Tag Archives: Dexter Johnson

Researchers at Purdue University (Indiana, US) and at the Indian Institute of Technology Madras (Chennai, India) develop Star Trek-type ‘tricorders’

To be clear, the Star Trek-type ‘tricorder’ referred to in the heading is, in fact, a hand-held spectrometer and the research from Purdue University and the Indian Institute of Technology Madras represents a developmental leap forward, not a new product. From a March 26, 2014 news item on Azonano,

Nanotechnology is advancing tools likened to Star Trek’s “tricorder” that perform on-the-spot chemical analysis for a range of applications including medical testing, explosives detection and food safety.

Researchers found that when paper used to collect a sample was coated with carbon nanotubes, the voltage required was 1,000 times reduced, the signal was sharpened and the equipment was able to capture far more delicate molecules.

Dexter Johnson in his March 26, 2014 posting (Nanoclast blog on the IEEE [Institute of Electrical and Electronics Engineers] website) provides some background information about the race to miniaturize spectrometers (Note: A link has been removed),

Recent research has been relying on nanomaterials to build smaller spectrometers. Late last year, a group at the Technische Universität Dresden and the Fraunhofer Institute in Germany developed a novel, miniature spectrometer, based on metallic nanowires, that was small enough to fit into a mobile phone.

Dexter goes on to provide a summary about this latest research, which I strongly recommend reading, especially if you don’t have the patience to read the rest of the news release. The March 25, 2014 Purdue University news release by Elizabeth K. Gardner, which originated the news item, provides insight from the researchers,

“This is a big step in our efforts to create miniature, handheld mass spectrometers for the field,” said R. Graham Cooks, Purdue’s Henry B. Hass Distinguished Professor of Chemistry. “The dramatic decrease in power required means a reduction in battery size and cost to perform the experiments. The entire system is becoming lighter and cheaper, which brings it that much closer to being viable for easy, widespread use.”

Cooks and Thalappil Pradeep, a professor of chemistry at the Indian Institute of Technology Madras, Chennai, led the research.

“Taking science to the people is what is most important,” Pradeep said. “Mass spectrometry is a fantastic tool, but it is not yet on every physician’s table or in the pocket of agricultural inspectors and security guards. Great techniques have been developed, but we need to hone them into tools that are affordable, can be efficiently manufactured and easily used.”

The news release goes on to describe the research,

The National Science Foundation-funded study used an analysis technique developed by Cooks and his colleagues called PaperSpray™ ionization. The technique relies on a sample obtained by wiping an object or placing a drop of liquid on paper wet with a solvent to capture residues from the object’s surface. A small triangle is then cut from the paper and placed on a special attachment of the mass spectrometer where voltage is applied. The voltage creates an electric field that turns the mixture of solvent and residues into fine droplets containing ionized molecules that pop off and are vacuumed into the mass spectrometer for analysis. The mass spectrometer then identifies the sample’s ionized molecules by their mass.

The technique depends on a strong electric field and the nanotubes act like tiny antennas that create a strong electric field from a very small voltage. One volt over a few nanometers creates an electric field equivalent to 10 million volts over a centimeter, Pradeep said.

“The trick was to isolate these tiny, nanoscale antennae and keep them from bundling together because individual nanotubes must project out of the paper,” he said. “The carbon nanotubes work well and can be dispersed in water and applied on suitable substrates.”

The Nano Mission of the Government of India supported the research at the Indian Institute of Technology Madras and graduate students Rahul Narayanan and Depanjan Sarkar performed the experiments.

In addition to reducing the size of the battery required and energy cost to run the tests, the new technique also simplified the analysis by nearly eliminating background noise, Cooks said.

“Under these conditions, the analysis is nearly noise free and a sharp, clear signal of the sample is delivered,” he said. “We don’t know why this is – why background molecules that surround us in the air or from within the equipment aren’t being ionized and entering into the analysis. It’s a puzzling, but pleasant surprise.”

The reduced voltage required also makes the method gentler than the standard PaperSpray™ ionization techniques.

“It is a very soft method,” Cooks said. “Fragile molecules and complexes are able to hold together here when they otherwise wouldn’t. This could lead to other potential applications.”

The team plans to investigate the mechanisms behind the reduction in background noise and potential applications of the gentle method, but the most promising aspect of the new technique is its potential to miniaturize the mass spectrometry system, Cooks said.

Here’s a link to and a citation for the paper,

Molecular Ionization from Carbon Nanotube Paper by Rahul Narayanan, Depanjan Sarkar, Prof. R. Graham Cooks, and Prof. Thalappil Pradeep. Angewandte Chemie International Edition Article first published online: 18 MAR 2014 DOI: 10.1002/anie.201311053

© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Water desalination by graphene and water purification by sapwood

I have two items about water. The first concerns a new technique from MIT (Massachusetts Institute of Technology) for desalination using graphene. From a Feb. 25, 2014 news release by David Chandler on EurekAlert,

Researchers have devised a way of making tiny holes of controllable size in sheets of graphene, a development that could lead to ultrathin filters for improved desalination or water purification.

The team of researchers at MIT, Oak Ridge National Laboratory, and in Saudi Arabia succeeded in creating subnanoscale pores in a sheet of the one-atom-thick material, which is one of the strongest materials known. …

The concept of using graphene, perforated by nanoscale pores, as a filter in desalination has been proposed and analyzed by other MIT researchers. The new work, led by graduate student Sean O’Hern and associate professor of mechanical engineering Rohit Karnik, is the first step toward actual production of such a graphene filter.

Making these minuscule holes in graphene — a hexagonal array of carbon atoms, like atomic-scale chicken wire — occurs in a two-stage process. First, the graphene is bombarded with gallium ions, which disrupt the carbon bonds. Then, the graphene is etched with an oxidizing solution that reacts strongly with the disrupted bonds — producing a hole at each spot where the gallium ions struck. By controlling how long the graphene sheet is left in the oxidizing solution, the MIT researchers can control the average size of the pores.

A big limitation in existing nanofiltration and reverse-osmosis desalination plants, which use filters to separate salt from seawater, is their low permeability: Water flows very slowly through them. The graphene filters, being much thinner, yet very strong, can sustain a much higher flow. “We’ve developed the first membrane that consists of a high density of subnanometer-scale pores in an atomically thin, single sheet of graphene,” O’Hern says.

For efficient desalination, a membrane must demonstrate “a high rejection rate of salt, yet a high flow rate of water,” he adds. One way of doing that is decreasing the membrane’s thickness, but this quickly renders conventional polymer-based membranes too weak to sustain the water pressure, or too ineffective at rejecting salt, he explains.

With graphene membranes, it becomes simply a matter of controlling the size of the pores, making them “larger than water molecules, but smaller than everything else,” O’Hern says — whether salt, impurities, or particular kinds of biochemical molecules.

The permeability of such graphene filters, according to computer simulations, could be 50 times greater than that of conventional membranes, as demonstrated earlier by a team of MIT researchers led by graduate student David Cohen-Tanugi of the Department of Materials Science and Engineering. But producing such filters with controlled pore sizes has remained a challenge. The new work, O’Hern says, demonstrates a method for actually producing such material with dense concentrations of nanometer-scale holes over large areas.

