Tag Archives: diabetes

Hit and run gene therapy?

The approach looks promising but there’s a still long way to go before this ‘simpler, gentler’ approach to gene therapy will make its way into any treatments. From an August 30, 2017 news item on Nanowerk,

A new biomedical tool using nanoparticles that deliver transient gene changes to targeted cells could make therapies for a variety of diseases — including cancer, diabetes and HIV — faster and cheaper to develop, and more customizable.

The tool, developed by researchers at Fred Hutchinson Cancer Research Center and tested in preclinical models, is described in a paper published August 30 [2017] in Nature Communications.

This animation demonstrates the approach,

Biodegradable nanoparticles (orange) carry short-lived gene therapy to specific cells (light teal). Animation by Kimberly Carney / Fred Hutch News Service

An August 30, 2017 Fred Hutchinson Cancer Research Center (Fred Hutch) news release (from news release received via email; also on EurekAlert) by Sabrina Richards, which originated the news item, elucidates further (Note: Some links and notes have been removed),

“Our goal is to streamline the manufacture of cell-based therapies,” said lead author DR. MATTHIAS STEPHAN [6], a faculty member in the Fred Hutch Clinical Research Division and an expert in developing biomaterials. “In this study, we created a product where you just add it to cultured cells and that’s it — no additional manufacturing steps.”

Stephan and his colleagues developed a nanoparticle delivery system to extend the therapeutic potential of messenger RNA, which delivers molecular instructions from DNA to cells in the body, directing them to make proteins to prevent or fight disease.

The researchers’ approach was designed to zero in on specific cell types — T cells of the immune system and blood stem cells — and deliver mRNA directly to the cells, triggering short-term gene expression. It’s called “hit-and-run” genetic programming because the transient effect of mRNA does not change the DNA, but it is enough to make a permanent impact on the cells’ therapeutic potential.

Stephan and colleagues used three examples in the Nature Communications paper to demonstrate their technology:

* Nanoparticles carried a gene-editing tool to T cells of the immune system that snipped out their natural T-cell receptors, and then was paired with genes encoding a “chimeric antigen receptor” or CAR, a synthetic molecule designed to attack cancer.
* Targeted to blood stem cells, nanoparticles were equipped with mRNA that enabled the stem cells to multiply and replace blood cancer cells with healthy cells when used in bone marrow transplants.
* Nanoparticles targeted to CAR-T cells and containing foxo1 mRNA, which signals the anti-cancer T cells to develop into a type of “memory” cell that is more aggressive and destroys tumor cells more effectively and maintains anti-tumor activity longer.

Other attempts to engineer mRNA into disease-fighting cells have been tricky. The large messenger molecule degrades quickly before it can have an effect, and the body’s immune system recognizes it as foreign — not coming from DNA in the nucleus of the cell — and destroys it.

Stephan and his Fred Hutch collaborators devised a workaround to those hurdles.

“We developed a nanocarrier that binds and condenses synthetic mRNA and protects it from degradation,” Stephan said. The researchers surrounded the nanoparticle with a negatively charged envelope with a targeting ligand attached to the surface so that the particle selectively homes in and binds to a particular cell type.

The cells swallow up the tiny carrier, which can be loaded with different types of manmade mRNA. “If you know from the scientific literature that a signaling pathway works in synergy, you could co-deliver mRNA in a single nanoparticle,” Stephan said. “Every cell that takes up the nanoparticle can express both.”

The approach involves mixing the freeze-dried nanoparticles with water and a sample of cells. Within four hours, cells start showing signs that the editing has taken effect. Boosters can be given if needed. Made from a dissolving biomaterial, the nanoparticles are removed from the body like other cell waste.

“Just add water to our freeze-dried product,” Stephan said. Since it’s built on existing technologies and doesn’t require knowledge of nanotechnology, he intends for it to be an off-the-shelf way for cell-therapy engineers to develop new approaches to treating a variety of diseases.

The approach could replace labor-intensive electroporation, a multistep cell-manufacturing technique that requires specialized equipment and clean rooms. All the handling ends up destroying many of the cells, which limits the amount that can be used in treatments for patients.

Gentler to cells, the nanoparticle system developed by the Fred Hutch team showed that up to 60 times more cells survive the process compared with electroporation. This is a critical feature for ensuring enough cells are viable when transferred to patients.

“You can imagine taking the nanoparticles, injecting them into a patient and then you don’t have to culture cells at all anymore,” he said.

Stephan has tested the technology is cultured cells in the lab, and it’s not yet available as a treatment. Stephan is looking for commercial partners to move the technology toward additional applications and into clinical trials where it could be developed into a therapy.

Here’s a link to and a citation for the paper,

Hit-and-run programming of therapeutic cytoreagents using mRNA nanocarriers by H. F. Moffett, M. E. Coon, S. Radtke, S. B. Stephan, L. McKnight, A. Lambert, B. L. Stoddard, H. P. Kiem, & M. T. Stephan. Nature Communications 8, Article number: 389 (2017) doi:10.1038/s41467-017-00505-8 Published online: 30 August 2017

This paper is open access.

Arbro Pharmaceuticals and its bioavailable curcumin

Curcumin (a constituent of the spice turmeric) is reputed to have health benefits and has been used in traditional medicine in Asia (notably India) for millenia. Recently scientists have been trying to render curcumin more effective which means increasing its bioavailability (my Nov. 7, 2014 posting features some of that research). According to an April 29, 2016 Arbro Pharmaceuticals press release, the goal of increased bioavailability has been reached and a product is now available commercially,

Arbro Pharmaceuticals has launched SNEC30, a patented highly bioavailable self-nanoemulsifying curcumin formulation in the dosage of 30mg.

Curcumin is the active ingredient of turmeric or haldi, which has been widely used in traditional medicine and home remedies in India for hundreds of years.

Clinical research conducted over the last 25 years has shown curcumin to be effective against various diseases like cancer, pain, inflammation, arthritis, ulcers, psoriasis, arteriosclerosis, diabetes and many more pro-inflammatory conditions.

Despite its effectiveness against so many medical conditions, scientists have come to believe that curcumin’s true potential has been limited by its poor bioavailability which is caused by the fact that it has poor solubility and extensive pre-systemic metabolism.

Arbro Pharmaceuticals partnered with Jamia Hamdard University to carry out research and develop a novel formulation, which can overcome curcumin’s poor bioavailability. The development project was jointly funded by Arbro and the Department of Science and Technology, Government of India under its DPRP (Drug and Pharmaceutical Research Programme) scheme.

