the United States, Germany, the UK, Japan and France.

Nano also reveals the extent of China’s international collaborations in nano research. China has seen the percentage of its internationally collaborated papers increasing from 36% in 2014 to 44% in 2016. This level of international collaboration, similar to that of South Korea, is still much lower than that of the western countries, and the rate of growth is also not as fast as those in the United States, France and Germany.

The United States is China’s biggest international collaborator, contributing to 55% of China’s internationally collaborated papers on nanoscience that are included in the top 30 journals in the Nano database. Germany, Australia and Japan follow in a descending order as China’s collaborators on nano-related quality papers.

China’s patent output: topping the world, mostly applied domestically

Analysis of the Derwent Innovation Index (DII) database of Clarivate Analytics shows that China’s accumulative total number of patent applications for the past 20 years, amounting to 209,344 applications, or 45% of the global total, is more than twice as many as that of the United States, the second largest contributor to nano-related patents. China surpassed the United States and ranked the top in the world since 2008.

Five Chinese institutions, including the CAS, Zhejiang University, Tsinghua University, Hon Hai Precision Industry Co., Ltd. and Tianjin University can be found among the global top 10 institutional contributors to nano-related patent applications. CAS has been at the top of the global rankings since 2008, with a total of 11,218 patent applications for the past 20 years. Interestingly, outside of China, most of the other big institutional contributors among the top 10 are commercial enterprises, while in China, research or academic institutions are leading in patent applications.

However, the number of nano-related patents China applied overseas is still very low, accounting for only 2.61% of its total patent applications for the last 20 years cumulatively, whereas the proportion in the United States is nearly 50%. In some European countries, including the UK and France, more than 70% of patent applications are filed overseas.

China has high numbers of patent applications in several popular technical areas for nanotechnology use, and is strongest in patents for polymer compositions and macromolecular compounds. In comparison, nano-related patent applications in the United States, South Korea and Japan are mainly for electronics or semiconductor devices, with the United States leading the world in the cumulative number of patents for semiconductor devices.

Outlook, opportunities and challenges

The white paper highlights that the rapid rise of China’s research output and patent applications has painted a rosy picture for the development of Chinese nanoscience, and in both the traditionally strong subjects and newly emerging areas, Chinese nanoscience shows great potential.

Several interviewed experts in the survey identify catalysis and catalytic nanomaterials as the most promising nanoscience area for China. The use of nanotechnology in the energy and medical sectors was also considered very promising.

Some of the interviewed experts commented that the industrial impact of China’s nanotechnology is limited and there is still a gap between nanoscience research and the industrialization of nanotechnologies. Therefore, they recommended that the government invest more in applied research to drive the translation of nanoscience research and find ways to encourage enterprises to invest more in R&D.

As more and more young scientists enter the field, the competition for research funding is becoming more intense. However, this increasing competition for funding was not found to concern most interviewed young scientists, rather, they emphasized that the soft environment is more important. They recommended establishing channels that allow the suggestions or creative ideas of the young to be heard. Also, some interviewed young researchers commented that they felt that the current evaluation system was geared towards past achievements or favoured overseas experience, and recommended the development of an improved talent selection mechanism to ensure a sustainable growth of China’s nanoscience.

I have taken a look at the white paper and found it to be well written. It also provides a brief but thorough history of nanotechnology/nanoscience even adding a bit of historical information that was new to me. As for the rest of the white paper, it relies on bibliometrics (number of published papers and number of citations) and number of patents filed to lay the groundwork for claiming Chinese leadership in nanotechnology. As I’ve stated many times before, these are problematic measures but as far as I can determine they are almost the only ones we have. Frankly, as a Canadian, it doesn’t much matter to me since Canada no matter how you slice or dice it is always in a lower tier relative to science leadership in major fields. It’s the Americans who might feel inclined to debate leadership with regard to nanotechnology and other major fields and I leave it to to US commentators to take up the cudgels should they be inclined. The big bonuses here are the history, the glimpse into the Chinese perspective on the field of nanotechnology/nanoscience, and the analysis of weaknesses and strengths.

Coming up fast on Google and Amazon

A November 16, 2017 article by Christina Bonnington for Slate explores the possibility that a Chinese tech giant, Baidu,  will provide Google and Amazon serious competition in their quests to dominate world markets (Note: Links have been removed,

raven_h
The company took a playful approach to the form—but it has functional reasons for the design, too. Baidu

 

One of the most interesting companies in tech right now isn’t based in Palo Alto, or San Francisco, or Seattle. Baidu, a Chinese company with headquarters in Beijing, is taking on America’s biggest and most innovative tech titans—with style.

Baidu, a titan in its own right, leapt onto the scene as a competitor to Google in the search engine space. Since then, the company, largely underappreciated here in the U.S., has focused on beefing up its artificial intelligence efforts. Former AI chief Andrew Ng, upon leaving the company in March, credited Baidu’s CEO Robin Li on being one of the first technology leaders to fully appreciate the value of deep learning. Baidu now has a 1,300 person AI group, and that investment in AI has helped the company catch up to older, more established companies like Google and Amazon—both in emerging spaces, such as autonomous vehicles, and in consumer tech, as its latest announcement shows.

On Thursday [November 16, 2017], Baidu debuted its entrants to the popular virtual assistant space: a connected speaker and two robots. Baidu aims for the speaker to compete against options such as Amazon’s Echo line, Google Home, and Apple HomePod. Inside, the $256 device will utilize Baidu’s DuerOS conversational artificial intelligence platform, which is already used in more than 100 different smart home brands’ products. DuerOS will let you use your voice to do things like ask the speaker for information, play music, or hail a cab. Called the Raven H, the speaker includes high-end audio components from Tymphany and a unique design jointly created by acquired startup Raven Tech and Swedish consumer electronics company Teenage Engineering.

While the focus is on exciting new technology products from Baidu, the subtext, such as it is, suggests US companies had best keep an eye on its Chinese competitor(s).

Dutch/Chinese partnership to produce nanoparticles at the touch of a button

Now back to China and nanotechnology leadership and the production of nanoparticles. This announcement was made in a November 17, 2017 news item on Azonano,

Delft University of Technology [Netherlands] spin-off VSPARTICLE enters the booming Chinese market with a radical technology that allows researchers to produce nanoparticles at the push of a button. VSPARTICLE’s nanoparticle generator uses atoms, the worlds’ smallest building blocks, to provide a controllable source of nanoparticles. The start-up from Delft signed a distribution agreement with Bio-Sun to make their VSP-G1 nanoparticle generator available in China.