“We bombard the graphene with gallium ions at high energy,” O’Hern says. “That creates defects in the graphene structure, and these defects are more chemically reactive.” When the material is bathed in a reactive oxidant solution, the oxidant “preferentially attacks the defects,” and etches away many holes of roughly similar size. O’Hern and his co-authors were able to produce a membrane with 5 trillion pores per square centimeter, well suited to use for filtration. “To better understand how small and dense these graphene pores are, if our graphene membrane were to be magnified about a million times, the pores would be less than 1 millimeter in size, spaced about 4 millimeters apart, and span over 38 square miles, an area roughly half the size of Boston,” O’Hern says.

With this technique, the researchers were able to control the filtration properties of a single, centimeter-sized sheet of graphene: Without etching, no salt flowed through the defects formed by gallium ions. With just a little etching, the membranes started allowing positive salt ions to flow through. With further etching, the membranes allowed both positive and negative salt ions to flow through, but blocked the flow of larger organic molecules. With even more etching, the pores were large enough to allow everything to go through.

Scaling up the process to produce useful sheets of the permeable graphene, while maintaining control over the pore sizes, will require further research, O’Hern says.

Karnik says that such membranes, depending on their pore size, could find various applications. Desalination and nanofiltration may be the most demanding, since the membranes required for these plants would be very large. But for other purposes, such as selective filtration of molecules — for example, removal of unreacted reagents from DNA — even the very small filters produced so far might be useful.

“For biofiltration, size or cost are not as critical,” Karnik says. “For those applications, the current scale is suitable.”

Dexter Johnson in a Feb. 26,2014 posting provides some context for and insight into the work (from the Nanoclast blog on the IEEE [Institute of Electrical and Electronics Engineers]), Note: Links have been removed,

About 18 months ago, I wrote about an MIT project in which computer models demonstrated that graphene could act as a filter in the desalination of water through the reverse osmosis (RO) method. RO is slightly less energy intensive than the predominantly used multi-stage-flash process. The hope was that the nanopores of the graphene material would make the RO method even less energy intensive than current versions by making it easier to push the water through the filter membrane.

The models were promising, but other researchers in the field said at the time it was going to be a long road to translate a computer model to a real product.

It would seem that the MIT researchers agreed it was worth the effort and accepted the challenge to go from computer model to a real device as they announced this week that they had developed a method for creating selective pores in graphene that make it suitable for water desalination.

Here’s a link to and a citation for the paper,

Selective Ionic Transport through Tunable Subnanometer Pores in Single-Layer Graphene Membranes by Sean C. O’Hern, Michael S. H. Boutilier, Juan-Carlos Idrobo, Yi Song, Jing Kong, Tahar Laoui, Muataz Atieh, and Rohit Karnik. Nano Lett., Article ASAP DOI: 10.1021/nl404118f Publication Date (Web): February 3, 2014

Copyright © 2014 American Chemical Society

This article is behind a paywall.

The second item is also from MIT and concerns a low-tech means of purifying water. From a Feb. 27, 2014 news item on Azonano,

If you’ve run out of drinking water during a lakeside camping trip, there’s a simple solution: Break off a branch from the nearest pine tree, peel away the bark, and slowly pour lake water through the stick. The improvised filter should trap any bacteria, producing fresh, uncontaminated water.

In fact, an MIT team has discovered that this low-tech filtration system can produce up to four liters of drinking water a day — enough to quench the thirst of a typical person.

In a paper published this week in the journal PLoS ONE, the researchers demonstrate that a small piece of sapwood can filter out more than 99 percent of the bacteria E. coli from water. They say the size of the pores in sapwood — which contains xylem tissue evolved to transport sap up the length of a tree — also allows water through while blocking most types of bacteria.

Co-author Rohit Karnik, an associate professor of mechanical engineering at MIT, says sapwood is a promising, low-cost, and efficient material for water filtration, particularly for rural communities where more advanced filtration systems are not readily accessible.

“Today’s filtration membranes have nanoscale pores that are not something you can manufacture in a garage very easily,” Karnik says. “The idea here is that we don’t need to fabricate a membrane, because it’s easily available. You can just take a piece of wood and make a filter out of it.”

The Feb. 26, 2014 news release on EurekAlert, which originated the news item, describes current filtration techniques and the advantages associated with this new low-tech approach,

There are a number of water-purification technologies on the market today, although many come with drawbacks: Systems that rely on chlorine treatment work well at large scales, but are expensive. Boiling water to remove contaminants requires a great deal of fuel to heat the water. Membrane-based filters, while able to remove microbes, are expensive, require a pump, and can become easily clogged.

Sapwood may offer a low-cost, small-scale alternative. The wood is comprised of xylem, porous tissue that conducts sap from a tree’s roots to its crown through a system of vessels and pores. Each vessel wall is pockmarked with tiny pores called pit membranes, through which sap can essentially hopscotch, flowing from one vessel to another as it feeds structures along a tree’s length. The pores also limit cavitation, a process by which air bubbles can grow and spread in xylem, eventually killing a tree. The xylem’s tiny pores can trap bubbles, preventing them from spreading in the wood.

“Plants have had to figure out how to filter out bubbles but allow easy flow of sap,” Karnik observes. “It’s the same problem with water filtration where we want to filter out microbes but maintain a high flow rate. So it’s a nice coincidence that the problems are similar.”

The news release also describes the experimental procedure the scientists followed (from the news release),

To study sapwood’s water-filtering potential, the researchers collected branches of white pine and stripped off the outer bark. They cut small sections of sapwood measuring about an inch long and half an inch wide, and mounted each in plastic tubing, sealed with epoxy and secured with clamps.

Before experimenting with contaminated water, the group used water mixed with red ink particles ranging from 70 to 500 nanometers in size. After all the liquid passed through, the researchers sliced the sapwood in half lengthwise, and observed that much of the red dye was contained within the very top layers of the wood, while the filtrate, or filtered water, was clear. This experiment showed that sapwood is naturally able to filter out particles bigger than about 70 nanometers.

However, in another experiment, the team found that sapwood was unable to separate out 20-nanometer particles from water, suggesting that there is a limit to the size of particles coniferous sapwood can filter.

Finally, the team flowed inactivated, E. coli-contaminated water through the wood filter. When they examined the xylem under a fluorescent microscope, they saw that bacteria had accumulated around pit membranes in the first few millimeters of the wood. Counting the bacterial cells in the filtered water, the researchers found that the sapwood was able to filter out more than 99 percent of E. coli from water.

Karnik says sapwood likely can filter most types of bacteria, the smallest of which measure about 200 nanometers. However, the filter probably cannot trap most viruses, which are much smaller in size.

The researchers have future plans (from the news release),

Karnik says his group now plans to evaluate the filtering potential of other types of sapwood. In general, flowering trees have smaller pores than coniferous trees, suggesting that they may be able to filter out even smaller particles. However, vessels in flowering trees tend to be much longer, which may be less practical for designing a compact water filter.