SNEC30 is the outcome of this joint research and is based on a novel self-nanoemulsifying drug delivery systems (SNEDDS) for which patents have been filed and the US patent has been granted.

“There has been tremendous interest in the therapeutic potential of curcumin but its poor bioavailability was a limiting factor, our research group together with Arbro took the challenge and applied nanotechnology to overcome this limitation and achieve highest ever bioavailability for curcumin,” said Dr. Kanchan Kohli, Asst. Prof, Faculty of Pharmacy, Jamia Hamdard University, who is one of the main developers of the formulation.

Nanotechnology is the engineering of functional systems at the molecular scale (CRN – Centre for Responsible Nanotechnology). The name stems from the fact that the structures are in the nano-metre (10-9 mm) in range. In pharmaceutics, nano-formulations are used for targeted drug-delivery, particularly in cancer therapy. It also finds numerous other applications in medicine.

“Just 30mg of curcumin that is contained in one capsule of SNEC30 has shown higher blood levels than what can be achieved by consuming the curcumin content of 1kg of raw haldi or turmeric,” said Mr. Vijay Kumar Arora, Managing Director, Arbro Pharmaceuticals.

About Arbro Pharmaceuticals:

Arbro Pharmaceuticals is a 30-year-old research oriented company with its own research and development, testing and manufacturing facilities. Arbro has been manufacturing and exporting hundreds of formulations under its own brand name to more than 10 countries.

I am not endorsing this product but if you are interested the SNEC30 website is here. I believe Arbro Pharmaceuticals’ headquarters, the company which produces SNEC30, are located in India.

Wearable device to monitor and control diabetes is based on graphene

The research comes from Korea’s Institute of Basic Science and was announced in a March 22, 2016 news article by Lee Chi-dong for Yonhap News Agency,

A team of South Korean scientists announced Tuesday [March 22, 2016] that they have developed a wearable device, based on nanotechnology, for more convenient diabetes monitoring and therapy.

The graphene-using “smart patch” has improved the accuracy of blood sugar level measurements as it checks not only glucose in sweat but also temperature and acidity, according to the Institute for Basic Science (IBS) located in Daejeon, some 160 kilometers south of Seoul.

Existing smart patches gauge blood sugar merely in sweat.

Google is working on “smart contact lens” with an ultra-tiny super sensitive glucose sensor for tear fluid. Its accuracy remains a question amid concerns about adverse effects on eye health.

A March 21, 2016 IBS press release on EurekAlert provides more details about the work,

A scientific team from the Center for Nanoparticle Research at IBS has created a wearable GP [graphene]-based patch that allows accurate diabetes monitoring and feedback therapy by using human sweat. The researchers improved the device’s detecting capabilities by integrating electrochemically active and soft functional materials on the hybrid of gold-doped graphene and a serpentine-shape gold mesh. The device’s pH and temperature monitoring functions enable systematic corrections of sweat glucose measurements as the enzyme-based glucose sensor is affected by pH (blood acidity levels) and temperature.

Diabetes and regulating glucose levels

Insulin is produced in the pancreas and regulates the use of glucose, maintaining a balance in blood sugar levels. Diabetes causes an imbalance: insufficient amounts of insulin results in high blood glucose levels, known as hyperglycemia. Type 2 diabetes is the most common form of diabetes with no known cure. It affects some 3 million Koreans with the figure increasing due to dietary patterns and an aging society. The current treatments available to diabetics are painful, inconvenient and costly; regular visits to a doctor and home testing kits are needed to record glucose levels. Patients also have to inject uncomfortable insulin shots to regulate glucose levels. There is a significant need for non-invasive, painless, and stress-free monitoring of important markers of diabetes using multifunctional wearable devices. The IBS device facilitates this and thereby reduces the lengthy and expensive cycles of visiting doctors and pharmacies.

Components of the graphene-based wearable device

KIM Dae-Hyeong, a scientist from the Center for Nanoparticle Research, describes the vast array of components: “Our wearable GP-based device is capable of not only sweat-based glucose and pH monitoring but also controlled transcutaneous drug delivery through temperature-responsive microneedles. Precise measurement of sweat glucose concentrations are used to estimate the levels of glucose in the blood of a patient. The device retains its original sensitivity after multiple uses, thereby allowing for multiple treatments. The connection of the device to a portable/ wireless power supply and data transmission unit enables the point-of-care treatment of diabetes.” The professor went on to describe how the device works, “The patch is applied to the skin where sweat-based glucose monitoring begins on sweat generation. The humidity sensor monitors the increase in relative humidity (RH). It takes an average of 15 minutes for the sweat-uptake layer of the patch to collect sweat and reach a RH over 80% at which time glucose and pH measurements are initiated.”

Merits of the device and drug administration

The device shows dramatic advances over current treatment methods by allowing non-invasive treatments. During the team’s research, two healthy males participated in tests to demonstrate the sweat-based glucose sensing of the device. Glucose and pH levels of both subjects were recorded; a statistical analysis confirmed the reliable correlation between sweat glucose data from the diabetes patch and those from commercial glucose tests. If abnormally high levels of glucose are detected, a drug is released into a patient’s bloodstream via drug loaded microneedles. The malleable, semi-transparent skin-like appearance of the GP device provides easy and comfortable contact with human skin, allowing the sensors to remain unaffected by any skin deformations. This enables stable sensing and efficient drug delivery.

The scientific team also demonstrated the therapeutic effects by experimenting on diabetic (db/db) mice. Treatment began by applying the device near the abdomen of the db mouse. Microneedles pierced the skin of the mouse and released Metformin, an insulin regulating drug, into the bloodstream. The group treated with microneedles showed a significant suppression of blood glucose concentrations with respect to control groups. “One can easily replace the used microneedles with new ones. Treatment with Metformin through the skin is more efficient than that through the digestive system because the drug is directly introduced into metabolic circulation through the skin,” commented KIM Dae-Hyeong. He went on: “These advances using nanomaterials and devices provide new opportunities for the treatment of chronic diseases like diabetes.”

The researchers have made an image illustrating their work available,

Caption: Optical image of the GP-hybrid electrochemical device array on the human skin Credit: IBS

Caption: Optical image of the GP-hybrid electrochemical device array on the human skin Credit: IBS

Here’s a link to and a citation for the paper,

A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy by Hyunjae Lee, Tae Kyu Choi, Young Bum Lee, Hye Rim Cho, Roozbeh Ghaffari, Liu Wang, Hyung Jin Choi, Taek Dong Chung, Nanshu Lu, Taeghwan Hyeon, Seung Hong Choi, & Dae-Hyeong Kim. Nature Nanotechnology (2016) doi:10.1038/nnano.2016.38 Published online 21 March 2016

This paper is behind a paywall.