A November 16, 2017 VSPARTICLE press release, which originated the news item,

“We are honoured to cooperate with VSPARTICLE and bring the innovative VSP-G1 nanoparticle generator into the Chinese market. The VSP-G1 will create new possibilities for researchers in catalysis, aerosol, healthcare and electronics,” says Yinghui Cai, CEO of Bio-Sun.

With an exponential growth in nanoparticle research in the last decade, China is one of the leading countries in the field of nanotechnology and its applications. Vincent Laban, CFO of VSPARTICLE, explains: “Due to its immense investments in IOT, sensors, semiconductor technology, renewable energy and healthcare applications, China will eventually become one of our biggest markets. The collaboration with Bio-Sun offers a valuable opportunity to enter the Chinese market at exactly the right time.”

NANOPARTICLES ARE THE BUILDING BLOCKS OF THE FUTURE

Increasingly, scientists are focusing on nanoparticles as a key technology in enabling the transition to a sustainable future. Nanoparticles are used to make new types of sensors and smart electronics; provide new imaging and treatment possibilities in healthcare; and reduce harmful waste in chemical processes.

CURRENT RESEARCH TOOLKIT LACKS A FAST WAY FOR MAKING SPECIFIC BUILDING BLOCKS

With the latest tools in nanotechnology, researchers are exploring the possibilities of building novel materials. This is, however, a trial-and-error method. Getting the right nanoparticles often is a slow struggle, as most production methods take a substantial amount of effort and time to develop.

VSPARTICLE’S VSP-G1 NANOPARTICLE GENERATOR

With the VSP-G1 nanoparticle generator, VSPARTICLE makes the production of nanoparticles as easy as pushing a button. . Easy and fast iterations enable researchers to fast forward their research cycle, and verify their hypotheses.

VSPARTICLE

Born out of the research labs of Delft University of Technology, with over 20 years of experience in the synthesis of aerosol, VSPARTICLE believes there is a whole new world of possibilities and materials at the nanoscale. The company was founded in 2014 and has an international sales network in Europe, Japan and China.

BIO-SUN

Bio-Sun was founded in Beijing in 2010 and is a leader in promoting nanotechnology and biotechnology instruments in China. It serves many renowned customers in life science, drug discovery and material science. Bio-Sun has four branch offices in Qingdao, Shanghai, Guangzhou and Wuhan City, and a nationwide sale network.

That’s all folks!

‘Nano-hashtags’ for Majorana particles?

The ‘nano-hashtags’ are in fact (assuming a minor leap of imagination) nanowires that resemble hashtags.

Scanning electron microscope image of the device wherein clearly a ‘hashtag’ is formed. Credit: Eindhoven University of Technology

An August 23, 2017 news item on ScienceDaily makes the announcement,

In Nature, an international team of researchers from Eindhoven University of Technology [Netherlands], Delft University of Technology [Netherlands] and the University of California — Santa Barbara presents an advanced quantum chip that will be able to provide definitive proof of the mysterious Majorana particles. These particles, first demonstrated in 2012, are their own antiparticle at one and the same time. The chip, which comprises ultrathin networks of nanowires in the shape of ‘hashtags’, has all the qualities to allow Majorana particles to exchange places. This feature is regarded as the smoking gun for proving their existence and is a crucial step towards their use as a building block for future quantum computers.

An August 23, 2017 Eindhoven University press release (also on EurekAlert), which originated the news item, provides some context and information about the work,

In 2012 it was big news: researchers from Delft University of Technology and Eindhoven University of Technology presented the first experimental signatures for the existence of the Majorana fermion. This particle had been predicted in 1937 by the Italian physicist Ettore Majorana and has the distinctive property of also being its own anti-particle. The Majorana particles emerge at the ends of a semiconductor wire, when in contact with a superconductor material.

Smoking gun

While the discovered particles may have properties typical to Majoranas, the most exciting proof could be obtained by allowing two Majorana particles to exchange places, or ‘braid’ as it is scientifically known. “That’s the smoking gun,” suggests Erik Bakkers, one of the researchers from Eindhoven University of Technology. “The behavior we then see could be the most conclusive evidence yet of Majoranas.”

Crossroads

In the Nature paper that is published today [August 23, 2017], Bakkers and his colleagues present a new device that should be able to show this exchanging of Majoranas. In the original experiment in 2012 two Majorana particles were found in a single wire but they were not able to pass each other without immediately destroying the other. Thus the researchers quite literally had to create space. In the presented experiment they formed intersections using the same kinds of nanowire so that four of these intersections form a ‘hashtag’, #, and thus create a closed circuit along which Majoranas are able to move.

Etch and grow

The researchers built their hashtag device starting from scratch. The nanowires are grown from a specially etched substrate such that they form exactly the desired network which they then expose to a stream of aluminium particles, creating layers of aluminium, a superconductor, on specific spots on the wires – the contacts where the Majorana particles emerge. Places that lie ‘in the shadow’ of other wires stay uncovered.

Leap in quality

The entire process happens in a vacuum and at ultra-cold temperature (around -273 degree Celsius). “This ensures very clean, pure contacts,” says Bakkers, “and enables us to make a considerable leap in the quality of this kind of quantum device.” The measurements demonstrate for a number of electronic and magnetic properties that all the ingredients are present for the Majoranas to braid.

Quantum computers

If the researchers succeed in enabling the Majorana particles to braid, they will at once have killed two birds with one stone. Given their robustness, Majoranas are regarded as the ideal building block for future quantum computers that will be able to perform many calculations simultaneously and thus many times faster than current computers. The braiding of two Majorana particles could form the basis for a qubit, the calculation unit of these computers.

Travel around the world

An interesting detail is that the samples have traveled around the world during the fabrication, combining unique and synergetic activities of each research institution. It started in Delft with patterning and etching the substrate, then to Eindhoven for nanowire growth and to Santa Barbara for aluminium contact formation. Finally back to Delft via Eindhoven for the measurements.