Designers interested in using sapwood as a filtering material will also have to find ways to keep the wood damp, or to dry it while retaining the xylem function. In other experiments with dried sapwood, Karnik found that water either did not flow through well, or flowed through cracks, but did not filter out contaminants.

“There’s huge variation between plants,” Karnik says. “There could be much better plants out there that are suitable for this process. Ideally, a filter would be a thin slice of wood you could use for a few days, then throw it away and replace at almost no cost. It’s orders of magnitude cheaper than the high-end membranes on the market today.”

Here’s a link to and a citation for the paper,

Water Filtration Using Plant Xylem by Michael S. H. Boutilier, Jongho Lee, Valerie Chambers, Varsha Venkatesh, & Rohit Karnik. PLOS One Published: February 26, 2014 DOI: 10.1371/journal.pone.0089934

This paper is open access.

One final observation, two of the researchers listed as authors on the graphene/water desalination paper are also listed on the low-tech sapwood paper (Michael S. H. Boutilier & Rohit Karnik).

Injectable and more powerful* batteries for live salmon

Today’s live salmon may sport a battery for monitoring purposes and now scientists have developed one that is significantly more powerful according to a Feb. 17, 2014 Pacific Northwest National Laboratory (PNNL) news release (dated Feb. 18, 2014 on EurekAlert),

Scientists have created a microbattery that packs twice the energy compared to current microbatteries used to monitor the movements of salmon through rivers in the Pacific Northwest and around the world.

The battery, a cylinder just slightly larger than a long grain of rice, is certainly not the world’s smallest battery, as engineers have created batteries far tinier than the width of a human hair. But those smaller batteries don’t hold enough energy to power acoustic fish tags. The new battery is small enough to be injected into an organism and holds much more energy than similar-sized batteries.

Here’s a photo of the battery as it rests amongst grains of rice,

The microbattery created by Jie Xiao and Daniel Deng and colleagues, amid grains of rice. Courtesy PNNL

The microbattery created by Jie Xiao and Daniel Deng and colleagues, amid grains of rice. Courtesy PNNL

The news release goes on to explain why scientists are developing a lighter battery for salmon and how they achieved their goal,

For scientists tracking the movements of salmon, the lighter battery translates to a smaller transmitter which can be inserted into younger, smaller fish. That would allow scientists to track their welfare earlier in the life cycle, oftentimes in the small streams that are crucial to their beginnings. The new battery also can power signals over longer distances, allowing researchers to track fish further from shore or from dams, or deeper in the water.

“The invention of this battery essentially revolutionizes the biotelemetry world and opens up the study of earlier life stages of salmon in ways that have not been possible before,” said M. Brad Eppard, a fisheries biologist with the Portland District of the U.S. Army Corps of Engineers.

“For years the chief limiting factor to creating a smaller transmitter has been the battery size. That hurdle has now been overcome,” added Eppard, who manages the Portland District’s fisheries research program.

The Corps and other agencies use the information from tags to chart the welfare of endangered fish and to help determine the optimal manner to operate dams. Three years ago the Corps turned to Z. Daniel Deng, a PNNL engineer, to create a smaller transmitter, one small enough to be injected, instead of surgically implanted, into fish. Injection is much less invasive and stressful for the fish, and it’s a faster and less costly process.

“This was a major challenge which really consumed us these last three years,” said Deng. “There’s nothing like this available commercially, that can be injected. Either the batteries are too big, or they don’t last long enough to be useful. That’s why we had to design our own.”

Deng turned to materials science expert Jie Xiao to create the new battery design.

To pack more energy into a small area, Xiao’s team improved upon the “jellyroll” technique commonly used to make larger household cylindrical batteries. Xiao’s team laid down layers of the battery materials one on top of the other in a process known as lamination, then rolled them up together, similar to how a jellyroll is created. The layers include a separating material sandwiched by a cathode made of carbon fluoride and an anode made of lithium.

The technique allowed her team to increase the area of the electrodes without increasing their thickness or the overall size of the battery. The increased area addresses one of the chief problems when making such a small battery — keeping the impedance, which is a lot like resistance, from getting too high. High impedance occurs when so many electrons are packed into a small place that they don’t flow easily or quickly along the routes required in a battery, instead getting in each other’s way. The smaller the battery, the bigger the problem.

Using the jellyroll technique allowed Xiao’s team to create a larger area for the electrons to interact, reducing impedance so much that the capacity of the material is about double that of traditional microbatteries used in acoustic fish tags.

“It’s a bit like flattening wads of Play-Doh, one layer at a time, and then rolling them up together, like a jelly roll,” says Xiao. “This allows you to pack more of your active materials into a small space without increasing the resistance.”

The new battery is a little more than half the weight of batteries currently used in acoustic fish tags — just 70 milligrams, compared to about 135 milligrams — and measures six millimeters long by three millimeters wide. The battery has an energy density of about 240 watt hours per kilogram, compared to around 100 for commercially available silver oxide button microbatteries.

The battery holds enough energy to send out an acoustic signal strong enough to be useful for fish-tracking studies even in noisy environments such as near large dams. The battery can power a 744-microsecond signal sent every three seconds for about three weeks, or about every five seconds for a month. It’s the smallest battery the researchers know of with enough energy capacity to maintain that level of signaling.

The batteries also work better in cold water where salmon often live, sending clearer signals at low temperatures compared to current batteries. That’s because their active ingredients are lithium and carbon fluoride, a chemistry that is promising for other applications but has not been common for microbatteries.

Last summer in Xiao’s laboratory, scientists Samuel Cartmell and Terence Lozano made by hand more than 1,000 of the rice-sized batteries. It’s a painstaking process, cutting and forming tiny snippets of sophisticated materials, putting them through a flattening device that resembles a pasta maker, binding them together, and rolling them by hand into tiny capsules. Their skilled hands rival those of surgeons, working not with tissue but with sensitive electronic materials.

A PNNL team led by Deng surgically implanted 700 of the tags into salmon in a field trial in the Snake River last summer. Preliminary results show that the tags performed extremely well. The results of that study and more details about the smaller, enhanced fish tags equipped with the new microbattery will come out in a forthcoming publication. Battelle, which operates PNNL, has applied for a patent on the technology.

I notice that while the second paragraph of the news release (in the first excerpt) says the battery is injectable, the final paragraph (in the second excerpt) says the team “surgically implanted” the tags with their new batteries into the salmon.

Here’s a link to and a citation for the newly published article in Scientific Reports,

Micro-battery Development for Juvenile Salmon Acoustic Telemetry System Applications by Honghao Chen, Samuel Cartmell, Qiang Wang, Terence Lozano, Z. Daniel Deng, Huidong Li, Xilin Chen, Yong Yuan, Mark E. Gross, Thomas J. Carlson, & Jie Xiao. Scientific Reports 4, Article number: 3790 doi:10.1038/srep03790 Published 21 January 2014

This paper is open access.

* I changed the headline from ‘Injectable batteries for live salmon made more powerful’ to ‘Injectable and more powerful batteries for live salmon’  to better reflect the information in the news release. Feb. 19, 2014 at 11:43 am PST.