Tattoos that detect glucose levels

Temporary tattoos with a biomedical function are a popular topic and one of the latest detects glucose levels without subjecting a person with diabetes to pin pricks. From a Jan. 14, 2015 news item on ScienceDaily,

Scientists have developed the first ultra-thin, flexible device that sticks to skin like a rub-on tattoo and can detect a person’s glucose levels. The sensor, reported in a proof-of-concept study in the ACS [American Chemical Society] journal Analytical Chemistry, has the potential to eliminate finger-pricking for many people with diabetes.

A Jan. 14, 2015 ACS news release on EurekAlert, which originated the news item, describes the current approaches to testing glucose and the new painless technique,

Joseph Wang and colleagues in San Diego note that diabetes affects hundreds of millions of people worldwide. Many of these patients are instructed to monitor closely their blood glucose levels to manage the disease. But the standard way of checking glucose requires a prick to the finger to draw blood for testing. The pain associated with this technique can discourage people from keeping tabs on their glucose regularly. A glucose sensing wristband had been introduced to patients, but it caused skin irritation and was discontinued. Wang’s team wanted to find a better approach.

The researchers made a wearable, non-irritating platform that can detect glucose in the fluid just under the skin based on integrating glucose extraction and electrochemical biosensing. Preliminary testing on seven healthy volunteers showed it was able to accurately determine glucose levels. The researchers conclude that the device could potentially be used for diabetes management and for other conditions such as kidney disease.

There is a Jan. 14, 2015 University of California at San Diego news release (also on EurekAlert) describing the work in more detail,

Nanoengineers at the University of California, San Diego have tested a temporary tattoo that both extracts and measures the level of glucose in the fluid in between skin cells. …

The sensor was developed and tested by graduate student Amay Bandodkar and colleagues in Professor Joseph Wang’s laboratory at the NanoEngineering Department and the Center for Wearable Sensors at the Jacobs School of Engineering at UC San Diego. Bandodkar said this “proof-of-concept” tattoo could pave the way for the Center to explore other uses of the device, such as detecting other important metabolites in the body or delivering medicines through the skin.

At the moment, the tattoo doesn’t provide the kind of numerical readout that a patient would need to monitor his or her own glucose. But this type of readout is being developed by electrical and computer engineering researchers in the Center for Wearable Sensors. “The readout instrument will also eventually have Bluetooth capabilities to send this information directly to the patient’s doctor in real-time or store data in the cloud,” said Bandodkar.

The research team is also working on ways to make the tattoo last longer while keeping its overall cost down, he noted. “Presently the tattoo sensor can easily survive for a day. These are extremely inexpensive—a few cents—and hence can be replaced without much financial burden on the patient.”

The Center “envisions using these glucose tattoo sensors to continuously monitor glucose levels of large populations as a function of their dietary habits,” Bandodkar said. Data from this wider population could help researchers learn more about the causes and potential prevention of diabetes, which affects hundreds of millions of people and is one of the leading causes of death and disability worldwide.

People with diabetes often must test their glucose levels multiple times per day, using devices that use a tiny needle to extract a small blood sample from a fingertip. Patients who avoid this testing because they find it unpleasant or difficult to perform are at a higher risk for poor health, so researchers have been searching for less invasive ways to monitor glucose.

In their report in the journal Analytical Chemistry, Wang and his co-workers describe their flexible device, which consists of carefully patterned electrodes printed on temporary tattoo paper. A very mild electrical current applied to the skin for 10 minutes forces sodium ions in the fluid between skin cells to migrate toward the tattoo’s electrodes. These ions carry glucose molecules that are also found in the fluid. A sensor built into the tattoo then measures the strength of the electrical charge produced by the glucose to determine a person’s overall glucose levels.

“The concentration of glucose extracted by the non-invasive tattoo device is almost hundred times lower than the corresponding level in the human blood,” Bandodkar explained. “Thus we had to develop a highly sensitive glucose sensor that could detect such low levels of glucose with high selectivity.”

A similar device called GlucoWatch from Cygnus Inc. was marketed in 2002, but the device was discontinued because it caused skin irritation, the UC San Diego researchers note. Their proof-of-concept tattoo sensor avoids this irritation by using a lower electrical current to extract the glucose.

Wang and colleagues applied the tattoo to seven men and women between the ages of 20 and 40 with no history of diabetes. None of the volunteers reported feeling discomfort during the tattoo test, and only a few people reported feeling a mild tingling in the first 10 seconds of the test.

To test how well the tattoo picked up the spike in glucose levels after a meal, the volunteers ate a carb-rich meal of a sandwich and soda in the lab. The device performed just as well at detecting this glucose spike as a traditional finger-stick monitor.

The researchers say the device could be used to measure other important chemicals such as lactate, a metabolite analyzed in athletes to monitor their fitness. The tattoo might also someday be used to test how well a medication is working by monitoring certain protein products in the intercellular fluid, or to detect alcohol or illegal drug consumption.

This reminds me a little of the Google moonshot project concerning health diagnostics. Announced in Oct. 2014, that project involved swallowing a pill containing nanoparticles that would circulate through your body monitoring your health and recongregating at your wrist so a band worn there could display your health status (Oct. 30, 2014 article by Signe Brewster for GigaOm). Experts welcomed the funding while warning the expectations seemed unrealistic given the current state of research and technology. This temporary tattoo seems much better grounded in terms of the technology used and achievable results.

Here’s a link to and a citation for the paper,

Tattoo-Based Noninvasive Glucose Monitoring: A Proof-of-Concept Study by Amay J. Bandodkar, Wenzhao Jia, Ceren Yardımcı, Xuan Wang, Julian Ramirez, and Joseph Wang. Anal. Chem., 2015, 87 (1), pp 394–398 DOI: 10.1021/ac504300n Publication Date (Web): December 12, 2014

Copyright © 2014 American Chemical Society

This appears to be an open access paper.

My latest posting posting on medical tattoos (prior to this) is an Aug. 13, 2014 post about a wearable biobattery.

Doctor to patient: “Where would you like your carbon nanotubes implanted?”

A Nov. 3, 2013 news item on ScienceDaily offers some context, as well as, details for a sensing research project with medical applications being conducted at the Massachusetts Institute of Technology (MIT),

Nitric oxide (NO) is one of the most important signaling molecules in living cells, carrying messages within the brain and coordinating immune system functions. In many cancerous cells, levels are perturbed, but very little is known about how NO behaves in both healthy and cancerous cells.