Here’s a link to and a citation for the paper,

Epitaxy of advanced nanowire quantum devices by Sasa Gazibegovic, Diana Car, Hao Zhang, Stijn C. Balk, John A. Logan, Michiel W. A. de Moor, Maja C. Cassidy, Rudi Schmits, Di Xu, Guanzhong Wang, Peter Krogstrup, Roy L. M. Op het Veld, Kun Zuo, Yoram Vos, Jie Shen, Daniël Bouman, Borzoyeh Shojaei, Daniel Pennachio, Joon Sue Lee, Petrus J. van Veldhoven, Sebastian Koelling, Marcel A. Verheijen, Leo P. Kouwenhoven, Chris J. Palmstrøm, & Erik P. A. M. Bakkers. Nature 548, 434–438 (24 August 2017) doi:10.1038/nature23468 Published online 23 August 2017

This paper is behind a paywall.

Dexter Johnson has some additional insight (interview with one of the researchers) in an Aug. 29, 2017 posting on his Nanoclast blog (on the IEEE [institute of Electrical and Electronics Engineers] website).

Robot artists—should they get copyright protection

Clearly a lawyer wrote this June 26, 2017 essay on theconversation.com (Note: A link has been removed),

When a group of museums and researchers in the Netherlands unveiled a portrait entitled The Next Rembrandt, it was something of a tease to the art world. It wasn’t a long lost painting but a new artwork generated by a computer that had analysed thousands of works by the 17th-century Dutch artist Rembrandt Harmenszoon van Rijn.

The computer used something called machine learning [emphasis mine] to analyse and reproduce technical and aesthetic elements in Rembrandt’s works, including lighting, colour, brush-strokes and geometric patterns. The result is a portrait produced based on the styles and motifs found in Rembrandt’s art but produced by algorithms.

But who owns creative works generated by artificial intelligence? This isn’t just an academic question. AI is already being used to generate works in music, journalism and gaming, and these works could in theory be deemed free of copyright because they are not created by a human author.

This would mean they could be freely used and reused by anyone and that would be bad news for the companies selling them. Imagine you invest millions in a system that generates music for video games, only to find that music isn’t protected by law and can be used without payment by anyone in the world.

Unlike with earlier computer-generated works of art, machine learning software generates truly creative works without human input or intervention. AI is not just a tool. While humans program the algorithms, the decision making – the creative spark – comes almost entirely from the machine.

It could have been someone involved in the technology but nobody with that background would write “… something called machine learning … .”  Andres Guadamuz, lecturer in Intellectual Property Law at the University of Sussex, goes on to say (Note: Links have been removed),

Unlike with earlier computer-generated works of art, machine learning software generates truly creative works without human input or intervention. AI is not just a tool. While humans program the algorithms, the decision making – the creative spark – comes almost entirely from the machine.

That doesn’t mean that copyright should be awarded to the computer, however. Machines don’t (yet) have the rights and status of people under the law. But that doesn’t necessarily mean there shouldn’t be any copyright either. Not all copyright is owned by individuals, after all.

Companies are recognised as legal people and are often awarded copyright for works they don’t directly create. This occurs, for example, when a film studio hires a team to make a movie, or a website commissions a journalist to write an article. So it’s possible copyright could be awarded to the person (company or human) that has effectively commissioned the AI to produce work for it.

 

Things are likely to become yet more complex as AI tools are more commonly used by artists and as the machines get better at reproducing creativity, making it harder to discern if an artwork is made by a human or a computer. Monumental advances in computing and the sheer amount of computational power becoming available may well make the distinction moot. At that point, we will have to decide what type of protection, if any, we should give to emergent works created by intelligent algorithms with little or no human intervention.

The most sensible move seems to follow those countries that grant copyright to the person who made the AI’s operation possible, with the UK’s model looking like the most efficient. This will ensure companies keep investing in the technology, safe in the knowledge they will reap the benefits. What happens when we start seriously debating whether computers should be given the status and rights of people is a whole other story.

The team that developed a ‘new’ Rembrandt produced a video about the process,

Mark Brown’s April 5, 2016 article abut this project (which was unveiled on April 5, 2017 in Amsterdam, Netherlands) for the Guardian newspaper provides more detail such as this,

It [Next Rembrandt project] is the result of an 18-month project which asks whether new technology and data can bring back to life one of the greatest, most innovative painters of all time.

Advertising executive [Bas] Korsten, whose brainchild the project was, admitted that there were many doubters. “The idea was greeted with a lot of disbelief and scepticism,” he said. “Also coming up with the idea is one thing, bringing it to life is another.”

The project has involved data scientists, developers, engineers and art historians from organisations including Microsoft, Delft University of Technology, the Mauritshuis in The Hague and the Rembrandt House Museum in Amsterdam.

The final 3D printed painting consists of more than 148 million pixels and is based on 168,263 Rembrandt painting fragments.

Some of the challenges have been in designing a software system that could understand Rembrandt based on his use of geometry, composition and painting materials. A facial recognition algorithm was then used to identify and classify the most typical geometric patterns used to paint human features.

It sounds like it was a fascinating project but I don’t believe ‘The Next Rembrandt’ is an example of AI creativity or an example of the ‘creative spark’ Guadamuz discusses. This seems more like the kind of work  that could be done by a talented forger or fraudster. As I understand it, even when a human creates this type of artwork (a newly discovered and unknown xxx masterpiece), the piece is not considered a creative work in its own right. Some pieces are outright fraudulent and others which are described as “in the manner of xxx.”

Taking a somewhat different approach to mine, Timothy Geigner at Techdirt has also commented on the question of copyright and AI in relation to Guadamuz’s essay in a July 7, 2017 posting,

Unlike with earlier computer-generated works of art, machine learning software generates truly creative works without human input or intervention. AI is not just a tool. While humans program the algorithms, the decision making – the creative spark – comes almost entirely from the machine.

Let’s get the easy part out of the way: the culminating sentence in the quote above is not true. The creative spark is not the artistic output. Rather, the creative spark has always been known as the need to create in the first place. This isn’t a trivial quibble, either, as it factors into the simple but important reasoning for why AI and machines should certainly not receive copyright rights on their output.

That reasoning is the purpose of copyright law itself. Far too many see copyright as a reward system for those that create art rather than what it actually was meant to be: a boon to an artist to compensate for that artist to create more art for the benefit of the public as a whole. Artificial intelligence, however far progressed, desires only what it is programmed to desire. In whatever hierarchy of needs an AI might have, profit via copyright would factor either laughably low or not at all into its future actions. Future actions of the artist, conversely, are the only item on the agenda for copyright’s purpose. If receiving a copyright wouldn’t spur AI to create more art beneficial to the public, then copyright ought not to be granted.