ETA Feb. 20, 2014: Dexter Johnson has weighed in on this very engaging and practical piece of research in a Feb. 19, 2014 posting on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers]) website (Note: Links have been removed),

There’s no denying that building the world’s smallest battery is a notable achievement. But while they may lay the groundwork for future battery technologies, today such microbatteries are mostly laboratory curiosities.

Developing a battery that’s no bigger than a grain of rice—and that’s actually useful in the real world—is quite another kind of achievement. Researchers at Pacific Northwest National Laboratory (PNNL) have done just that, creating a battery based on graphene that has successfully been used in monitoring the movements of salmon through rivers.

The microbattery is being heralded as a breakthrough in biotelemetry and should give researchers never before insights into the movements and the early stages of life of the fish.

The battery is partly made from a fluorinated graphene that was described last year …

Advice on marketing nano from a process engineering perspective

Robert Ferris, PhD, is writing a series of posts about the ‘Process Engineering of Nanotechnology’ on the Emerson Process Experts blog. Before getting to his marketing post, I’m going to briefly discuss his Jan. 4, 2014 posting (the first in this business-oriented series) which offers a good primer on the topic of nanotechnology although I do have a proviso, Ferris’ posts should be read with some caution,

I contribute [sic]  the knowledge gap to the fact that most of the writing out there is written by science-brains and first-adopters. Previous authors focus on the technology and potentials of bench-top scale innovation. This is great for the fellow science-brain but useless to the general population. I can say this because I am one of those science-brains.

The unfortunate truth is that most people do not understand nanotechnology nor care about the science behind it. They only care if the new product is better than the last. Nanotechnology is not a value proposition. So, the articles written do not focus on what the general population cares about. Instead, people are confused by nanotechnology and as a result are unsure of how it can be used.

I think Ferris means ‘attribute’ rather than ‘contribute’ and I infer from the evidence provided by the error that he (in common with me) does not have a copy editor. BTW, my worst was finding three errors in one of my sentences (sigh) weeks after after I’d published. At any rate, I’m suggesting caution not due to this error but to passages such as this (Note: Links have been removed),

Nanotechnology is not new; in fact, it was used as far back as the 16th century in stain glass windows. Also, nanotechnology is already being used in products today, ranging from consumer goods to food processing. Don’t be surprised if you didn’t know, a lot of companies do not publicize the fact that they use nanotechnology.

Strictly speaking the first sentence is problematic since Ferris is describing ‘accidental’ nanotechnology. The artisans weren’t purposefully creating gold nanoparticles to get that particular shade of red in the glass as opposed to what we’re doing today and I think that’s a significant difference. (Dexter Johnson on his Nanoclast blog for the IEEE [Institute of Electrical and Electronics Engineers] has been very clear that these previous forays (Damascus steel, the Lycurgus Cup) cannot be described as nanotechnology since they were unintended.) As for the rest of the excerpt, it’s all quite true.

Ferris’ Feb. 11, 2014 post tackles marketing,

… While companies and products can miss growth targets for any number of reasons, one of the more common failures for nanotechnology-enabled products is improper marketing. Most would agree that marketing is as much art as science but marketing of nanotechnology-enabled products can be particularly tricky.

True again and he’s about to focus on one aspect of marketing,

Companies that develop nanotechnology-enabled products tend to fall into two camps—those that use nanotechnology as a differentiator in their marketing materials and those that do not. In the 5 P’s of marketing (Product, Place, Price, Promotion, and People), we are contrasting how each company approaches product marketing.

Product marketing focuses on communicating how that product meets a customer need. To do this, the marketing material must differentiate from other potential solutions. The question is, does nanotechnology serves as a differentiating value proposition for the customer?

As I understand it, communicating about the product and value propositions would fall under Promotion while decisions about what features to offer, physical design elements, etc. would fall under Product. Still, Ferris goes on to make some good points with his example of selling a nano-manufactured valve,

A local salesperson calls you up to see what you think. As a customer, you ask a simple question, “Why should we buy this new valve over the one we have been using for years?” What will you think if the sales-person answers, “Because it is based on nanotechnology!”? Answering this way does not address your pain points or satisfy your concerns over the risks of purchasing a new product.

My main difficulty with Ferris’ marketing post is a lack of clarity. He never distinguishes between business-to-business (B2B) marketing and business to consumer (B2C) marketing. There are differences, for example, consumers may not have the scientific or technical training to understand the more involved aspects of the product but a business may have someone on staff who can and could respond negatively to a lack of technical/scientific information.

I agree with Ferris on many points but I do feel he might address the issue of selling technology. He uses L’Oréal as an example of a company selling nanotechnology-enabled products  which they do but their product is beauty. The company’s  nanotechnology-enabled products are simply a means of doing that. By contrast a company like IBM sells technology and a component or product that’s nanotechnology-enabled may require a little or a lot of education depending on the component/product and the customer.

For anyone who’s interested in marketing nanotechnology-enabled and products based on other emerging technologies, I recommend reading Geoffrey A. Moore’s book, Crossing the Chasm. His examples are dated as this written about the ‘computer revolution’ but I think the basis principles still hold. As for Ferris’ postings, there’s good information but you may want to check out other sources and I recommend Dexter Johnson’s Nanoclast blog and Cientifica, an emerging technologies consultancy. (Dexter works for Cientifica, in addition to writing for the IEEE, but most of the publications on that site are by Tim Harper). Oh, and you can check here too, although the business side of things is not my main focus, I still manage to write the odd piece about marketing (promotion usually).

3D television is resurrected by way of a nanocomposite

A Feb. 10, 2014 University of Central Florida news release by Barbara Abney (also on EurekAlert) tells the tale of a researcher working on the development of 3D images on television,

Gone are the goofy glasses required of existing sets. Instead, assistant professor Jayan Thomas is working on creating the materials necessary to create a 3-D image that could be seen from 360 degrees with no extra equipment.

“The TV screen should be like a table top,” Thomas said. “People would sit around and watch the TV from all angles like sitting around a table. Therefore, the images should be like real-world objects. If you watch a football game on this 3-D TV, you would feel like it is happening right in front of you. A holographic 3-D TV is a feasible direction to accomplish this without the need of glasses.”

His work is so far along that the National Science Foundation has given him a $400,000 grant over five years to develop the materials needed to produce display screens.

Here’s an image of Thomas sitting mimicking the experience of his 3D television at a tabletop,

UCF Researcher Jaden Thomas uses nantechnology to bring 3-D television back to life.

UCF [University of Central Florida] Researcher Jaden Thomas uses nantechnology to bring 3-D television back to life.

Thomas’ work comes at a very interesting juncture for the industry (from the news release),

When 3-D TVs first came on the market in 2010, there was a lot of hype and the market expected the new sets would take off. Several broadcasters even pledged to create special channels for 3-D programming, such as ESPN and the BBC.

But in the past year, those broadcasters have canceled plans because sales have lagged and the general public hasn’t adopted the sets as hoped. Some say that’s because the television sets are expensive and require bulky equipment and glasses.

Here’s how Thomas’ approach differs, in very general terms (from the news release),

Thomas’ approach would use new plastic composites made with nanotechnology to make the 3-D image recording process multitudes faster than currently possible. This would eliminate the need for glasses.

