Tag Archives: Dr. Claude Ostiguy

Misunderstanding the data or a failure to research? Georgia Straight article about nanoparticles

It’s good to see articles about nanotechnology. The recent, Tiny nanoparticles could be a big problem, article written by Alex Roslin for the Georgia Straight (July 21, 2011 online or July 21-28, 2011 paper edition) is the first I’ve seen on that topic in that particular newspaper. Unfortunately, there are  some curious bits of information included in the article, which render it, in my opinion, difficult to trust.

I do agree with Roslin that nanoparticles/nanomaterials could constitute a danger and there are a number of studies which indicate that, at the least, extreme caution in a number of cases should be taken if we choose to proceed with developing nanotechnology-enabled products.

One of my difficulties with the article is the information that has been left out. (Perhaps Roslin didn’t have time to properly research?) At the time (2009) I did read with much concern the reports Roslin mentions about the Chinese workers who were injured and/or died after working with nanomaterials. As Roslin points out,

Nanotech already appears to be affecting people’s health. In 2009, two Chinese factory workers died and another five were seriously injured in a plant that made paint containing nanoparticles.

The seven young female workers developed lung disease and rashes on their face and arms. Nanoparticles were found deep in the workers’ lungs.

“These cases arouse concern that long-term exposure to some nanoparticles without protective measures may be related to serious damage to human lungs,” wrote Chinese medical researchers in a 2009 study on the incident in the European Respiratory Journal.

Left undescribed by Roslin are the working conditions; the affected people were working in an unventilated room. From the European Respiratory Journal article (ERJ September 1, 2009 vol. 34 no. 3 559-567, free access), Exposure to nanoparticles is related to pleural effusion, pulmonary fibrosis and granuloma,

A survey of the patients’ workplace was conducted. It measures ∼70 m2, has one door, no windows and one machine which is used to air spray materials, heat and dry boards. This machine has three atomising spray nozzles and one gas exhauster (a ventilation unit), which broke 5 months before the occurrence of the disease. The paste material used is an ivory white soft coating mixture of polyacrylic ester.

Eight workers (seven female and one male) were divided into two equal groups each working 8–12 h shifts. Using a spoon, the workers took the above coating material (room temperature) to the open-bottom pan of the machine, which automatically air-sprayed the coating material at the pressure of 100–120 Kpa onto polystyrene (PS) boards (organic glass), which can then be used in the printing and decorating industry. The PS board was heated and dried at 75–100°C, and the smoke produced in the process was cleared by the gas exhauster. In total, 6 kg of coating material was typically used each day. The PS board sizes varied from 0.5–1 m2 and ∼5,000 m2 were handled each workday. The workers had several tasks in the process including loading the soft coating material in the machine, as well as clipping, heating and handling the PS board. Each worker participated in all parts of this process.

Accumulated dust particles were found at the intake of the gas exhauster. During the 5 months preceding illness the door of the workspace was kept closed due to cold outdoor temperatures. The workers were all peasants near the factory, and had no knowledge of industrial hygiene and possible toxicity from the materials they worked with. The only personal protective equipment used on an occasional basis was cotton gauze masks. According to the patients, there were often some flocculi produced during air spraying, which caused itching on their faces and arms. It is estimated that the airflow or turnover rates of indoor air would be very slow, or quiescent due to the lack of windows and the closed door. [emphases mine]

Here’s the full text from the researchers’ conclusion,

In conclusion, these cases arouse concern that long-term exposure to some nanoparticles without protective measures may be related to serious damage to human lungs. It is impossible to remove nanoparticles that have penetrated the cell and lodged in the cytoplasm and caryoplasm of pulmonary epithelial cells, or that have aggregated around the red blood cell membrane. Effective protective methods appear to be extremely important in terms of protecting exposed workers from illness caused by nanoparticles.

There is no question that serious issues about occupational health and safety with regards to nanomaterials were raised. But, we work with dangerous and hazardous materials all the time; precautions are necessary whether you’re working with hydrochloric acid or engineered nanoparticles. (There are naturally occurring nanoparticles too.)