Geigner goes on (July 7, 2017 posting) to elucidate other issues with the ideas expressed in the general debates of AI and ‘rights’ and the EU’s solution.

Innovation and two Canadian universities

I have two news bits and both concern the Canadian universities, the University of British Columbia (UBC) and the University of Toronto (UofT).

Creative Destruction Lab – West

First, the Creative Destruction Lab, a technology commercialization effort based at UofT’s Rotman School of Management, is opening an office in the west according to a Sept. 28, 2016 UBC media release (received via email; Note: Links have been removed; this is a long media release which interestingly does not mention Joseph Schumpeter the man who developed the economic theory which he called: creative destruction),

The UBC Sauder School of Business is launching the Western Canadian version of the Creative Destruction Lab, a successful seed-stage program based at UofT’s Rotman School of Management, to help high-technology ventures driven by university research maximize their commercial impact and benefit to society.

“Creative Destruction Lab – West will provide a much-needed support system to ensure innovations formulated on British Columbia campuses can access the funding they need to scale up and grow in-province,” said Robert Helsley, Dean of the UBC Sauder School of Business. “The success our partners at Rotman have had in helping commercialize the scientific breakthroughs of Canadian talent is remarkable and is exactly what we plan to replicate at UBC Sauder.”

Between 2012 and 2016, companies from CDL’s first four years generated over $800 million in equity value. It has supported a long line of emerging startups, including computer-human interface company Thalmic Labs, which announced nearly USD $120 million in funding on September 19, one of the largest Series B financings in Canadian history.

Focusing on massively scalable high-tech startups, CDL-West will provide coaching from world-leading entrepreneurs, support from dedicated business and science faculty, and access to venture capital. While some of the ventures will originate at UBC, CDL-West will also serve the entire province and extended western region by welcoming ventures from other universities. The program will closely align with existing entrepreneurship programs across UBC, including, e@UBC and HATCH, and actively work with the BC Tech Association [also known as the BC Technology Industry Association] and other partners to offer a critical next step in the venture creation process.

“We created a model for tech venture creation that keeps startups focused on their essential business challenges and dedicated to solving them with world-class support,” said CDL Founder Ajay Agrawal, a professor at the Rotman School of Management and UBC PhD alumnus.

“By partnering with UBC Sauder, we will magnify the impact of CDL by drawing in ventures from one of the country’s other leading research universities and B.C.’s burgeoning startup scene to further build the country’s tech sector and the opportunities for job creation it provides,” said CDL Director, Rachel Harris.

CDL uses a goal-setting model to push ventures along a path toward success. Over nine months, a collective of leading entrepreneurs with experience building and scaling technology companies – called the G7 – sets targets for ventures to hit every eight weeks, with the goal of maximizing their equity-value. Along the way ventures turn to business and technology experts for strategic guidance on how to reach goals, and draw on dedicated UBC Sauder students who apply state-of the-art business skills to help companies decide which market to enter first and how.

Ventures that fail to achieve milestones – approximately 50 per cent in past cohorts – are cut from the process. Those that reach their objectives and graduate from the program attract investment from the G7, as well as other leading venture-capital firms.

Currently being assembled, the CDL-West G7 will be comprised of entrepreneurial luminaries, including Jeff Mallett, the founding President, COO and Director of Yahoo! Inc. from 1995-2002 – a company he led to $4 billion in revenues and grew from a startup to a publicly traded company whose value reached $135 billion. He is now Managing Director of Iconica Partners and Managing Partner of Mallett Sports & Entertainment, with ventures including the San Francisco Giants, AT&T Park and Mission Rock Development, Comcast Bay Area Sports Network, the San Jose Giants, Major League Soccer, Vancouver Whitecaps FC, and a variety of other sports and online ventures.

Already bearing fruit, the Creative Destruction Lab partnership will see several UBC ventures accepted into a Machine Learning Specialist Track run by Rotman’s CDL this fall. This track is designed to create a support network for enterprises focused on artificial intelligence, a research strength at UofT and Canada more generally, which has traditionally migrated to the United States for funding and commercialization. In its second year, CDL-West will launch its own specialist track in an area of strength at UBC that will draw eastern ventures west.

“This new partnership creates the kind of high impact innovation network the Government of Canada wants to encourage,” said Brandon Lee, Canada’s Consul General in San Francisco, who works to connect Canadian innovation to customers and growth capital opportunities in Silicon Valley. “By collaborating across our universities to enhance our capacity to turn the scientific discoveries into businesses in Canada, we can further advance our nation’s global competitiveness in the knowledge-based industries.”

The Creative Destruction Lab is guided by an Advisory Board, co-chaired by Vancouver-based Haig Farris, a pioneer of the Canadian venture capitalist industry, and Bill Graham, Chancellor of Trinity College at UofT and former Canadian cabinet minister.

“By partnering with Rotman, UBC Sauder will be able to scale up its support for high-tech ventures extremely quickly and with tremendous impact,” said Paul Cubbon, Leader of CDL-West and a faculty member at UBC Sauder. “CDL-West will act as a turbo booster for ventures with great ideas, but which lack the strategic roadmap and funding to make them a reality.”

CDL-West launched its competitive application process for the first round of ventures that will begin in January 2017. Interested ventures are encouraged to submit applications via the CDL website at: www.creativedestructionlab.com

Background

UBC Technology ventures represented at media availability

Awake Labs is a wearable technology startup whose products measure and track anxiety in people with Autism Spectrum Disorder to better understand behaviour. Their first device, Reveal, monitors a wearer’s heart-rate, body temperature and sweat levels using high-tech sensors to provide insight into care and promote long term independence.

Acuva Technologies is a Vancouver-based clean technology venture focused on commercializing breakthrough UltraViolet Light Emitting Diode technology for water purification systems. Initially focused on point of use systems for boats, RVs and off grid homes in North American market, where they already have early sales, the company’s goal is to enable water purification in households in developing countries by 2018 and deploy large scale systems by 2021.

Other members of the CDL-West G7 include:

Boris Wertz: One of the top tech early-stage investors in North America and the founding partner of Version One, Wertz is also a board partner with Andreessen Horowitz. Before becoming an investor, Wertz was the Chief Operating Officer of AbeBooks.com, which sold to Amazon in 2008. He was responsible for marketing, business development, product, customer service and international operations. His deep operational experience helps him guide other entrepreneurs to start, build and scale companies.