“Nitric oxide has contradictory roles in cancer progression, and we need new tools in order to better understand it,” says Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT. “Our work provides a new tool for measuring this important molecule, and potentially others, in the body itself and in real time.”

Led by postdoc Nicole Iverson, Strano’s lab has built a sensor that can monitor NO in living animals for more than a year. The sensors, described in the Nov. 3 issue of Nature Nanotechnology, can be implanted under the skin and used to monitor inflammation — a process that produces NO. This is the first demonstration that nanosensors could be used within the body for this extended period of time.

The Nov. 3, 2013 MIT news release (also on EurekAlert) written by Anne Trafton, which originated the news item, describes carbon nanotubes and how they are being used as sensing devices by the research team,

Carbon nanotubes — hollow, one-nanometer-thick cylinders made of pure carbon — have drawn great interest as sensors. Strano’s lab has recently developed carbon nanotube sensors for a variety of molecules, including hydrogen peroxide and toxic agents such as the nerve gas sarin. Such sensors take advantage of carbon nanotubes’ natural fluorescence, by coupling them to a molecule that binds to a specific target. When the target is bound, the tubes’ fluorescence brightens or dims.

Strano’s lab has previously shown that carbon nanotubes can detect NO if the tubes are wrapped in DNA with a particular sequence. In the new paper, the researchers modified the nanotubes to create two different types of sensors: one that can be injected into the bloodstream for short-term monitoring, and another that is embedded in a gel so it can be implanted long-term under the skin.

To make the particles injectable, Iverson attached PEG, a biocompatible polymer that inhibits particle-clumping in the bloodstream. She found that when injected into mice, the particles can flow through the lungs and heart without causing any damage. Most of the particles accumulate in the liver, where they can be used to monitor NO associated with inflammation.

“So far we have only looked at the liver, but we do see that it stays in the bloodstream and goes to kidneys. Potentially we could study all different areas of the body with this injectable nanoparticle,” Iverson says.

The longer-term sensor consists of nanotubes embedded in a gel made from alginate, a polymer found in algae. Once this gel is implanted under the skin of the mice, it stays in place and remains functional for 400 days; the researchers believe it could last even longer. This kind of sensor could be used to monitor cancer or other inflammatory diseases, or to detect immune reactions in patients with artificial hips or other implanted devices, according to the researchers.

Once the sensors are in the body, the researchers shine a near-infrared laser on them, producing a near-infrared fluorescent signal that can be read using an instrument that can tell the difference between nanotubes and other background fluorescence.

There is research into how the sensor could be adapted for use in diabetics, from the news release,

Iverson is now working on adapting the technology to detect glucose, by wrapping different kinds of molecules around the nanotubes.

Most diabetic patients must prick their fingers several times a day to take blood glucose readings. While there are electrochemical glucose sensors available that can be attached to the skin, those sensors last only a week at most, and there is a risk of infection because the electrode pierces the skin.

Furthermore, Strano says, the electrochemical sensor technology is not accurate enough to be incorporated into the kind of closed-loop monitoring system that scientists are now working toward. This type of system would consist of a sensor that offers real-time glucose monitoring, connected to an insulin pump that would deliver insulin when needed, with no need for finger pricking or insulin injection by the patient.

“The current thinking is that every part of the closed-loop system is in place except for an accurate and stable sensor. There is considerable opportunity to improve upon devices that are now on the market so that a complete system can be realized,” Strano says.

Here’s a link to and a citation for the paper,

In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes by Nicole M. Iverson, Paul W. Barone, Mia Shandell, Laura J. Trudel, Selda Sen, Fatih Sen, Vsevolod Ivanov, Esha Atolia, Edgardo Farias, Thomas P. McNicholas, Nigel Reuel, Nicola M. A. Parry, Gerald N. Wogan & Michael S. Strano. Nature Nanotechnology (2013) doi:10.1038/nnano.2013.222 Published online 03 November 2013

There is a free preview of the article available via ReadCube Access otherwise this article is behind a paywall.

Emory University’s Shuming Nie discusses Iron Man 3 and nanotechnology and researchers develop an injectable nano-network

I have written about Iron Man 3 before (my May 11, 2012 posting) in the context of its nanotechnology inspirations, specifically, the Extremis Armor. For anyone not familiar with the story, I have a few bits which will bring you up to speed before getting to Shuming Nie’s commentary and some recent research into injectable nano-networks, which seems highly relevant to the Iron Man 3 discourse. First, here’s an excerpt from my May 11, 2012 posting,

In a search for Extremis, I found out that this story reboots the Iron Man mythology by incorporating nanotechnology and alchemy to create a new armor, the Extremis Armor, from the Extremis Armor website (I strongly suggest going to the website and reading the full text which includes a number of illustrative images if you find this sort of thing interesting),

When a bio-tech weapon of mass destruction was unleashed, Tony Stark threw himself onto the bleeding edge between science and alchemy, combining nanotechnology and his Iron Man armor.  The result, which debuted in Iron Man, Vol. IV, issue 5, was the Extremis Armor, Model XXXII, Mark I, which made him the most powerful hero in the world–but not without a price.

There were two key parts to this Extremis-enhanced suit.  The first part is the golden Undersheath, the protective interface between Stark’s nervous system and the second chief part, the External Suit Devices (ESDs), a.k.a. the red armor plating.

The Undersheath to the Iron Man suit components was super-compressed and stored in the hollows of Stark’s bones. The sheath material exited through skeletal pores and slid between all cells to self-assemble a new “skin” around him.  This skin provides a complete interface to the Iron Man suit components and can perform numerous other functions. (The process in reverse withdrew the Undersheath back into these specially modified areas of Tony Stark’s bone marrow tissue.)

The Undersheath is a nano-network that incorporates peptide-peptide logic (PPL), a molecular computational system made of superconducting plastic impregnated molecular chains. [my emphasis added for May.6.13 posting]  The PPL handles, among other things: memory, critical logic paths, comparative “truth” tables, automatic response look-up tables, data storage, communication, and external sensing material interface.

The lattice assembly is a stress-compression truss with powered interstitial joints.  This can surround the PPL material and guide it through Stark’s body.  This steerable, motile lattice framework is commanded by the PPL molecule computational mentality.  The metallic component to the lattice is a controlled mimetic artifact that can take on the characteristics of most elements.  Even unusual combinations of behaviors such as extreme hardness and flexibility.

The combination of the two nano-scale materials allows for a very dense non-traditional computer that can change the fabric of its design in very powerful ways. The incorporation of the Undersheath in Stark’s entire nervous system renders reflex-level computer responses to pan-spectrum stimuli.