Dr. Andrew Maynard (at the time he was the Chief Science Advisor for the Project on Emerging Nanotechnologies, today he is the Director of the University of Michigan’s Risk Science Center) on his 2020 Science blog wrote a number of posts dated Aug. 18, 2009 about this tragic industrial incident, including this one where he culled comments from six other researchers noting some of the difficulties the Chinese researchers experienced running a clinical study after the fact.

The material on silver nanoparticles and concerns about their use in consumer products and possible toxic consequences with their eventual appearance in the water supply seem unexceptionable to me. (Note:  I haven’t drilled down into the material and the writer cites studies unknown to me but they parallel information I’ve seen elsewhere).

The material on titanium dioxide as being asbestos-like was new to me, the only nanomaterial I’d previously heard described as being similar to asbestos is the long carbon nanotube. I am surprised Roslin didn’t mention that occupational health and safety research which is also quite disturbing, it’s especially surprising since Roslin does mention carbon nanotubes later in the article.

There is a Canadian expert, Dr. Claude Ostiguy, who consults internationally on the topic of nanotechnology and occupational health and safety. I wonder why he wasn’t consulted. (Note: He testified before Canada’s House of Commons Standing Committee on Health meeting in June 2010 on this topic. You can find more about this in my June 23, 2011 posting, Nanomaterials, toxicity, and Canada’s House of Commons Standing Committee on Health.)

Quoted quite liberally throughout the article is researcher, Dr.Robert Schiestl (professor of pathology and radiation oncology at the University of California at Los Angeles [UCLA]). This particular passage referencing Schiestl is a little disconcerting,

Schiestl said nanoparticles could also be helping to fuel a rise in the rates of some cancers. He wouldn’t make a link with any specific kind of cancer, but data from the U.S. National Cancer Institute show that kidney and renal-pelvis cancer rates rose 24 percent between 2000 and 2007 in the U.S., while the rates for melanoma of the skin went up 29 percent and thyroid cancer rose 54 percent.

Since Schiestl isn’t linking the nanoparticles to any specific cancers, why mention those statistics? Using that kind of logic I could theorize that the increase in the number and use of cell phones (mobiles) may have something to do with these cancers. Perhaps organic food has caused this increase? You see the problem?

As for the number of nanotechnology-enabled products in use, I’m not sure why Roslin chose to cite the Project on Emerging Nanotechnologies’ inventory which is not scrutinized, i. e., anyone can register any product as nanotechnology-enabled. The writer also mentioned a Canadian inventory listing over 1600 products  cited in an ETC Group report, The Big Downturn? Nanogeopolitics,

Has anyone ever seen this inventory? I’ve been chasing it for years and the only time the Canadian government reports on this inventory is in the Organization for Economic Cooperation and Development (OECD) report (cited by the ETC Group [no. 79 in their list of references] and noted in both my Feb. 1, 2011 posting and my April 12, 2010 posting). Here’s the OECD report, if you’d like to see it for yourself. The top three questions I keep asking myself is where is the report/inventory, how did they determine their terms of reference, and why don’t Canadian taxpayers have easy access to it? I’d best return to my main topic.

As for the material Roslin offers about nanosunscreens I was surprised given the tenor of the article to see that the Environmental Working Group (EWG) was listed as an information source since they recommend mineral sunscreens containing nanoscale ingredients such as titanium dioxide and/or zinc oxide as preferable to sunscreens containing hormone disruptors.  From the EWG page on sunscreens and nanomaterials,

Sunscreen makers offer mineral and non-mineral formulations, as well as products that combine both mineral and non-mineral active ingredients. Mineral formulations incorporate zinc oxide or titanium dioxide in nano- and micro-sized particles that can be toxic if they penetrate the skin. Most studies show that these ingredients do not penetrate through skin to the bloodstream, but research continues. These constitute one in five sunscreens on the market in 2010 and offer strong UVA protection that is rare in non-mineral sunscreens.