Lisa Shields: Founder of Hyperwallet Systems Inc., Shields guided Hyperwallet from a technology startup to the leading international payments processor for business to consumer mass payouts. Prior to founding Hyperwallet, Lisa managed payments acceptance and risk management technology teams for high-volume online merchants. She was the founding director of the Wireless Innovation Society of British Columbia and is driven by the social and economic imperatives that shape global payment technologies.

Jeff Booth: Co-founder, President and CEO of Build Direct, a rapidly growing online supplier of home improvement products. Through custom and proprietary web analytics and forecasting tools, BuildDirect is reinventing and redefining how consumers can receive the best prices. BuildDirect has 12 warehouse locations across North America and is headquartered in Vancouver, BC. In 2015, Booth was awarded the BC Technology ‘Person of the Year’ Award by the BC Technology Industry Association.

Education:

CDL-west will provide a transformational experience for MBA and senior undergraduate students at UBC Sauder who will act as venture advisors. Replacing traditional classes, students learn by doing during the process of rapid equity-value creation.

Supporting venture development at UBC:

CDL-west will work closely with venture creation programs across UBC to complete the continuum of support aimed at maximizing venture value and investment. It will draw in ventures that are being or have been supported and developed in programs that span campus, including:

University Industry Liaison Office which works to enable research and innovation partnerships with industry, entrepreneurs, government and non-profit organizations.

e@UBC which provides a combination of mentorship, education, venture creation, and seed funding to support UBC students, alumni, faculty and staff.

HATCH, a UBC technology incubator which leverages the expertise of the UBC Sauder School of Business and entrepreneurship@UBC and a seasoned team of domain-specific experts to provide real-world, hands-on guidance in moving from innovative concept to successful venture.

Coast Capital Savings Innovation Hub, a program base at the UBC Sauder Centre for Social Innovation & Impact Investing focused on developing ventures with the goal of creating positive social and environmental impact.

About the Creative Destruction Lab in Toronto:

The Creative Destruction Lab leverages the Rotman School’s leading faculty and industry network as well as its location in the heart of Canada’s business capital to accelerate massively scalable, technology-based ventures that have the potential to transform our social, industrial, and economic landscape. The Lab has had a material impact on many nascent startups, including Deep Genomics, Greenlid, Atomwise, Bridgit, Kepler Communications, Nymi, NVBots, OTI Lumionics, PUSH, Thalmic Labs, Vertical.ai, Revlo, Validere, Growsumo, and VoteCompass, among others. For more information, visit www.creativedestructionlab.com

About the UBC Sauder School of Business

The UBC Sauder School of Business is committed to developing transformational and responsible business leaders for British Columbia and the world. Located in Vancouver, Canada’s gateway to the Pacific Rim, the school is distinguished for its long history of partnership and engagement in Asia, the excellence of its graduates, and the impact of its research which ranks in the top 20 globally. For more information, visit www.sauder.ubc.ca

About the Rotman School of Management

The Rotman School of Management is located in the heart of Canada’s commercial and cultural capital and is part of the University of Toronto, one of the world’s top 20 research universities. The Rotman School fosters a new way to think that enables graduates to tackle today’s global business and societal challenges. For more information, visit www.rotman.utoronto.ca.

It’s good to see a couple of successful (according to the news release) local entrepreneurs on the board although I’m somewhat puzzled by Mallett’s presence since, if memory serves, Yahoo! was not doing that well when he left in 2002. The company was an early success but utterly dwarfed by Google at some point in the early 2000s and these days, its stock (both financial and social) has continued to drift downwards. As for Mallett’s current successes, there is no mention of them.

Reuters Top 100 of the world’s most innovative universities

After reading or skimming through the CDL-West news you might think that the University of Toronto ranked higher than UBC on the Reuters list of the world’s most innovative universities. Before breaking the news about the Canadian rankings, here’s more about the list from a Sept, 28, 2016 Reuters news release (receive via email),

Stanford University, the Massachusetts Institute of Technology and Harvard University top the second annual Reuters Top 100 ranking of the world’s most innovative universities. The Reuters Top 100 ranking aims to identify the institutions doing the most to advance science, invent new technologies and help drive the global economy. Unlike other rankings that often rely entirely or in part on subjective surveys, the ranking uses proprietary data and analysis tools from the Intellectual Property & Science division of Thomson Reuters to examine a series of patent and research-related metrics, and get to the essence of what it means to be truly innovative.

In the fast-changing world of science and technology, if you’re not innovating, you’re falling behind. That’s one of the key findings of this year’s Reuters 100. The 2016 results show that big breakthroughs – even just one highly influential paper or patent – can drive a university way up the list, but when that discovery fades into the past, so does its ranking. Consistency is key, with truly innovative institutions putting out groundbreaking work year after year.

Stanford held fast to its first place ranking by consistently producing new patents and papers that influence researchers elsewhere in academia and in private industry. Researchers at the Massachusetts Institute of Technology (ranked #2) were behind some of the most important innovations of the past century, including the development of digital computers and the completion of the Human Genome Project. Harvard University (ranked #3), is the oldest institution of higher education in the United States, and has produced 47 Nobel laureates over the course of its 380-year history.

Some universities saw significant movement up the list, including, most notably, the University of Chicago, which jumped from #71 last year to #47 in 2016. Other list-climbers include the Netherlands’ Delft University of Technology (#73 to #44) and South Korea’s Sungkyunkwan University (#66 to #46).

The United States continues to dominate the list, with 46 universities in the top 100; Japan is once again the second best performing country, with nine universities. France and South Korea are tied in third, each with eight. Germany has seven ranked universities; the United Kingdom has five; Switzerland, Belgium and Israel have three; Denmark, China and Canada have two; and the Netherlands and Singapore each have one.

You can find the rankings here (scroll down about 75% of the way) and for the impatient, the University of British Columbia ranked 50th and the University of Toronto 57th.

The biggest surprise for me was that China, like Canada, had two universities on the list. I imagine that will change as China continues its quest for science and innovation dominance. Given how they tout their innovation prowess, I had one other surprise, the University of Waterloo’s absence.