Thomas and his colleagues have developed the specific plastic composite needed to create the display screens necessary for effectively showing the 3-D images. That work has been published in the journals Nature and Advanced Materials.

There’s more about Dr. Thomas along with listings of his publications on his NanoScience Technology Center faculty page.

ETA Feb. 14, 2014: You may want to read Dexter Johnson’s Feb. 14, 2014 posting on his Nanoclast blog (on the IEEE [Institute for Electrical and Electronics Engineers]) concerning 3D televisions and Thomas’ work (Note: A link has been removed),

 At this year’s Consumer Electronics Show (CES), it became clear that the much-ballyhooed age of 3-D TV was coming to a quiet and uncelebrated end. One of the suggested causes of its demise was the cost of the 3D glasses. If you wanted to invite a group over to watch the big sporting event, you had better have a lot of extra pairs on hand, which might cost you a small fortune.

Eliminating the glasses from the experience has been proposed from the first moment 3-D TVs were introduced to the marketplace.

Dexter goes on to provide technical context for Thomas’ work as he expands on his theme.

2013: review and plans for 2014 vis à vis FrogHeart

There’ve been some ups and downs in terms of the FrogHeart”s statistics but nothing like 2012 when I thought, for several months, this blog might be dying. Before getting to the numbers, I’ll focus on some of the topics that caught my readers’ interest as per the information I get from the AW stats package.

Top keyterm searches

The Clipperton Island art/science story continued to dominate interest through the year. It popped up in my top ten keyterm searches for January- August to disappear September  – November and reappear in December. (original Clipperton posting, March 2, 2012)

Nanocrystalline cellulose (NCC; it is also known as CNC or cellulose nanocrystals and I believe this will sooon be considered the correct name for this material)), which was for many years a top draw here, faltered and appeared only in January, June – August, and November in my top 10 keyterm searches. (I have many posting on this topic with the most recent being this Dec. 17, 2013 posting on the CNC’s fundamental mechanical behaviour.)

The Urbee was attractive enough to have made the list for January – August, and, again, in November. (I have this August 28, 2012 posting as the most recent about the Urbee car being developed in Winnipeg, Manitoba.)

The Lycurgus Cup appeared on the list for February, June – August, and November. (I do write about this extraordinary piece of glass and gold work from Ancient Rome from time to time. The most recent piece was this Nov. 22, 2013 posting about how Australian researchers were inspired by the cup.)

The memristor (one of my favourite topics) was one of the two 25 keyterm search terms for April, June, and July. (Here’s the most recent memristor story which I featured in a June 14, 2013 posting, which highlights some research being done in India.)

Pousse Café (I’m starting to suspect this might be due to porn searches) was on the list from June – November. (In context of an April 26, 2013 posting about nanowires and some unusual layering properties I mentioned a cocktail, a pousse-café, which has attracted more attention that I would have expected had I considered the possibility.)

Two people made their way into the list of top 35 keyterm searches for more than one month:

Bertolt Meyer for February – April (This Jan. 30, 2013 posting about robots, androids, etc. also mentioned Bertolt Meyer, a Swiss scientist and an individual who has integrated some sophisticated prosthetics into his body.)

Nils Petersen for June, August,, and September (At one point, Petersen led Canada’s National Institute of Nanotechnology and, unfortunately, I never did receive a reply to any of my requests for an interview. I’m not sure what has occasioned the interest now that he has left his position in 2012, I believe. The most recent posting here, which features Petersen’s name is this March 11, 2013 posting about a nanotechnology public engagement project in Edmonton, Alberta.)

Countries new to my list of top 25 sources of traffic

Quatar (March)

Seychelles ((October)

Guatemala (April)

Venezuela (June)

Moldova (November)

Macedonia (November)

There is one omission that puzzles and that’s South Africa. I know they have a nanotechnology community and they are the S in the BRICS with Brazil, Russia, India, and China all being represented on my list of top 25 countries for traffic.


Sue Thomas (The UK’s Futurefest and an interview with Sue Thomas (The UK’s Futurefest and an interview with Sue Thomas in a September 20, 2013 posting,.)

Kate Pullinger ([Interview with Baba Brinkman on the occasion of his Rap Guide to Evolution performance in Vancouver, November 2013 edition in a November 1, 2013 posting.)

Carla Alvial Palavicino (Graphene hype; the emerging story in an interview with Carla Alvial Palavicino (University of Twente, Netherlands) in a December 24, 2012 posting)

Top five sources for traffic (countries)



Great Britain



Statistics (AW stats)

Month with the top number for for visits: December 2013 with 131,422

Month with the lowest number for visits: July 2013 with 79,168

Month with the highest number of unique visitors: December 2013 with 32,739

Month with the lowest number of unique visitors: July 2013 with 21, 977

Annual totals:

Unique visitors: 310,390 Visits: 1,149,456 Pages: 5,653,192 Hits: 7,553,481

*Completed and updated on Jan. 2, 2014.

Statistics (Webalizer)

Month with the top number for visits: December 2013 with 235,137

Month with the lowest number for visits: February 2013 with 119.973

Annual totals:

Visits: 1,784,637 Pages: 10,140,239 Files: 1,193,817 Hits: 18,805,248

*Completed and updated on Jan. 2, 2014.

Big thank yous

First and foremost thank you to the folks who read this blog. It’s what keep my going.

Thank you to everyone who took the time to contact me about the blog either by leaving a comment here or sending me an email.

I also want to acknowledge both David Bruggeman (Pasco Phronesis blog) and Dexter Johnson (Nanoclast blog on the IEEE [Institute of Electrical and Electronics Engineers’ website). You have both inspired my efforts.

2014 plans for FrogHeart

I want to keep blogging and writing about the things that matter to me. I also want to look at ways to monetize the blog as I need some support to keep this going. The consequence of all this is that you will be seeing some changes here. e.g. I’ve either already posted a Donate button or will be shortly and I anticipate there will be more changes ahead.

Naimor: innovative nanostructured material for water remediation and oil recovery (crowdfunding project)

The NAIMOR crowdfunding project on indiegogo might be of particular interest to those of us on the West Coast of Canada where there is much talk about a project to create twin pipelines (Enbridge Northern Gateway Pipelines) between the provinces of  Alberta and British Columbia to export oil and import natural gas. The oil will be shipped to Asia by tanker and presumably so will the natural gas. In all the discussion about possible environmental disasters, I haven’t seen any substantive mention of remediation efforts or research to improve the technologies associated with environmental cleanups (remediation of water, soil, and/or air). At any rate, all this talk about the pipelines and oil tankers along Canada’s West Coast brought to mind the BP oil spill, aka the Deepwater Horizon oil spill, from the Wikipedia essay (Note: Links have been removed),