The most common ingredients in non-mineral sunscreens are oxybenzone, octisalate, octinoxate, and avobenzone found in 65, 58, 57, and 56 percent of all non-mineral sunscreens on the market, respectively. The most common, oxybenzone, can trigger allergic reactions, is a potential hormone disruptor and penetrates the skin in relatively large amounts. Some experts caution that it should not be used on children. Three of every five sunscreens rated by EWG are non-mineral, and one in five sunscreens combines both mineral and non-mineral active ingredients.

EWG reviewed the scientific literature on hazards and efficacy (UVB and UVA protection) for all active ingredients approved in the U.S. Though no ingredient is without hazard or perfectly effective, on balance our ratings tend to favor mineral sunscreens because of their low capacity to penetrate the skin and the superior UVA protection they offer. [emphasis mine]

(I did find some information (very little) about Health Canada and sunscreens which I discuss in June 3, 2011 posting [if you’re impatient, scroll down about 1/2 way].)

There was some mention of Health Canada in Roslin’s article but no mention of last year’s public consultation, although to be fair, it seemed a clandestine operation. (My latest update on the Health Canada public consultation about a definition for nanomaterials is May 27, 2011.)

I find some aspects of the article puzzling as Roslin is an award-winning investigative reporter. From the kitco bio page,

Alex Roslin is a leading Canadian investigative journalist and active trader based in Montreal. He has won a Canadian Association of Journalists award for investigative reporting and is a five-time nominee for investigative and writing prizes from the CAJ and the National Magazine Awards. He has worked on major investigations for Canada’s premier investigative television program, the fifth estate, and the CBC’s Disclosure program. His writing has appeared in Technical Analysis of Stocks & Commodities, The Financial Post, Toronto Star and Montreal Gazette. He regularly writes about investing for The Montreal Gazette.

I notice there’s no mention of writing in either science or health matters so I imagine this is an early stage piece in this aspect of Roslin’s career, which may explain some of the leaps in logic and misleading information. Happily, I did learn a few things from reading the article and while I don’t trust much of the information in it, I will investigate further as time permits.

In general, I found the tenor of the article more alarmist than informational and I’m sorry about that as I would like to see more information being shared and, ultimately, public discussion in Canada about nanotechnology and other emerging technologies.

Nano Risk Management from France

France’s Agency for Food, Environment, Health and Occupational Safety (Anses, agence nationale de sécurité sanitaire de l’alimentation, de l’environnement et du travail) has proposed a new technique for assessing the risks of nano-based materials. From the news article by Rory Harrington on foodqualitynews.com,

The body has proposed using a method known as “control banding”. The tool, originally developed in the pharmaceutical industry, is designed to guide risk management in fields where there is uncertainty about the required data needed. In this case, the uncertainty centres on both the hazards of nanomaterials and exposure levels. It uses both existing information but also makes a number of assumptions, said Anses.

Under the system, new products are allocated ‘bands’ – which have been developed according to the hazard level of known or similar products. It also takes into account exposure in a work environment.

The method derives minimum prevention measures – either for individuals or collectively – by combining qualitative risk assessment with a risk control band.

“The tool thus allows risk managers to apply a graduated response by taking into account both the potential hazards represented by the nanomaterials concerned and the estimated levels of exposure”, said French scientists.

Anses has produced a report about this proposed technique, Development of a specific Control Banding Tool for Nanomaterials. It turns out there’s a Canadian connection, Claude Ostiguy, Director of the Research and Expertise Support Department at the Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail (IRSST), Montréal, Canada was a member of the expert panel for this project. His specialties are chemistry, industrial hygiene, and nanomaterials. I have written about Dr. Ostiguy previously in my Sept. 27, 2010 posting on Québec’s then new report on the risks of engineered nanoparticles and in my June 23, 2010 posting about the hearing that Canada’s House of Commons Standing Committee on Health held about nanomaterials.

The report (this version of it) is in English but the translation from the French is a little awkward. As for control banding, that looks a lot like a set of guidelines but with more thought than most guidelines I’ve seen.