Why Factory publishes book about research on nanotechnology in architecture

The book titled, Barba. Life in the Fully Adaptable Environment, published by nai010 and the Why Factory, a think tank operated by Dutch architectural firm, MVRDV, and Delft University of Technology in the Netherlands, is a little difficult to describe.  From a Nov. 16, 2015 MVRDV press release,

Is the end of brick and mortar near? How could nanotechnology change buildings and cities in the future? A speculation of The Why Factory on this topic is illustrated in the best tradition of science fiction in the newly published book Barba. Life in the Fully Adaptable Environment. It forms the point of departure for a series of interactive experiments, installations and proposals towards the development of new, body-based and fully adaptive architectures. A beautiful existential story comes alive. A story closer to us then you’d ever have thought. Imagine a new substance that could be steered and altered in real time. Imagine creating a flexible material that could change its shape, that could shrink and expand, that could do almost anything. The Why Factory calls this fictional material Barba. With Barba, we would be able to adapt our environment to every desire and to every need.

The press release delves into the inspiration for the material and the book,

… The first inspiration came from ‘Barbapapa’, an illustrated cartoon character from the 1970s. Invented and drawn by Talus Taylor and Annette Tison, the friendly, blobby protagonist of the eponymous children’s books and television programme could change his shape to resemble different objects. With Barbapapa’s smooth morphosis in mind, The Why Factory wondered how today’s advancements in robotics, material science and computing might allow us to create environments that transform themselves as easily as Barbapapa could. Neither Barbapapa’s inventors nor anybody else from the team behind the cartoon were involved in this project, but The Why Factory owes them absolute gratitude for the inspiration of Barbapapa.

“Barba is a fantastic matter that does whatever we wish for” says Winy Maas, Professor at The Why Factory and MVRDV co-founder. “You can programme your environment like a computer game. You could wake up in a modernist villa that you transform into a Roman Spa after breakfast. Cities can be totally transformed when offices just disappear after office hours.”

The book moves away from pure speculation, however, and makes steps towards real world application, including illustrated vision, programming experiments and applied prototypes. As co-author of the book, Ulf Hackauf, explains, “We started this book with a vision, which we worked out to form a consistent future scenario. This we took as a point of departure for experiments and speculations, including programming, installations and material research. It eventually led us to prototypes, which could form a first step for making Barba real.”

Barba developed through a series of projects organized by The Why Factory and undertaken in collaboration between Delft University of Technology, ETH Zürich and the European Institute of Innovation and Technology. The research was developed over the course of numerous design studios at the Why Factory and elsewhere. Students and collaborators of the Why Factory have all contributed to the book.

The press release goes on to offer some information about Why Factory,

The Why Factory explores possibilities for the development of our cities by focusing on the production of models and visualisations for cities of the future. Education and research of The Why Factory are combined in a research lab and platform that aims to analyse, theorise and construct future cities. It investigates within the given world and produces future scenarios beyond it; from universal to specific and global to local. It proposes, constructs and envisions hypothetical societies and cities; from science to fiction and vice versa. The Why Factory thus acts as a future world scenario making machinery, engaging in a public debate on architecture and urbanism. Their findings are then communicated to the wider public in a variety of ways, including exhibitions, publications, workshops, and panel discussions.

Based on the Why Factory description, I’m surmising that the book is meant to provoke interactivity in some way. However, there doesn’t seem to be a prescribed means to interact with the Why Factory or the authors (Winy Maas, Ulf Hackauf, Adrien Ravon, and Patrick Healy) so perhaps the book is meant to be a piece of fiction/manual for interested educators, architects, and others who want to create ‘think tank’ environments where people speculate about nanotechnology and architecture.

In any event, you can order the book from this nai010 webpage,

How nanotechnology might drastically change cities and architecture

> New, body-based and fully adaptive architecture
How could nanotechnology change buildings and cities in the future? Imagine a new substance, that could be steered and altered in real time. Imagine …

As for The Why Factory, you can find out more here on the think tank’s About page.

One last comment, in checking out MVRDV, the Dutch architectural firm mentioned earlier as one of The Why Factory’s operating organizations, I came across this piece of news generated as a consequence of the Nov. 13, 2015 Paris bombings,

The Why Factory alumna Emilie Meaud died in Friday’s Paris attacks. Our thoughts are with their family, friends and colleagues.

Nov 17, 2015

To our great horror and shock we received the terrible news that The Why Factory alumna Emilie Meaud (29) died in the Paris attacks of last Friday. She finished her master in Architecture at TU-Delft in 2012 and worked at the Agence Chartier-Dalix. She was killed alongside her twin sister Charlotte. Our thoughts are with their family, friends and colleagues.

Amen.

Customizing bacteria (E. coli) into squares, circles, triangles, etc.

The academic paper for this latest research from Delft University of Technology (TU Delft, Netherlands), uses the term ‘bacterial sculptures,’ an intriguing idea that seems to have influenced the artistic illustration accompanying the research announcement.

Artistic rendering live E.coli bacteria that have been shaped into a rectangle, triangle, circle, and square (from front to back). Colors indicate the density of the Min proteins that represent a snapshot in time (based on actual data), as these proteins oscillate back and forth within the bacterium, to determine the mid plane of the cell for cellular division. Image credit:  ‘Image Cees Dekker lab TU Delft / Tremani’

Artistic rendering live E.coli bacteria that have been shaped into a rectangle, triangle, circle, and square (from front to back). Colors indicate the density of the Min proteins that represent a snapshot in time (based on actual data), as these proteins oscillate back and forth within the bacterium, to determine the mid plane of the cell for cellular division.
Image credit: ‘Image Cees Dekker lab TU Delft / Tremani’

A June 22, 2015 news item on Nanowerk provides more insight into the research (Note: A link has been removed),

The E.coli bacterium, a very common resident of people’s intestines, is shaped as a tiny rod about 3 micrometers long. For the first time, scientists from the Kavli Institute of Nanoscience at Delft University have found a way to use nanotechnology to grow living E.coli bacteria into very different shapes: squares, triangles, circles, and even as letters spelling out ‘TU Delft’. They also managed to grow supersized E.coli with a volume thirty times larger than normal. These living oddly-shaped bacteria allow studies of the internal distribution of proteins and DNA in entirely new ways.

In this week’s Nature Nanotechnology (“Symmetry and scale orient Min protein patterns in shaped bacterial sculptures”), the scientists describe how these custom-designed bacteria still manage to perfectly locate ‘the middle of themselves’ for their cell division. They are found to do so using proteins that sense the cell shape, based on a mathematical principle proposed by computer pioneer Alan Turing in 1953.