The Deepwater Horizon oil spill (also referred to as the BP oil spill, the BP oil disaster, the Gulf of Mexico oil spill, and the Macondo blowout) began on 20 April 2010 in the Gulf of Mexico on the BP-operated Macondo Prospect. It claimed eleven lives[5][6][7][8] and is considered the largest accidental marine oil spill in the history of the petroleum industry, an estimated 8% to 31% larger in volume than the previously largest, the Ixtoc I oil spill. Following the explosion and sinking of the Deepwater Horizon oil rig, a sea-floor oil gusher flowed for 87 days, until it was capped on 15 July 2010.[7][9] The total discharge has been estimated at 4.9 million barrels (210 million US gal; 780,000 m3).[3]

A massive response ensued to protect beaches, wetlands and estuaries from the spreading oil utilizing skimmer ships, floating booms, controlled burns and 1.84 million US gallons (7,000 m3) of Corexit oil dispersant.[10] After several failed efforts to contain the flow, the well was declared sealed on 19 September 2010.[11] Some reports indicate the well site continues to leak.[12][13] Due to the months-long spill, along with adverse effects from the response and cleanup activities, extensive damage to marine and wildlife habitats, fishing and tourism industries, and human health problems have continued through 2013.[14][15] Three years after the spill, tar balls could still be found on the Mississippi coast.[16] In July 2013, the discovery of a 40,000 pound tar mat near East Grand Terre, Louisiana prompted the closure of waters to commercial fishing.[17][18]

While Canada’s Northern Gateway project does not include any plans for ocean oil rigs, there is still the potential for massive spills either from the tankers or the pipelines. For those old enough to remember or those interested in history, this latest project raises the spectre of the Exxon Valdes oil spill, from the Wikipedia essay (Note: Links have been removed),

The Exxon Valdez oil spill occurred in Prince William Sound, Alaska, on March 24, 1989, when Exxon Valdez, an oil tanker bound for Long Beach, California, struck Prince William Sound’s Bligh Reef at 12:04 a.m.[1] local time and spilled 260,000 to 750,000 barrels (41,000 to 119,000 m3) of crude oil[2][3] over the next few days. It is considered to be one of the most devastating human-caused environmental disasters.[4] The Valdez spill was the largest ever in US waters until the 2010 Deepwater Horizon oil spill, in terms of volume released.[5]  [emphasis mine] However, Prince William Sound’s remote location, accessible only by helicopter, plane, or boat, made government and industry response efforts difficult and severely taxed existing plans for response. The region is a habitat for salmon, sea otters, seals and seabirds. The oil, originally extracted at the Prudhoe Bay oil field, eventually covered 1,300 miles (2,100 km) of coastline,[6] and 11,000 square miles (28,000 km2) of ocean.[7] Exxon’s CEO, Lawrence Rawl, shaped the company’s response.[8]

Some of that ‘difficult to reach’ coastline and habitat was Canadian (province of British Columbia). Astonishingly, given the 20 year gap between the Exxon Valdes spill and the Deepwater Horizon spill, the technology for remediation and cleanup had not changed much, although it seems that the measure used to stop the oil spill were even older, from my June 4, 2010 posting,

I found a couple more comments relating to the BP oil spill  in the Gulf. Pasco Phronesis offers this May 30, 2010 blog post, Cleaning With Old Technology, where the blogger, Dave Bruggeman, asks why there haven’t been any substantive improvements to the technology used for clean up,

The relatively ineffective measures have changed little since the last major Gulf of Mexico spill, the Ixtoc spill in 1979. While BP has solicited for other solutions to the problem (Ixtoc was eventually sealed with cement and relief wells after nine months), they appear to have been slow to use them.

It is a bit puzzling to me why extraction technology has improved but cleanup technology has not.

An excellent question.

I commented a while back (here) about another piece of nano reporting form Andrew Schneider. Since then, Dexter Johnson at Nanoclast has offered some additional thoughts (independent of reading Andrew Maynard’s 2020 Science post) about the Schneider report regarding ‘nanodispersants’ in the Gulf. From Dexter’s post,

Now as to the efficacy or dangers of the dispersant, I have to concur that it [nanodispersant] has not been tested. But it seems that the studies on the 118 oil-controlling products that have been approved for use by the EPA are lacking in some details as well. These chemicals were approved so long ago in some cases that the EPA has not been able to verify the accuracy of their toxicity data, and so far BP has dropped over a million gallons of this stuff into the Gulf.

Point well taken.

In looking at this website: gatewayfacts.ca, it seems the proponents for the Enbridge Northern Gateway project have supplied some additional information. Here’s what they’ve supplied regarding the project’s spill response (from the Gateway Facts environmental-responsibility/marine-protection page),

A spill response capacity 3x better than required

Emergency response equipment, crews and training staff will be stationed at key points and communities along the marine routes.

I did find a bit more on the website’s What if? page,

Marine response in action

Our spill response capacity will be more than 3x the current Canadian regulation. In addition, tanker escort tugs will carry emergency response and firefighting equipment to be able to respond immediately.

I don’t feel that any real concerns have been addressed by this minimalist approach to communication. Here are some of my questions,

  • What does 3x the current Canadian regulation mean in practical terms and how does this compare with the best safety regulations from an international perspective? Will there be efforts at continuous improvement?
  • Are there going to be any audits by outside parties of the company’s emergency response during the life of the project?
  • How will those audits be conducted? i.e., Will there be notice or are inspectors likely to spring the occasional surprise inspection?
  • What technologies are the proponents planning to use for the cleanup?
  • Is there any research being conducted on new remediation and cleanup technologies?
  • How much money is being devoted to this research and where is it being conducted (university labs, company labs, which countries)?

In light of concerns about environmental remediation technologies, it’s heartening to see this project on indiegogo which according to a Dec. 27, 2013 news item on Nanowerk focuses on an improved approach to remediation for water contaminated by oil,,

Environmental oil spill disasters such as BP’s Deepwater Horizon oil rig in the Gulf of Mexico have enormous environmental consequences, leading to the killing of marine creatures and contamination of natural water streams, storm water systems or even drinking water supplies. Emergency management organizations must be ready to confront such turbulences with effective and eco-friendly solutions to minimize the short term or long term issues.

There are many ineffective and costly conventional technologies for the remedy of oil spills like using of dispersants, oil skimmers, sand barrier berms, oil containment booms, by controlled burning of surface oil, bioremediation and natural degradation.

NAIMOR® – NAnostructure Innovative Material for Oil Recovery – is a three dimensional, nanostructure carbon material that can be produced in different shapes, dimensions. It is highly hydrophobic and can absorb a quantity of oil around 150 times its weight. Light, strong, and flexible, the material can be reused many times without losing its absorption capacity.

I’m not familiar with the researcher who’s making this proposal so I can’t comment on the legitimacy of the project but this does look promising (I have heard of other similar research using carbon-based materials), from the Naimor campaign on indiegogo,

Ivano Aglietto, an Italian engineer with a PhD in Environmental Engineering has devoted his profession for the production of most advanced and innovative nanostructure carbon materials and the industrial development of their proper use in applications for the environmental remediation.

His first invention was RECAM® (REactive Carbon Material), a revolutionary solution for oil spill recovery which had shown extraordinary results but with limitations of usage.