Anthony Stark’s Bio/Metalo-Mimetic Material concept is a radical departure from the traditional solid-state underpinnings of his prior Iron Man suit designs.  Making use of nano-scale assembly technology, “smart” molecules can be made atom by atom. The design allows for simple computers to be linked into a massive parallel computer that synthesizes human thought protocols.

The External Suit Devices (ESDs), the red armor plates, were made via mega-nano technology that has assembled atoms into large, discreet effectors.  This allows for the plates to be collapsable to very small volumes for easy storage and carried in Stark’s briefcase. The ESDs were commanded by the Undersheath and were self-powered by high-capacity Kasimer plates.  They were equipped with large arrays of nano-fans that allow flight.  Armoring-up was done by drawing the suit to Stark via a vectored repulsor field, just lightly pushing them from different angles.

The armor’s memory-metal technology renders it lightweight and flexible while not in use, but extremely durable when polarized.  The armor was strong, of course, but it could be made even stronger by rerouting repulsor input to reinforce the armor’s mass.

Stark’s skin is now a part of the suit, when engaged.  [emphasis mine] Comfort is relative because the suit rapidly responds to any discomfort, from impacts to high temperatures, from itching to scratching.  The suit’s protocols include semi-autonomy when needed.  Where Stark ends and the suit begins is flexible.  The exact nature of the artificial Extremis Virus is not known (especially because Stark recompiled the dose, then tweaked the nutrients and suspended metals, radically altering Maya Hansen’s [the character Rebecca Hall will reputedly play] formulations).  The effect it has had on Stark’s body is to allow the presence of so much alien material within his body without trauma.

Because of the bio-interface between Tony and the armor, he could utilize the suit to its fullest potential and also instantly access computers and any digital system worldwide at the speed of thought.  He was biologically integrated with his armor, one with it, imbued with unprecedented powers and abilities.  He channeled and processed data, emergency signals, and satellite reconnaissance from every law enforcement, military, and intelligence service in the world–in his head.  He could send electronic signals and make phone calls with his mind.  He could see through satellites.  Plus he had the ability to transmit whatever he saw (from his visual cortex) to other people’s display screens.  The computer’s cybernetic link enables him to operate all of the armor’s functions, as well as providing a remote link to other computers (as Stark is now part of the armor this connection is seamless).  The armor’s system was connected to the global mainframe via StarkTech servers.

I also like this more generalized description of the technology in the Wikipedia essay on Extemis Comics (Note: A link has been removed),

Extremis has been referred to as a “virus” constantly since the story. The verbatim description offered by its inventor Maya Hansen, goes: “…Extremis is a super-soldier solution. It’s a bio-electronics package, fitted into a few billion graphite nanotubes and suspended in a carrier fluid. [emphasis mine] A magic bullet, like the original super-soldier serum—all fitted into a single injection. It hacks the body’s repair center—the part of the brain that keeps a complete blue print of the human body. When we’re injured, we refer to that area of the brain to heal properly. Extremis rewrites the repair center. In the first stage, the body essentially becomes an open wound. The normal human blueprint is being replaced with the Extremis blueprint. The brain is being told the body is wrong. Extremis protocol dictates that the subject be placed on life support and intravenously fed nutrients at this point. For the next two or three days, the patient remains unconscious within a cocoon of scabs. (…) Extremis uses the nutrients and body mass to grow new organs. Better ones…”

A Postmedia movie reviewer, Katherine Monk noted this about the plot in her May 3, 2013 review of Iron Man 3 ,

Apparently, back in the early days of genetic engineering, a brilliant, zit-faced scientist (Guy Pearce) offered Tony a piece of a lucrative patent that had the potential to alter the human body, and even regenerate amputated limbs.

Tony walked away from the offer as well as the pretty girl (Rebecca Hall) who worked for the genetic engineer, but in the opening sequence, we see the technology was successfully developed and tested. It makes people superhuman, but it can also make them spontaneously combust, leaving great craters and human casualties behind.

Now for the video commentary, Dr. Shuming Nie, Biomedical Engineering at Emory University, offers some scientific insight into the science and the fiction of ‘extremis’ as per Iron Man 3 in his YouTube video,

Keeping on the science theme,  researchers at North Carolina State University (NCSU) and other institutions announced an injectable nano-network for diabetics in a May 3, 2013 news release on EurekAlert,

In a promising development for diabetes treatment, researchers have developed a network of nanoscale particles that can be injected into the body and release insulin when blood-sugar levels rise, maintaining normal blood sugar levels for more than a week in animal-based laboratory tests. The work was done by researchers at North Carolina State University, the University of North Carolina at Chapel Hill, the Massachusetts Institute of Technology and Children’s Hospital Boston.

“We’ve created a ‘smart’ system that is injected into the body and responds to changes in blood sugar by releasing insulin, effectively controlling blood-sugar levels,” says Dr. Zhen Gu, lead author of a paper describing the work and an assistant professor in the joint biomedical engineering program at NC State and UNC Chapel Hill. “We’ve tested the technology in mice, and one injection was able to maintain blood sugar levels in the normal range for up to 10 days.”

Here’s how the smart system is achieved,

The new, injectable nano-network is composed of a mixture containing nanoparticles with a solid core of insulin, modified dextran and glucose oxidase enzymes. When the enzymes are exposed to high glucose levels they effectively convert glucose into gluconic acid, which breaks down the modified dextran and releases the insulin. The insulin then brings the glucose levels under control. The gluconic acid and dextran are fully biocompatible and dissolve in the body.

Each of these nanoparticle cores is given either a positively charged or negatively charged biocompatible coating. The positively charged coatings are made of chitosan (a material normally found in shrimp shells), while the negatively charged coatings are made of alginate (a material normally found in seaweed).

When the solution of coated nanoparticles is mixed together, the positively and negatively charged coatings are attracted to each other to form a “nano-network.” Once injected into the subcutaneous layer of the skin, the nano-network holds the nanoparticles together and prevents them from dispersing throughout the body. Both the nano-network and the coatings are porous, allowing blood – and blood sugar – to reach the nanoparticle cores.

“This technology effectively creates a ‘closed-loop’ system that mimics the activity of the pancreas in a healthy patient, releasing insulin in response to glucose level changes,” Gu says. “This has the potential to improve the health and quality of life of diabetes patients.”