Quebec’s new report on the risks of engineered nanoparticles

Engineered Nanoparticles; Current Knowledge about OHS [Occupational Health and Safety] Risks and Prevention Measures is the title for a report (2nd edition) written by Claude Ostiguy, Brigitte Roberge, Catherine Woods, and Brigitte Soucy for the Quebec-based Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST). From the news item on Nanowerk,

An initial assessment of the state of scientific knowledge about the occupational health and safety aspects (OHS) related to synthetic nanoparticles (NP) was published by the IRSST in 2006 and covered the scientific literature until the end of 2004. What was found was that OHS knowledge was very fragmentary but that research in this field was rapidly growing. This current document aims to assess the state of current knowledge in this field and summarizes the data available until early 2010.

Overall, what emerges is that NP remain an important source of concern in OHS. In fact, not only does the diversity of commercially available chemical products of nanometric dimensions continue to increase, but also, the information available about the hazards specific to these substances is still very fragmentary. The literature gives us very little information specific to NP relating to their physical hazards like fires or explosions.

In a context of incomplete data for the majority of nanometric substances, it remains impossible to quantify the risks for workers in the majority of situations because the toxicity of the products, the level of dust contamination of workplaces, or their potential to cause fires or explosions remain not extensively documented or totally undocumented. Nevertheless, the majority of the means of exposure control for ultrafine particles should be effective against NP and much research is currently being carried out to confirm this.

In a context of uncertainty about the risks, and with an increasing number of potentially exposed workers, the current report paints a big picture of the OHS knowledge currently available in the NP field. In the absence of specific standards, a preventive and even a precautionary approach are recommended, and a review of the available means for minimizing worker exposure is presented.

The report (over 150 pp.) can be found here. There’s certainly much to appreciate in the report. Here are two bits that I particularly want to highlight, the acknowledgment that nanoparticles aren’t new,

Although the development of NT [nanotechnology] is a modern multidisciplinary science, naturally produced and manmade materials of nanometric dimensions and exposure to particles of other dimensions of mineral or environmental origin, including the fine fraction of nanometric particles, have always existed. Some of the natural nanometric particles are of biological origin – including DNA with a diameter of around 2.5 nm and many viruses (10 to 60 nm) and bacteria (30 nm to 10 μm) — while others are found in desert sand, oil fumes, smog, and fumes originating from volcanic activity or forest fires and certain atmospheric dusts. Among those generated by human activity, we should mention diesel fumes, industrial blast furnace emissions and welding fumes, which contain particles of nanometric dimensions (Teague, 2004). (p. 11 PDF, p. 1, print)

There’s also a very good (in my opinion) description of bottom-up and top-down approaches to engineered nanoparticles,

Nanoparticles can be synthesized by different approaches. Nanoparticle production can be generally categorized into the bottom-up and top-down methods. In the bottom-up approach, nanoparticles are constructed atom-by-atom or molecule-by-molecule. In the top-down approach (top-down), a large structure is gradually underdimensioned, until nanometric dimensions are attained after application of severe mechanical stresses, violent shocks and strong deformations. The two approaches bottom-up and top-down tend to converge in terms of dimensions of the synthesized particles. The bottom-up approach seems richer, in that it allows production of a greater diversity of architectures and often better control of the nanometric state (relatively monodispersed granulometric sizes and distribution, positioning of the molecules, homogeneity of the products). The top-down approach, although capable of higher-volume production, generally makes control of the nanometric state a more delicate operation. (p. 25 PDF, p. 15 print)

Ostiguy (last mentioned in my June 23, 2010 posting [Nanomaterials, toxicity, and Canada’s House of Commons Standing Committee on Health] as an expert witness) and his colleagues offer a good overview of  international, national, and provincial (Québec) research and development efforts including definitions for terms and descriptions of various types of nanoparticles and a discussion about markets. I was expecting something more narrowly focused on occupational health and safety (OHS) but very much appreciate the efforts to contextualize OHS issues within the larger nanotechnology ‘enterprise’ in addition to the OHS material.