RECAM® is inert, non toxic, regenerable, reusable, eco friendly material and can absorb oil 90 times its weight. It is ferromagnetic in nature and can be recovered from water using magnetic field. The hydrocarbons absorbed can be burnt inorder to reuse the material and no toxic gases are released because of its inert and non-flammable nature. Their is also possibility of extracting the absorbed oil by squeezing the material or by vacuum filtration. Oil recovered does not contain any water because of the hydrophobic behaviour of RECAM®. Recovered oil can be reused as resource and the RECAM® for recovering oil. RECAM® is used for oil spill remediation and successfully passed the Artemia test.

RECAM® is being replaced with his new innovative nanostructure material, NAIMOR®.

NAIMOR® (NAnostructure Innovative Material for Oil Recovery) is a nanostructure material that can be produced in different shapes and dimensions with an incredible efficiency for oil recovery.

Main Characteristics and Properties

Can absorb quantity of oil 150 times its weight.
Inert, made of pure carbon, environmental friendly and no chemicals involved.
Highly hydrophobic and the absorbed oil does not contain any water.
Regenerable and can be used several times without producing any wastes.
It is a three dimensional nanostructure and can be produced in different shapes, dimensions [carpets, booms, sheets'.
Capable of recovering gallons of oil depending on the shape and dimensions of the carpet.

This indiegogo campaign is almost the antithesis of the gatewayfacts.ca website offering a wealth of information and detail including a discussion about the weaknesses associated with the various cleanup technologies that represent the 'state of the art'. Here's an image from the Naimor campaign page,

[downloaded from http://www.indiegogo.com/projects/naimor-nanostructure-innovative-material-for-oil-recovery]

[downloaded from http://www.indiegogo.com/projects/naimor-nanostructure-innovative-material-for-oil-recovery]

I believe this is a pelican somewhere on the Gulf of Mexico coastline where it was affected by the 2010 Deepwater Horizon oil spill. As for Aglietto’s project, you can find the NAIMOR website here.

Biology and lithium-air batteries

Firstly, the biology in question is that of viruses and, secondly, research in lithium-air batteries has elicited big interest according to David Chandler’s November 13, 2013 Massachusetts Institute of Technology (MIT) news piece (also on EurekAlert and Nanowerk),

Lithium-air batteries have become a hot research area in recent years: They hold the promise of drastically increasing power per battery weight, which could lead, for example, to electric cars with a much greater driving range. But bringing that promise to reality has faced a number of challenges, ….

Now, MIT researchers have found that adding genetically modified viruses to the production of nanowires — wires that are about the width of a red blood cell, and which can serve as one of a battery’s electrodes — could help solve some of these problems.

Lithium-air batteries can also be referred to as lithiium-oxygen batteries, although Chandler does not choose to mix terms as he goes on to describe the process the researchers developed,

The researchers produced an array of nanowires, each about 80 nanometers across, using a genetically modified virus called M13, which can capture molecules of metals from water and bind them into structural shapes. In this case, wires of manganese oxide — a “favorite material” for a lithium-air battery’s cathode, Belcher says — were actually made by the viruses. But unlike wires “grown” through conventional chemical methods, these virus-built nanowires have a rough, spiky surface, which dramatically increases their surface area.

Belcher, the W.M. Keck Professor of Energy and a member of MIT’s Koch Institute for Integrative Cancer Research, explains that this process of biosynthesis is “really similar to how an abalone grows its shell” — in that case, by collecting calcium from seawater and depositing it into a solid, linked structure.

The increase in surface area produced by this method can provide “a big advantage,” Belcher says, in lithium-air batteries’ rate of charging and discharging. But the process also has other potential advantages, she says: Unlike conventional fabrication methods, which involve energy-intensive high temperatures and hazardous chemicals, this process can be carried out at room temperature using a water-based process.

Also, rather than isolated wires, the viruses naturally produce a three-dimensional structure of cross-linked wires, which provides greater stability for an electrode.

A final part of the process is the addition of a small amount of a metal, such as palladium, which greatly increases the electrical conductivity of the nanowires and allows them to catalyze reactions that take place during charging and discharging. Other groups have tried to produce such batteries using pure or highly concentrated metals as the electrodes, but this new process drastically lowers how much of the expensive material is needed.

Altogether, these modifications have the potential to produce a battery that could provide two to three times greater energy density — the amount of energy that can be stored for a given weight — than today’s best lithium-ion batteries, a closely related technology that is today’s top contender, the researchers say.

MIT has produced a video highlighting the researchers’ work (this runs longer than most of the materials I embed here at approximately 11 mins. 25 secs.),

For those who want to know more about this intriguing and speculative work,

Biologically enhanced cathode design for improved capacity and cycle life for lithium-oxygen batteries by Dahyun Oh, Jifa Qi, Yi-Chun Lu, Yong Zhang, Yang Shao-Horn, & Angela M. Belcher. Nature Communications 4, Article number: 2756 doi:10.1038/ncomms3756 Published 13 November 2013

This article is behind a paywall.

ETA Nov. 15, 2013: Dexter Johnson offers more context and information, including commercialization issues, about lithium-air batteries and lithium-ion batteries in his Nov. 14, 2013 posting on the Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website).

Should October 2013 be called ‘the month of graphene’?

Since the Oct. 10-11, 2013 Graphene Flagship (1B Euros investment) launch, mentioned in my preview Oct. 7, 2013 posting, there’ve been a flurry of graphene-themed news items both on this blog and elsewhere and I’ve decided to offer a brief roundup what I’ve found elsewhere.

Dexter Johnson offers a commentary in the pithily titled, Europe Invests €1 Billion to Become “Graphene Valley,” an Oct. 15, 2013 posting on his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website) Note: Links have been removed,

The initiative has been dubbed “The Graphene Flagship,” and apparently it is the first in a number of €1 billion, 10-year plans the EC is planning to launch. The graphene version will bring together 76 academic institutions and industrial groups from 17 European countries, with an initial 30-month-budget of €54M ($73 million).

Graphene research is still struggling to find any kind of applications that will really take hold, and many don’t expect it will have a commercial impact until 2020. What’s more, manufacturing methods are still undeveloped. So it would appear that a 10-year plan is aimed at the academic institutions that form the backbone of this initiative rather than commercial enterprises.

Just from a political standpoint the choice of Chalmers University in Sweden as the base of operations for the Graphene Flagship is an intriguing choice. …

I have to agree with Dexter that choosing Chalmers University over the University of Manchester where graphene was first isolated is unexpected. As a companion piece to reading Dexter’s posting in its entirety and which features a video from the flagship launch, you might want to try this Oct. 15, 2013 article by Koen Mortelmans for Youris (h/t Oct. 15, 2013 news item on Nanowerk),

Andre Konstantin Geim is the only person who ever received both a Nobel and an Ig Nobel. He was born in 1958 in Russia, and is a Dutch-British physicist with German, Polish, Jewish and Ukrainian roots. “Having lived and worked in several European countries, I consider myself European. I don’t believe that any further taxonomy is necessary,” he says. He is now a physics professor at the University of Manchester. …

He shared the Noble [Nobel] Prize in 2010 with Konstantin Novoselov for their work on graphene. It was following on their isolation of microscope visible grapheme flakes that the worldwide research towards practical applications of graphene took off.  “We did not invent graphene,” Geim says, “we only saw what was laid up for five hundred year under our noses.”