For anyone who’s interested in researching further, heres’ a citation for and a link to the paper,

Injectable Nano-Network for Glucose-Mediated Insulin Delivery by Zhen Gu, Alex A. Aimetti, Qun Wang, Tram T. Dang, Yunlong Zhang, Omid Veiseh, Hao Cheng, Robert S. Langer, and Daniel G. Anderson. ACS Nano, Article ASAP DOI: 10.1021/nn400630x Publication Date (Web): May 2, 2013

Copyright © 2013 American Chemical Society

The paper is behind a paywall. Meanwhile, there are discussions about moving these injectable nano-networks into human clinical trials. As Nie notes, Iron Man 3 hints at new medical technologies which will be achievable in the next 10 or so years, although we may have to wait 100 to 150 years for  Extremis armor.

I’ll cry if I want to—measuring glucose levels in your tears

If you look closely, you’ll see a tiny sensor beneath the eye. Inside there are nano-size biosensors which can detect your glucose levels in your tears (or sweat, if prefer). For a diabetic, checking glucose levels has to be done daily by pricking the skin to draw blood.

With this nano-sized biosensor, diabetes patients can measure their glucose levels with the fluid from the tears of their eyes. (copyright Fraunhofer IMS)

Sept. 4, 2012 news item on Nanowerk provides more details,

Pricking a finger everyday is just part of everyday life for many diabetes patients. A non-invasive measurement approach could release them from the constant pain of pin pricks. The linchpin is a biosensor engineered by Fraunhofer researchers: A tiny chip combines measurement and digital analysis – and can be radioed to a mobile device.

The Sept. 3, 2012 news release from Fraunhofer, an application-oriented research organization, provides more detail about the technology and its advantages,

The principle of measurement involves an electrochemical reaction that is activated with the aid of an enzyme. Glucose oxidase converts glucose into hydrogen peroxide (H2O2) and other chemicals whose concentration can be measured with a potentiostat. This measurement is used for calculating the glucose level. The special feature of this biosensor: the chip, measuring just 0.5 x 2.0 millimeters, can fit more than just the nanopotentiostat itself. Indeed, Fraunhofer researchers have attached the entire diagnostic system to it. “It even has an integrated analog digital converter that converts the electrochemical signals into digital data,” explains Tom Zimmermann, business unit manager at IMS. The biosensor transmits the data via a wireless interface, for example to a mobile receiver. Thus, the patient can keep a steady eye on his or her glucose level. “In the past, you used to need a circuit board the size of a half-sheet of paper,” says Zimmermann. “And you also had to have a driver. But even these things are no longer necessary with our new sensor.”

The minimal size is not the only thing that provides a substantial advantage over previous biosensors of this type. In addition, the sensor consumes substantially less power. Earlier systems required about 500 microamperes at five volts; now, it is less than 100 microamperes. That increases the durability of the system – allowing the patient to wear the sensor for weeks, or even months. The use of a passive system makes this durability possible. The sensor is able to send and receive data packages, but it can also be supplied with power through radio frequency.

The glucose sensor was engineered by the researchers at Noviosens, a Dutch medical technology firm. Since it can be manufactured so cost-effectively, it is best suited for mass production.

This looks pretty exciting. Of course, I’d still like to see find out the level of accuracy for this new way to measure glucose as compared to the current technique (no mention of clinical trials). Also, how do you affix the sensor to your skin? Is there a glue? Can you accidentally wash, wipe,  or knock your sensor off? Or, is it difficult to remove? For people who do choose to wear it beneath an eye, how does makeup affect the sensor?

Assuming that the accuracy is the same or better and that any pitfalls due to wearing a sensor have been addressed, I imagine the next hurdle will be scaling up production.

As for the ‘I’ll cry if I want to’ part of the headline for this piece, I have shamelessly borrowed [corrected 2:27 pm PDT, Sept. 5, 2012] from Lesley Gore’s 1963 hit, ‘I’s my party and I’ll cry if want to’. I’ve never loved the lyrics (for the most part) but the chorus has a haunting quality (as far as I’m concerned). Here is Lesley Gore,

Blood, tears, and urine for use in diagnostic tools

Frankly, I’d rather just spit into a cup or onto a slide for diagnostic tests than having to supply urine or have my blood drawn. I don’t think that day has arrived yet but scientists at Purdue University (Indiana, US) have made a breakthrough. From the Aug. 23, 2012 news item on ScienceDaily,

Researchers have created a new type of biosensor that can detect minute concentrations of glucose in saliva, tears and urine and might be manufactured at low cost because it does not require many processing steps to produce.

“It’s an inherently non-invasive way to estimate glucose content in the body,” said Jonathan Claussen, a former Purdue University doctoral student and now a research scientist at the U.S. Naval Research Laboratory. “Because it can detect glucose in the saliva and tears, it’s a platform that might eventually help to eliminate or reduce the frequency of using pinpricks for diabetes testing. We are proving its functionality.”

Claussen and Purdue doctoral student Anurag Kumar led the project, working with Timothy Fisher, a Purdue professor of mechanical engineering; D. Marshall Porterfield, a professor of agricultural and biological engineering; and other researchers at the university’s Birck Nanotechnology Center.

The originating Aug. 20, 2012 Purdue University news release by Emil Venere provides details as to how this biosensor works,

The sensor has three main parts: layers of nanosheets resembling tiny rose petals made of a material called graphene, which is a single-atom-thick film of carbon; platinum nanoparticles; and the enzyme glucose oxidase.

Each petal contains a few layers of stacked graphene. The edges of the petals have dangling, incomplete chemical bonds, defects where platinum nanoparticles can attach. Electrodes are formed by combining the nanosheet petals and platinum nanoparticles. Then the glucose oxidase attaches to the platinum nanoparticles. The enzyme converts glucose to peroxide, which generates a signal on the electrode.

“Typically, when you want to make a nanostructured biosensor you have to use a lot of processing steps before you reach the final biosensor product,” Kumar said. “That involves lithography, chemical processing, etching and other steps. The good thing about these petals is that they can be grown on just about any surface, and we don’t need to use any of these steps, so it could be ideal for commercialization.”

In addition to diabetes testing, the technology might be used for sensing a variety of chemical compounds to test for other medical conditions.

Here’s a representation of the ‘rose petal’ nanosheets,

These color-enhanced scanning electron microscope images show nanosheets resembling tiny rose petals. The nanosheets are key components of a new type of biosensor that can detect minute concentrations of glucose in saliva, tears and urine. The technology might eventually help to eliminate or reduce the frequency of using pinpricks for diabetes testing. (Purdue University photo/Jeff Goecker)
Download Photo

My most recent piece, prior to this, about less invasive diagnostic tests was this May 8, 2012 posting on a handheld diagnostic device that tests your breath for disease.