Oddly, I found this on the cover page,

Disclaimer

The IRSST makes no guarantee regarding the accuracy, reliability or completeness of the information contained in this document. In no case shall the IRSST be held responsible for any physical or psychological injury [??? and emphasis mine] or material damage resulting from the use of this information.

Note that the content of the documents is protected by Canadian intellectual property legislation.

As for any psychological injury I may received from reading the report, what about injury from reading the disclaimer?

I do have a few nits to pick. Surprisingly since this report was published in July 2010, they did not include any information about an April 2010 nanomaterial definition proposed in the US (my April 27, 2010 posting). More picayune, reference is made to Nanotech BC which has been effectively defunct since Spring 2009 while no mention is made of Nano Ontario which I first noticed in early 2010 (Professor Gilbert Walker responded on behalf of Nano Ontario to Peter Julian’s proposed nanotechnology legislation in my March 29, 2010 posting).

I was also surprised at the certainty expressed about scientific unanimity over the dimensions,

As already mentioned, there is now unanimity in the scientific community on the dimensions of manufactured NP: at least one of their dimensions ranges between one and 100 nm [emphasis mine] and they have different properties than larger-diameter particles made of the same material (ASTM, 2006; BSI, 2008; ISO, 2007, 2008). (p. 49 PDF, p. 39 print)

As I understand it, there’s still some discussion about the one to one hundred nanometre range as I note here in my July 14, 2010 posting,

The comment about the definition sprang out as this issue seems to be at the forefront of many recent discussions on nanotechnology. Fern Wickson and her colleagues highlight the importance of the issue in their recently published paper,

Both the beginning and the end of this range remain subject to debate. Some claim that it should extend as low as 0.1nm (because atoms and some molecules are smaller than 1nm) and as high as 300nm (because the unique properties of the nanoscale can also be observed above 100nm). The boundaries of ‘the nanoscale’ are highly significant in both scientific and political terms because they have the possibility to affect everything from funding, to risk assessment and product labelling. [my commentary, Wickson’s response, and a citation for the paper, etc. can be found in my July 7, 2010 posting]

I do recommend reading the IRSST report if this sort of thing interests you as it offers answers to questions that you may (and, in my case, certainly) have been asking yourself about quantum dots, carbon black, and the state of OHS research and regulations in Canada and elsewhere.

Nanomaterials, toxicity, and Canada’s House of Commons Standing Committee on Health

Thanks to a reader who provided me with a link, I found a document (titled Evidence) about a ‘nanomaterials’ hearing held by Canada’s House of Commons Standing Committee on Health on June 10, 2010 and chaired by Joyce Murray, Member of Parliament, Vancouver Quadra. It makes for interesting reading and you can find it here.

The official title for the hearing was Potential Risks and Benefits of Nanotechnology, which I found out after much digging around. The purpose for the *hearing*  seemed to be the education of the committee members about nanotechnology both generally (what is it? is there anything good about it?) and about its possible toxicology.

For information about the committee and the meeting, go here to find the minutes, the evidence (direct link provided in 1st para.), and your choice of webcasts (English version, French version, and floor version). One comment before you go, keep scrolling down past the sidebar and the giant white box to find the list of meetings along with appropriate links and if you choose to listen to the webcast, wait at least 1 minute for the audio to start. There’s a list of the committee members here, again scroll down past the giant white box to find the information.

I am going to make a few comments about this hearing. I will have to confine myself to a few points as the committee covered quite a bit of ground in the proceedings as they grappled with understanding something about nanotechnology, health and safety issues, benefits, and regulatory frameworks, amongst other issues.