Geim and Novoselov are often thought to have succeeded in separating graphene from graphite by peeling it off with ordinary duct tape until there only remained a layer. Graphene could then be observed with a microscope, because of the partial transparency of the material. That is, after dissolving the duct tape material in acetone, of course. That is also the story Geim himself likes to tell.

However, he did not use – as the urban myth goes – graphite from a common pencil. Instead, he used a carbon sample of extreme purity, specially imported. He also used ultrasound techniques. But, probably the urban legend will survive, as did Archimedes’ bath and Newtons apple. “It is nice to keep some of the magic,” is the expression Geim often uses when he does not want a nice story to be drowned in hard facts or when he wants to remain discrete about still incomplete, but promising research results.

Mortelmans’ article fills in some gaps for those not familiar with the graphene ‘origins’ story while Tim Harper’s July 22, 2012 posting on Cientifica’s (an emerging technologies consultancy where Harper is the CEO and founder) TNT blog offers an insight into Geim’s perspective on the race to commercialize graphene with a paraphrased quote for the title of Harper’s posting, “It’s a bit silly for society to throw a little bit of money at (graphene) and expect it to change the world.” (Note: Within this context, mention is made of the company’s graphene opportunities report.)

With all this excitement about graphene (and carbon generally), the magazine titled Carbon has just published a suggested nomenclature for 2D carbon forms such as graphene, graphane, etc., according to an Oct. 16, 2013 news item on Nanowerk (Note: A link has been removed),

There has been an intense research interest in all two-dimensional (2D) forms of carbon since Geim and Novoselov’s discovery of graphene in 2004. But as the number of such publications rise, so does the level of inconsistency in naming the material of interest. The isolated, single-atom-thick sheet universally referred to as “graphene” may have a clear definition, but when referring to related 2D sheet-like or flake-like carbon forms, many authors have simply defined their own terms to describe their product.

This has led to confusion within the literature, where terms are multiply-defined, or incorrectly used. The Editorial Board of Carbon has therefore published the first recommended nomenclature for 2D carbon forms (“All in the graphene family – A recommended nomenclature for two-dimensional carbon materials”).

This proposed nomenclature comes in the form of an editorial, from Carbon (Volume 65, December 2013, Pages 1–6),

All in the graphene family – A recommended nomenclature for two-dimensional carbon materials

  • Alberto Bianco
    CNRS, Institut de Biologie Moléculaire et Cellulaire, Immunopathologie et Chimie Thérapeutique, Strasbourg, France
  • Hui-Ming Cheng
    Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
  • Toshiaki Enoki
    Department of Chemistry, Graduate School of Science and Engineering, Tokyo Institute of Technology, Tokyo, Japan
  • Yury Gogotsi
    Materials Science and Engineering Department, A.J. Drexel Nanotechnology Institute, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
  • Robert H. Hurt
    Institute for Molecular and Nanoscale Innovation, School of Engineering, Brown University, Providence, RI 02912, USA
  • Nikhil Koratkar
    Department of Mechanical, Aerospace and Nuclear Engineering, The Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY 12180, USA
  • Takashi Kyotani
    Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
  • Marc Monthioux
    Centre d’Elaboration des Matériaux et d’Etudes Structurales (CEMES), UPR-8011 CNRS, Université de Toulouse, 29 Rue Jeanne Marvig, F-31055 Toulouse, France
  • Chong Rae Park
    Carbon Nanomaterials Design Laboratory, Global Research Laboratory, Research Institute of Advanced Materials, Department of Materials Science and Engineering, Seoul National University, Seoul 151-744, Republic of Korea
  • Juan M.D. Tascon
    Instituto Nacional del Carbón, INCAR-CSIC, Apartado 73, 33080 Oviedo, Spain
  • Jin Zhang
    Center for Nanochemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

This editorial is behind a paywall.

Feel the pain—a ‘science evangelist’ and materials scientist kinda gets nanotechnology wrong

Thanks to Dexter Johnson at his Nanoclast blog (on the IEEE [Institute of Electrical and Electronics Engineers] website) for bringing a singularly odd Huffington Post article about nanotechnology to my attention in his Sept. 12, 2013 posting,

It’s a perfect storm of wrongheadedness. It was penned by Ainissa G. Ramirez, Ph.D., a noted author and “science evangelist,” giving it an air of veracity. But that doesn’t keep the piece from going wrong right from the outset. You can find the first misstep in the second sentence: “By miniaturizing matter, science fact will look like science fiction.” Okay, once and for all: Nanotechnology has nothing to do with miniaturizing matter.

I encourage you to read both Ramirez’s article “What Henry Ford Can Teach Us About Nanotechnology (Sept. 3, 2013)” so you can better appreciate Dexter’s penetrating analysis.

I am taking a different tack.  What I find most peculiar about the article is the author, Ainissa Ramirez who lists her educational qualifications in a curriculum vitae on her eponymous website,

Stanford University,  Ph.D.; Materials Science and Engineering1998
Stanford University, M.S.; Materials Science and Engineering 1992
Brown University, Sc.B.; Materials Science and Engineering 1990

There’s this on her LinkedIn profile,

Author of “Newton’s Football” (Due 2013 [November 2013])
Random House
August 2012 – Present (1 year 2 months)

In Newton’s Football, journalist and New York Times bestselling author Allen St. John and TED Speaker and former Yale professor Ainissa Ramirez explore the unexpected science behind America’s Game. Newton’s Football illuminates football—and science—through funny, insightful stories told by some of the world’s sharpest minds.


Lecturer/Science Popularizer
Yale University
January 2012 – December 2012 (1 year)

Acting as Bill Nye for Yale, my work entailed getting students excited about science. My passion lies in explaining complex ideas using down-to-earth examples.

Associate Professor of Mechanical Engineering
Yale University
New Haven, CTMaterials science research in the field of smart materials and nanomaterials. I was the principal investigator in the study of shape memory alloys; inventor of magnetic solder; and fun lecturer in materials science and engineering.

Ramirez is also a member of NISENet (Nanoscale Informal Science Education Network). Within that context (NISENet’s March 2012 newsletter),  I featured her video on nano (which seemed unexceptionable)  in a March 8, 2012 posting.

So, here’s the odd part: How does someone with her credentials write something so “wrongheaded?” I suppose it’s possible  none of her teachers at Brown or Stanford noticed her misunderstanding of nanotechnology and that none of her colleagues or students at Yale recognized the problem. However, that seems laughable and it is more likely that Ramirez in an attempt to communicate with her audience has ‘dumbed it down’ for those of us whose science education doesn’t extend past high school, if that.

Sadly, in ‘dumbing it down’, she does both herself and us a disservice.  As someone who’s not especially well versed in the sciences, I find it disconcerting to spot such obvious errors as those in Ramirez’s Sept. 3, 2013 article for Huffington Post. If I know she has gotten some of the basis wrong,  it means that I can’t trust her in scientific areas where I am entirely ignorant.

By patronizing and oversimplifying the material, she fails to respect her reader and to build trust.