A June 22, 2015 TU Delft press release, which originated the news item, expands on the theme,

Cell division

“If cells can’t divide properly, biological life wouldn’t be possible. Cells need to distribute their cell volume and genetic materials equally into their daughter cells to proliferate.”, says prof. Cees Dekker, “It is fascinating that even a unicellular organism knows how to divide very precisely. The distribution of certain proteins in the cell is key to regulating this, but how exactly do those proteins get that done?”

Turing

As the work of the Delft scientist exemplifies, the key here is a process discovered by the famous Alan Turing in 1953. Although Turing is mostly known for his role in deciphering the Enigma coding machine and the Turing Test, the impact of his ‘reaction-diffusion theory’ on biology might be even more spectacular. He predicted how patterns in space and time emerge as the result of only two molecular interactions – explaining for instance how a zebra gets its stripes, or how an embryo hand develops five fingers.

MinD and MinE

Such a Turing process also acts with proteins within a single cell, to regulate cell division. An E.coli cell uses two types of proteins, known as MinD and MinE, that bind and unbind again and again at the inner surface of the bacterium, thus oscillating back and forth from pole to pole within the bacterium every minute. “This results in a low average concentration of the protein in the middle and high concentrations at the ends, which drives the division machinery to the cell center”, says PhD-student Fabai Wu, who ran the experiments. “As our experiments show, the Turing patterns allow the bacterium to determine its symmetry axes and its center. This applies to many bacterial cell shapes that we custom-designed, such as squares, triangles and rectangles of many sizes. For fun, we even made ‘TUDelft’ and ‘TURING’ letters. Using computer simulations, we uncovered that the shape-sensing abilities are caused by simple Turing-type interactions between the proteins.”

Actual data for live E.coli bacteria that have been shaped into the letters TUDELFT.
The red color shows the cytosol contents of the cell, while the green color shows the density of the Min proteins, representing a snapshot in time, as these proteins oscillate back and forth within the bacterium to determine the mid plane of the cell for cellular division. The letters are about 5 micron high.
Image credit:  ‘Fabai Wu, Cees Dekker lab at TU Delft’

Spatial control for building synthetic cells

“Discovering this process is not only vital for our understanding of bacterial cell division – which is important in developing new strategies for antibiotics. But the approach will likely also be fruitful to figuring out how cells distribute other vital systems within a cell, such as chromosomes”, says Cees Dekker. “The ultimate goal in our research is to be able to completely build a living cell from artificial components, as that is the only way to really understand how life works. Understanding cell division – both the process that actually pinches off the cell into two daughters and the part that spatially regulates that machinery – is a major part of that.”

Here’s a link to and a citation for the paper,

Symmetry and scale orient Min protein patterns in shaped bacterial sculptures by Fabai Wu, Bas G. C. van Schie, Juan E. Keymer, & Cees Dekker. Nature Nanotechnology (2015) doi:10.1038/nnano.2015.126 Published online 22 June 2015

This paper is behind a paywall but there does seem to be another link (in the excerpt below) which gives you a free preview via ReadCube Access (according to the TU Delft press release),

The DOI for this paper will be 10.1038/nnano.2015.126. Once the paper is published electronically, the DOI can be used to retrieve the abstract and full text by adding it to the following url: http://dx.doi.org/

Enjoy!

Connecting the dots in quantum computing—the secret is in the spins

The Feb. 26, 2013 University of Pittsburgh news release puts it a lot better than I can,

Recent research offers a new spin on using nanoscale semiconductor structures to build faster computers and electronics. Literally.

University of Pittsburgh and Delft University of Technology researchers reveal in the Feb. 17 [2013]online issue of Nature Nanotechnology a new method that better preserves the units necessary to power lightning-fast electronics, known as qubits (pronounced CUE-bits). Hole spins, rather than electron spins, can keep quantum bits in the same physical state up to 10 times longer than before, the report finds.

“Previously, our group and others have used electron spins, but the problem was that they interacted with spins of nuclei, and therefore it was difficult to preserve the alignment and control of electron spins,” said Sergey Frolov, assistant professor in the Department of Physics and Astronomy within Pitt’s Kenneth P. Dietrich School of Arts and Sciences, who did the work as a postdoctoral fellow at Delft University of Technology in the Netherlands.

Whereas normal computing bits hold mathematical values of zero or one, quantum bits live in a hazy superposition of both states. It is this quality, said Frolov, which allows them to perform multiple calculations at once, offering exponential speed over classical computers. However, maintaining the qubit’s state long enough to perform computation remains a long-standing challenge for physicists.

“To create a viable quantum computer, the demonstration of long-lived quantum bits, or qubits, is necessary,” said Frolov. “With our work, we have gotten one step closer.”

Thankfully, an explanation of the hole spins vs. electron spins issue follows,

The holes within hole spins, Frolov explained, are literally empty spaces left when electrons are taken out. Using extremely thin filaments called InSb (indium antimonide) nanowires, the researchers created a transistor-like device that could transform the electrons into holes. They then precisely placed one hole in a nanoscale box called “a quantum dot” and controlled the spin of that hole using electric fields. This approach- featuring nanoscale size and a higher density of devices on an electronic chip-is far more advantageous than magnetic control, which has been typically employed until now, said Frolov.

“Our research shows that holes, or empty spaces, can make better spin qubits than electrons for future quantum computers.”

“Spins are the smallest magnets in our universe. Our vision for a quantum computer is to connect thousands of spins, and now we know how to control a single spin,” said Frolov. “In the future, we’d like to scale up this concept to include multiple qubits.”

This graphic displays spin qubits within a nanowire. [downloaded from http://www.news.pitt.edu/connecting-quantum-dots]

This graphic displays spin qubits within a nanowire. [downloaded from http://www.news.pitt.edu/connecting-quantum-dots]

From the news release,

Coauthors of the paper include Leo Kouwenhoven, Stevan Nadj-Perge, Vlad Pribiag, Johan van den Berg, and Ilse van Weperen of Delft University of Technology; and Sebastien Plissard and Erik Bakkers from Eindhoven University of Technology in the Netherlands.

The paper, “Electrical control over single hole spins in nanowire quantum dots,” appeared online Feb. 17 in Nature Nanotechnology. The research was supported by the Dutch Organization for Fundamental Research on Matter, the Netherlands Organization for Scientific Research, and the European Research Council.