Alberta’s Domino (point-of-care diagnostic) and Navacim (nano drug delivery) competing for $175,000 prize

It’s interesting that two nanomedicine products are in contention for TEC Edmonton‘s NanoVenture Prize. It’s a new prize category for the business accelerator in this, their 10th anniversary year. From TEC Edmonton’s March 27, 2012 news release,

The NanoVenturePrize finalists are Aquila Diagnostics of Edmonton and Calgary’s Parvus Therapeutics.

Aquila Diagnostics uses the Domino nanotechnology platform developed at the University of Alberta to provide on-site, easy-to-use genetic testing that can quickly test for infectious diseases and pathogens in livestock. The mobile diagnostic platform is portable, low-cost, fast and easy to use.

Parvus Therapeutics’ breakthrough nanomedicines may hold the cure for difficult-to-treat autoimmune diseases like type 1 diabetes, multiple sclerosis and inflammatory bowel disease. Parvus’ new Navacim medicines are nanoparticles coated with immune system proteins that can target specific autoimmune conditions.

The University of Alberta has issued its own April 24, 2012 news release by Bryan Alary about the Domino,

Dubbed the Domino, the technology—developed by a U of A research team—has the potential to revolutionize point-of-care medicine. The innovation has also earned Aquila Diagnostic Systems, the Edmonton-based nano startup that licensed the technology, a shot at $175,000 as a finalist for the TEC NanoVenturePrize award.

“We’re basically replacing millions of dollars of equipment that would be in a conventional, consolidated lab with something that costs pennies to produce and is field portable so you can take it where needed. That’s where this technology shines,” said Jason Acker, an associate professor of laboratory medicine and pathology at the U of A and chief technology officer with Aquila.

The Domino employs polymerase chain reaction technology used to amplify and detect targeted sequences of DNA, but in a miniaturized form that fits on a plastic chip the size of two postage stamps. The chip contains 20 gel posts—each the size of a pinhead—capable of identifying sequences of DNA with a single drop of blood.

Each post performs its own genetic test, meaning you can not only find out whether you have malaria, but also determine the type of malaria and whether your DNA makes you resistant to certain antimalarial drugs. It takes less than an hour to process one chip, making it possible to screen large populations in a short time.

“That’s the real value proposition—being able to do multiple tests at the same time,” Acker said, adding that the Domino has been used in several recently published studies, showing similar accuracy to centralized labs.

Linda Pilarski, an oncology professor at the University of Alberta (mentioned in my Jan. 4, 2012 posting about her diagnostics-on-a-chip work), and her team developed Domino according to the April 25, 2012 news item on Nanowerk,

In 2008, her team received $5 million over five years from Alberta Innovates Health Solutions to perfect and commercialize the technology. As an oncologist, Pilarski is interested in its pharmacogenomic testing capabilities, such as determining whether breast cancer patients are genetically disposed to resist certain drugs.

“With most cancers you want to treat the patient with the most effective therapeutic as possible,” she said. “That’s what this does: it really enables personalized medicine. It will be able to test every patient at the right time, right in their doctor’s office. That’s currently not feasible because it’s too expensive.”

This product is intended for the market but not the one you might expect (from the April 25, 2012 news item on Nanowerk),

Along with its versatility, two key selling points are affordability and portability, with each portable box expected to cost about $5,000 and each chip a few dollars, says Aquila president David Alton. It’s also designed to be easy to use and rugged—important features for the livestock industry, the company’s first target market. [emphasis mine] The Domino will be put through trials within a year at one of the country’s largest feedlots in southern Alberta.

Alton credits Aquila’s relationship with the U of A, not just for the research but for the business relationship with TEC Edmonton that has helped the company license and patent Domino. TEC Edmonton is a joint venture between the U of A and Edmonton Economic Development Corporation with resources and expertise to help startups in the early stages of operations.

“We see a huge potential market for the technology and we’re looking at applying the technology developed here at the U of A to markets first in Alberta and then globally, to address important health issues here and throughout the world.”

Given that the originator is an oncologist I really wasn’t expecting the first market to be livestock industry.

I have had a little less luck getting information about Parvus Therapeutics’ Navacim technology as they’ve not issued a news release about their competition for this prize but I did find some information on their website, from an April 8, 2010 news release about the Navacim technology being featured in a Popular Science article,

Parvus Therapeutics reports that an article entitled “Nanotech Vaccine Successfully Cures Type-1 Diabetes in Mice” has been published at the website of Popular Science. The article, authored by Alessandra Calderin, describes the Parvus Navacim technology and includes remarks from Parvus’ Founder and Chief Scientific Officer, Dr. Pere Santamaria.

The article notes that,

“The technology behind the nanovaccine, following further research, may prove widely applicable to treat other autoimmune diseases, like arthritis and multiple sclerosis, as well.”

You may want to take a look at the news brief by Calderin. Here’s more about the technology, from the Introducing Navacims webpage on the Parvus Therapeutics website,

Our nanotechnology-based therapeutic platform and Navacims, the therapeutic candidates, are the result of two related discoveries: A new class of immune cell, and a new way to treat autoimmunity that these cells provide. Here we provide a very brief summary of how these discoveries came about and what they have led to since.

This summary is also intended as a roadmap to the contents of this technology section of our website, which we will role out over a period of weeks and adapt based on reader feedback and requests. The casual reader may find the background information helpful, while our professional colleagues will probably want to get straight down to the technical details and published papers. We have tried to design the content to cater to all tastes and it can be read in any order, although like all good stories, we highly recommend starting at the beginning.

As with the remainder of our site, we have injected a little colour and a little humour to keep your spirits up if the science appears a little daunting. In all, we have attempted to strike a balance between scientific detail and general accessibility and if you think we have that balance wrong, or you feel something is missing, please let us know — via the form on the Contacts page — and we will try to put it right. We love to hear from you.

The Story So Far

[1] In a series of experiments, only tangentially related to our current activities, we designed p-MHC-coated nanoparticles (NPs) as a way to load iron into effector T-cells and have them ferry the iron to the pancreas so we could visualize pancreatic islet cell inflammation in-vivo, in real-time — this amounts to the use of a Magnetic Resonance Imaging (MRI) contrast agent.

[2] It occurred to us that we might be able to use these p-MHC-NPs to delete the high avidity cytotoxic effector T cells driving disease in the NOD mouse model of type 1 diabetes (T1D).

[3] Too our surprise, therapy did not delete, but rather, very significantly expanded autoregulatory T cell pools.