It was unexpected to find that Mihail Roco, a well known figure in the US nanotechnology field, was speaking via videoconference (from the document),

Dr. Mihail Roco (Senior Advisor for Nanotechnology, National Nanotechnology Initiative, National Science Foundation, As an Individual) (p. 1 in print version, p. 3 in PDF)

He did have this to say,

First of all, I would like to present an overview of different themes in the United States, and thereafter make some recommendations, some ideas for the future. [emphasis mine] (p. 5 in print version, p. 7 in PDF)

I have to say my eyebrows raised at Roco’s “… make some recommendations …” comment. While appreciative of his experience and perspective, I’ve sometimes found that speakers from the US tend to give recommendations that are better geared to their own situation and less so to the Canadian one. Thankfully,  he offered unexceptional advice that I heartily agree with,

I would like to say, in conclusion, that it’s important to have an anticipatory, participatory, and adaptive governance approach to nanotechnology in order to capture the new developments and also to prepare people, tools, and organizations for the future. (p. 6 in print version, p. 8 in PDF)

The Canadian guests are not as well known to me save for Dr. Nils Petersen who heads up Canada’s National Institute of Nanotechnology. Here is a list of the Canadian guest speakers,

Mr. (sometimes referred to as Dr. in the document) Claude Ostiguy (Director, Research and Expertise Support Department, Institut de recherche Robert-Sauvé en santé et en sécurité du travail) (p. 1 in print version, p. 3 in PDF)

Dr. Nils Petersen (Director General, National Research Council Canada, National Institute for Nanotechnology) (p. 2 in print version, p. 4 in PDF)

Dr. Claude Emond (Toxicologist, Department of Environmental and Occupational Health, Université de Montréal) (p. 3 in print version, p. 5 in PDF)

Ms. Françoise Maniet (Lecturer and Research Agent, Centre de recherche interdisciplinaire sur la biologie, la santé, la société et l’environnement (CINBIOSE) et Groupe de recherche en droit international et comparé de la consommation (GREDICC), Université du Québec à Montréal) (p. 4 in print version, p. 6 in PDF)

Emond spoke to the need for a national nanotechnology development strategy. He also mentioned communication although I’m not sure he and would agree much beyond the point that some communication programmes are necessary,

The different meetings I attend point out the necessity to integrate the social communication transparency education aspect in nanotechnology development, so many structures already exist around the words. As I said before with OECD, NNI, we also have ISO 229. Now we have a network called NE3LS in Quebec, and we also have this international team we created a few years ago, which I spoke about earlier [he leads an international team in nano safety with members from France, Japan, US, Germany, and Canada].

A Canadian strategy initiative in nanotechnology can be inspired by a group above. In closing the discussion, I want to say there is an urgent need to coordinate the national development of nanotechnology and more particularly in parallel with the nanosafety issue, including research, characterization exposure, toxicology, and assessment. I would like to conclude by saying that Canada has to assume leadership in nanosafety and contribute to this international community rather than wait and see.

The NE3LS in Québec is new to me and I wonder if  they liaise with the team in Alberta last mentioned here in connection with Alberta’s Nanotechnology Asset Map.

In response to a question from the committee member, Mrs. Cathy McLeod, Kamloops—Thompson—Cariboo,

First, because I am someone who is somewhat new to the understanding of this issue, could we take an example of either a cosmetic or a food or something that’s commonplace and follow it through from development into the product so I could understand the pathway of a nanoparticle in a cosmetic product or food? (p. 6 in print version, p. 8 in PDF)

The example Dr. Ostiguy used for his response was titanium dioxide nanoparticles in sunscreens and his focus was occupational safety, i.e., what happens to people working to produce these sunscreens.  The surprising moment came when I saw Dr. Petersen’s response as he added,

In the case of cosmetics, they take that nanoparticle and put it into the cream formulation at a factory site. Then it normally comes out to the consumer encapsulated or protected in one way or another. [emphasis mine]

In general, in those kinds of manufacturing environments the risks are at the start of the process, when you are making the particles and incorporating them into a material, and possibly at the end of the product’s life, when you’re disposing of it. It might then be released in ways that you might not have anticipated—for example, through the wearing down or opening of the cassette of toner or whatever.