According to the scientists we’re going to be waiting a bit longer for a quantum computer but this work is promising. Their paper is behind a paywall.

David Koepsell: nanotechnology brings the intellectual property regime to an end

David Koepsell, author of Innovation and Nanotechnology: Converging Technologies and the End of Intellectual Property, is a philosopher, attorney, and educator who teaches at the Delft University of Technology (the Netherlands). He is also author of Who Owns You? The Corporate Gold Rush to Patent Your Genes.

In a Feb. 27, 2012 interview with Dr. J (James Hughes, executive director of the Institute of Ethics for Emerging Technologies [IEET] and producer/interviewer for Changesurfer radio), Koepsell discussed his book about nanotechnology and the disappearance of intellectual property regimes in a 28 min. 51 sec. podcast.

Koepsell and Dr. J provided a good description of converging technologies so I’m going to plunge in without much introduction.

I wasn’t expecting to hear about Marxism and the means of production but there it was, mentioned in the context of a near future society where manufacturing can be done by anyone, anywhere by means of molecular manufacturing or by means of 3D fabrication, or etc. The notion is that production will be democratized as will the intellectual property regime. There were several mentions of the state (government) no longer having control in the future over intellectual property, specifically patents and copyrights, and some discussion of companies that guard their intellectual property jealously. (I have commented on the intellectual property topic, most recently,  in my Patents as weapons and obstacles posting in October 2011. Koepsell is mentioned in this posting.)

Both Koepsell and the interviewer (Dr. J) mentioned the possibility of widespread economic difficulty as jobs disappear due to the disappearance of manufacturing and other associated jobs as people can produce their own goods (much like you can with Star Trek’s replicators). But it did seem they mentioned job loss somewhat blithely, secure in their own careers as academics who as a group are not known for their manufacturing prowess or, for that matter, the production of any goods whatsoever.

It seems to me this future bears a remarkable resemblance to the past, where people had to create their own products by raising their own food, spinning, weaving, and sewing their own clothes, etc. The Industrial Revolution changed all that and turned most folks into ‘wage slaves’. As I recall, that’s from Marx and it’s a description of a loss of personal agency/autonomy, i.e., being a slave to wages (no longer producing your own food, clothing, etc.) and not a reference to poor wages as many believe (including me until I got a somewhat snotty professor for one of my courses).

The podcast is definitely worth your time if you don’t mind the references to Marx (there aren’t many) as the ideas are provocative even if you don’t agree. Koepsell describes how his interest in this area was awakened (he wrote about software, which is both copyrightable as writing and patentable as a machine).

The book is available as a free download or you can purchase it here. Here’s a brief excerpt from the book’s introduction (I removed a citation number),

Science demands unfettered inquiry into the workings of nature, and replaces the confidence previously demanded over rote knowledge with a practiced skepticism, and ongoing investigation. With the rise of the age of science came the need to develop new means of treating information. Scientific investigations conducted by ‘natural philosophers’ could only be conducted in full view, out in the open, with results published in meetings of scientific societies and their journals. Supplanting secret-keeping and obscurantism, the full sunlight of public and peer scrutiny could begin to continually cleanse false assumptions and beliefs, and help to perfect theories about the workings of the world. Science demanded disclosure, where trades and arts often encouraged secrets. And so as natural philosophers began to disseminate the results of their investigations into nature, new forms of trade, art, and industry began to emerge, as well as the demand for new means of protection in the absence of secrecy. Thus, as the scientific age was dawning, and helping to fuel a new technological revolution, modern forms of IP [intellectual property] protection such as patents and copyrights emerged as states sought to encourage the development of the aesthetic and useful arts. By granting to authors and inventors a monopoly over the practice of their art, as long as they brought forth new and useful inventions (or for artistic works, as long as they were new), nation states helped to attract productive and inventive artisans and trades into their borders. These forms of state monopoly also enabled further centralization of trades and industries, as technologies now could become immune from the possibility of ‘reverse-engineering’ and competitors could be kept at bay by the force of law. This sort of state-sanctioned centralization and monopoly helped build the industrial revolution (by the account of many historians and economists, although this assumption has lately been challenged) as investors now could commodify new technologies free from the threat of direct competition, secure in the safe harbor of a state-supported monopoly over the practice of a useful art for a period of time.

In many ways, traditional IP [intellectual property] was (and is) deemed vital to the development of large industries and their infrastructures, and to the centralized, assembly-line factory mode of production that dominated the twentieth century. With the benefit of a state-sanctioned monopoly, industry could build sufficient infrastructure to dominate a market with a new technology for the duration of a patent. This confidence assured investors that there would be some period of return on the investment in which other potential competitors are held at bay, at least from practicing the art as claimed in the patent. Factories could be built, supply chains developed, and a market captured and profited from, and prices will not be subject to the ruthless dictates of supply and demand. Rather, because of the luxury of a protected market during the period of protection, innovators can inflate prices to not only recoup the costs of investment, but also profit as handsomely as the captive market will allow.

For most of the twentieth century, IP allowed the concentration of industrial production into the familiar factory, assembly-line model. Even while the knowledge behind new innovation moved eventually into the public domain as patents lapsed, during the course of the term of patent protection, strictly monopolized manufacturing processes and their products could be heavily capitalized, and substantial profits realized, before a technique or technology lost its protection. But the modes and methods of manufacturing are now changing, and the necessity of infrastructural investment is also being altered by the emergence of new means of production, including what we’ll call ‘micromanufacturing’, which is a transitional technology on the way to true MNT (molecular nanotechnology), and is included in our discussions of ‘nanowares’. Essentially, assembly-lines and supply chains that supported the huge monopolistic market dominance models of the industrial revolution, well into the twentieth century, are becoming obsolete. If innovation and production can be linked together with modern and futuristic breakthroughs in micromanufacturing (in which small components can be fabricated and produced en mass, cheaply) and eventually molecular manufacturing (in which items are built on the spot, from the ground up, molecule by molecule), then we should consider whether the IP regimes that helped fuel the industrial revolution are still necessary, or even whether they were ever necessary at all. Do they promote new forms of innovation and production, or might they instead stifle potentially revolutionary changes in our manners of creation and distribution?

Amusingly, towards the end of the interview Dr. J plugs Koepsell’s ‘nanotechnology’ book by noting it’s available for free downloads then saying ‘we’re hoping you’ll buy it’ (at the publisher’s site).