[4] After careful analysis we were able to conclude that:

pMHC-NPs, now called Navacims, selectively expand a population of low avidity autoregulatory memory T cells that the disease itself generates — this population of cells was previously unknown to science. These cells target and kill antigen presenting cells (APCs), and consequently, interput the process whereby all the cytotoxic effector T cell lineages active in a disease are activated and expanded.

Navacims also directly deplete the high avidity cytotoxic effector T cells cognate to the pMHC carried by the nanoparticle. This removes one lineage of cells that cause damage in disease, but given the many antigens, and consequently the many T cell lineages, the overall therapeutic effect of removing one type is inconsequential compared to the indirect effect of the Navacim on APCs that removes all lineages.

The removal of APCs and the concomitant loss of multiple cytotoxic effector T-cell lineages that drive disease amounted to a cure for T1D in the NOD mouse model.

[5] We believe that Navacims have the potential to become the long sought after ideal treatment for autoimmunity; a therapeutic that restores immunological tolerance — the principal problem in autoimmunity — while depleting autoreactive cells that mediate the damaging effects of disease.

[6] Navacims appear to be safe and very well tolerated in animal experiments that have lasted many months, although we caution that we have yet to complete formal toxicological studies.

[7] Navacims are highly modular and a family of Navacims can be almost identical, differing only in the very short antigenic peptide that gives each one its specificity for a particular disease.

[8] Because they are so similar, we beleive that industry-standard manufacturing processes will need few if any modifications in order to produce a particular Navacim.

[9] We have protected our discoveries with patent applications in the United States, Europe, Canada, and beyond.

[10] Our work has been published in top-ranked peer-reviewed journals and showcased in the best of the popular science publications.

Good luck to both companies in their future endeavours.

ETA April 30,2012: According to the April 27, 2012 article in the Edmonton Journal, Parvus Therapeutics won the $175, 000 prize in TEC Edmonton’s new prize category.,

This year’s awards, the 10th consecutive, added a new category for nanotechnology firms. TEC partnered with Alberta Innovates — Technology Futures for the new award. Calgary’s Parvus Therapeutics, which makes medicine aimed at autoimmune diseases such as Type 1 diabetes and multiple sclerosis, beat out Edmonton’s Aquila Diagnostic Systems for first place. The category’s prizes totalled $175,000 in cash and services.

Nano-G, obesity, market opportunities, and thoughts on perfection

A new treatment platform that addresses diabetes and/or obesity issues, Nano-G is being promoted as a “multi billion dollar opportunity.” From the April 3, 2012 news release on Business Wire,

“Nano-G fulfills the long overdue need for a rapidly self-administered, auto-injector delivered glucagon for hypoglycemia rescue and is the missing piece needed for the bi-hormonal pump and novel combination therapies for obesity,” noted Dr. Andrew Chen, LPI’s [Latitude Pharmaceuticals, Inc.] president. “With its excellent stability and regulatory familiarity, Nano-G can be rapidly commercialized under a low risk, low-cost 505(b)(2) NDA to provide important new therapeutic options for diabetes and obesity that were never before possible. We are now seeking partners to commercialize this exceptional multi billion dollar opportunity.”

I first read about Nano-G in an April 5, 2012 news item by Cameron Chai on Azonnano and being made curious checked out Latitude Pharmaceutical’s website to find this (excerpted from the home page),

LATITUDE Pharmaceuticals is a leading-edge contract research boutique that provides innovative drug formulation services to the biotech and pharmaceutical industries. Since our founding in 2003, we have serviced over 130 client companies and developed a reputation for creative approaches, reliability, rapid turnaround, client success and satisfaction.  We are formulation specialists that can tackle the tough formulation challenges of insoluble (un-dissolvable) compounds and we have the track record and experience to do this.

LATITUDE has an armamentarium of unique techniques and technologies to address problematic formulation issues such as insolubility, poor absorption, and vein irritation that are often encountered in new drug development.

Thank you, Latitude, for a new word, armamentarium. More sadly I was not able to find additional information about Nano-G. So I went back to the news release to find this,

LATITUDE Pharmaceuticals, Inc. (LPI) announced today that its scientists have developed the first ever, ready-to-inject, stable liquid glucagon formulation (Nano-G). A glucagon formulation with these properties had been a highly sought after Holy Grail of drug developers for decades.

Currently, glucagon is indicated for emergency treatment of insulin-induced hypoglycemia and as a diagnostic aid for radiological examinations. Researchers have long been interested in evaluating glucagon for hypoglycemia prevention, the bi-hormonal insulin/glucagon pump and the treatment of obesity but have been thwarted by the absence of a stable injectable glucagon formulation.

Glucagon is a notoriously insoluble and unstable molecule and is therefore provided as a dried powder. Before use, the glucagon is dissolved in an acid solution by following a cumbersome, eight-step procedure that becomes an outsized task during life-threatening hypoglycemia.

Nano-G is a pH-neutral, isotonic, detergent-free, aqueous formulation that contains only FDA-approved injectable ingredients. Results from rigorous 6-month real-time and accelerated ICH stability testing predict a 2-yr shelf-life. Nano-G is also stable at body temperature, making it highly suitable for subcutaneous infusion pump delivery.

Elsewhere in the news release, it’s noted that Nano-G is based on the company’s ‘Nano-E injectable nanoemulsion drug delivery program.’ The company doesn’t offer much in the way of technical detail, from the Proprietary Formulation Platform Technologies page,

These innovative dosage forms, which have patents pending, may solve your formulation challenges as well as provide new IP for your API and include:

  • Sustained release oral dosage forms (ALLDay, Minspheres, and others)
  • Bioavailability enhancing oral dosage forms for insoluble drugs
  • Injectable emulsions for low solubility, high drug load compounds (Nano-E)
  • Injectable emulsions that reduce vein irritation (Nano-E)
  • Stability enhancing and lyophilizable formulations
  • Sustained release subcutaneous and subdermal depots (PG Depot)
  • Fast drying, non-irritating adhesive gels for transdermal delivery (GelPatch)

It occurred to me while reading the news release that not only is obesity very big business as governments in Canada, the US, and elsewhere pour money into obesity research but it’s one more target in this war we’ve declared on human imperfection. Increasingly it seems that we (governments, corporations, and other formal and informal institutions) are pressed to remain youthful forever, demonstrate socially approved personality traits (shyness, begone!), maintain the ‘right’ weight, etc. as we relentlessly pursue a vision of perfection that remains always just beyond grasp.

In the meantime, I expect for those who suffer from diabetes, the news about Nano-G is promising.