I think those are the two areas. Most consumers would see a product in which nanoparticles are encapsulated or incorporated— maybe inside a cellphone, or something like that—and often not be exposed in that way. (p. 7 in print version, p. 9 in PDF)

As I understand Petersen’s comments, he believes that the nanoparticles in sunscreens (and other cosmetics) do not make direct contact as they are somehow incorporated into a shell or capsule. He then makes a comparison to cell phones to prove his point. This is incorrect. Yes, any nanomaterials in a cell phone are bound to the product (cell phones are not rubbed onto the skin) but the nanoparticles in sunscreens make direct contact and *penetrate the skin. *ETA June 28, 2010: It has not been unequivocally proved that nanoparticles penetrate healthy adult skin. I apologize for the error. ** ETA July 19, 2010: As per the July 18, 2010 posting on Andrew Maynard’s 2020 Science blog, the evidence so far suggests that there is no skin penetration by nanoparticles in sunscreens.

I have posted extensively about nanoparticles and sunscreens and will try later to lay in some links either to my posts or to more informed parties as to safety issues regarding consumers.

There was an interesting development towards the end of the meeting with Carolyn Bennett, St. Paul’s,

Firstly, I wanted to apologize for being late. I think some of you know it was the tenth anniversary of CIHR [Canadian Institutes of Health Research] this morning, the breakfast, and some of us who were there at the birth were supposed to be there at the birthday party. So my apologies.

What happened on the way in to the breakfast was that I ran into Liz Dowdeswell, from the Council of Canadian Academies, and it seems that they have just done a review of nanotechnology in terms of pros and cons. [emphasis mine]So I would first ask the clerk and the analyst to circulate that report to the committee, because I think it might be very helpful to us, and then I think it would be interesting to know if the witnesses had seen it and whether they had further comments on whether you felt it was taking Canada in the right direction.

The report mentioned by Bennett was released in July 8, 2008 (news release). You can find the full report here and the abridged version here.

I wouldn’t describe this report as having just been “done” but I think that as a primer it stands up well. (You can read my 2008 comments here.)

I do find it sad that neither this committee nor Peter Julian the Member of Parliament who earlier this year tabled the first bill concerned with nanotechnology were aware of the report’s existence. It adds weight to an issue (nobody in Ottawa seems to be aware of their work) for the Council of Canadian Academies mentioned on this blog here (where you will find links to a more informed discussion by Rob Annan at Don’t leave Canada behind and the folks at The Black Hole).

I’m glad to see there’s some interest in nanotechnology in Ottawa and I hope they continue to dig for more information.

I have sent Joyce Murray a set of questions which I hope she’ll answer about the committee’s interest in nanotechnology and about the science resources and advice available to the Members of Parliament.

ETA June 30, 2010: I received this correction from Mr. Julian’s office today:

I would like to bring to your attention incorrect information provided in the Frogheart posting on June 23, Nanomaterials, Toxicity, and Canada’s House of Commons Standing Committee on Health. Of particular concern are the closing comments:

“I do find it sad that neither this committee nor Peter Julian the Member of Parliament who earlier this year tabled the first bill concerned with nanotechnology were aware of the report’s existence. It adds weight to an issue (nobody in Ottawa seems to be aware of their work) for the Council of Canadian Academies mentioned on this blog here (where you will find links to a more informed discussion by Rob Annan at Don’t leave Canada behind and the folks at The Black Hole). I’m glad to see there’s some interest in nanotechnology in Ottawa and I hope they continue to dig for more information.”

Mr. Julian is indeed aware of the Council of Canadian Academies excellent report on nanotechnology in 2008. The document is one of many that formed the basis of Mr. Julian’s Bill C-494 which was tabled in Parliament on March 10. It is incorrect to assume that Mr. Julian was not aware of the report’s existence.

There is indeed interest in nanotechnology in Ottawa. Canadians should expect sustained interest when the House of Commons reconvenes in September with a focus on better ensuring that nanotechnology’s benefits are safely produced in the marketplace.

I apologize for the error and I shouldn’t have made the assumption. I am puzzled that the Council of Canadian Academies report was not mentioned in the interview Mr. Julian very kindly gave me and where I explicitly requested some recommendations for Canadians who want to read up about nanotechnology. Mr. Julian’s reply (part 2 of the interview) did not include a reference to the Council’s nanotechnology report, which I consider more readable than some of the suggestions offered.

*’haring’ changed to ‘hearing’ on July 26, 2016.