Tag Archives: ebola virus

Tiny sponges lure coronavirus away from lung cells

This research approach looks promising as three news releases trumpeting the possibilities indicate. First, there’s the June 17, 2020 American Chemical Society (ACS) news release,

Scientists are working overtime to find an effective treatment for COVID-19, the illness caused by the new coronavirus, SARS-CoV-2. Many of these efforts target a specific part of the virus, such as the spike protein. Now, researchers reporting in Nano Letters have taken a different approach, using nanosponges coated with human cell membranes –– the natural targets of the virus –– to soak up SARS-CoV-2 and keep it from infecting cells in a petri dish.

To gain entry, SARS-CoV-2 uses its spike protein to bind to two known proteins on human cells, called ACE2 and CD147. Blocking these interactions would keep the virus from infecting cells, so many researchers are trying to identify drugs directed against the spike protein. Anthony Griffiths, Liangfang Zhang and colleagues had a different idea: making a nanoparticle decoy with the virus’ natural targets, including ACE2 and CD147, to lure SARS-CoV-2 away from cells. And to test this idea, they conducted experiments with the actual SARS-CoV-2 virus in a biosafety level 4 lab.

The researchers coated a nanoparticle polymer core with cell membranes from either human lung epithelial cells or macrophages –– two cell types infected by SARS-CoV-2. They showed that the nanosponges had ACE2 and CD147, as well as other cell membrane proteins, projecting outward from the polymer core. When administered to mice, the nanosponges did not show any short-term toxicity. Then, the researchers treated cells in a dish with SARS-CoV-2 and the lung epithelial or macrophage nanosponges. Both decoys neutralized SARS-CoV-2 and prevented it from infecting cells to a similar extent. The researchers plan to next test the nanosponges in animals before moving to human clinical trials. In theory, the nanosponge approach would work even if SARS-CoV-2 mutates to resist other therapies, and it could be used against other viruses, as well, the researchers say.

In this illustration, a nanosponge coated with a human cell membrane acts as a decoy to prevent a virus from entering cells. Credit: Adapted from Nano Letters 2020, DOI: 10.1021/acs.nanolett.0c02278

There are two research teams involved, one at Boston University and the other at the University of California at San Diego (UC San Diego or UCSD). The June 18, 2020 Boston University news release (also on EurekAlert) by Kat J. McAlpine adds more details about the research, provides some insights from the researchers, and is a little redundant if you’ve already seen the ACS news release,

Imagine if scientists could stop the coronavirus infection in its tracks simply by diverting its attention away from living lung cells? A new therapeutic countermeasure, announced in a Nano Letters study by researchers from Boston University’s National Emerging Infectious Diseases Laboratories (NEIDL) and the University of California San Diego, appears to do just that in experiments that were carried out at the NEIDL in Boston.

The breakthrough technology could have major implications for fighting the SARS-CoV-2 virus responsible for the global pandemic that’s already claimed nearly 450,000 lives and infected more than 8 million people. But, perhaps even more significantly, it has the potential to be adapted to combat virtually any virus, such as influenza or even Ebola.

“I was skeptical at the beginning because it seemed too good to be true,” says NEIDL microbiologist Anna Honko, one of the co-first authors on the study. “But when I saw the first set of results in the lab, I was just astonished.”

The technology consists of very small, nanosized drops of polymers–essentially, soft biofriendly plastics–covered in fragments of living lung cell and immune cell membranes.

“It looks like a nanoparticle coated in pieces of cell membrane,” Honko says. “The small polymer [droplet] mimics a cell having a membrane around it.”

The SARS-CoV-2 virus seeks out unique signatures of lung cell membranes and latches onto them. When that happens inside the human body, the coronavirus infection takes hold, with the SARS-CoV-2 viruses hijacking lung cells to replicate their own genetic material. But in experiments at the NEIDL, BU researchers observed that polymer droplets laden with pieces of lung cell membrane did a better job of attracting the SARS-CoV-2 virus than living lung cells. [emphasis mine]

By fusing with the SARS-CoV-2 virus better than living cells can, the nanotechnology appears to be an effective countermeasure to coronavirus infection, preventing SARS-CoV-2 from attacking cells.

“Our guess is that it acts like a decoy, it competes with cells for the virus,” says NEIDL microbiologist Anthony Griffiths, co-corresponding author on the study. “They are little bits of plastic, just containing the outer pieces of cells with none of the internal cellular machinery contained inside living cells. Conceptually, it’s such a simple idea. It mops up the virus like a sponge.”

That attribute is why the UC San Diego and BU research team call the technology “nanosponges.” Once SARS-CoV-2 binds with the cell fragments inside a nanosponge droplet–each one a thousand times smaller than the width of a human hair–the coronavirus dies. Although the initial results are based on experiments conducted in cell culture dishes, the researchers believe that inside a human body, the biodegradable nanosponges and the SARS-CoV-2 virus trapped inside them could then be disposed of by the body’s immune system. The immune system routinely breaks down and gets rid of dead cell fragments caused by infection or normal cell life cycles.

There is also another important effect that the nanosponges have in the context of coronavirus infection. Honko says nanosponges containing fragments of immune cells can soak up cellular signals that increase inflammation [emphases mine]. Acute respiratory distress, caused by an inflammatory cascade inside the lungs, is the most deadly aspect of the coronavirus infection, sending patients into the intensive care unit for oxygen or ventilator support to help them breathe.

But the nanosponges, which can attract the inflammatory molecules that send the immune system into dangerous overdrive, can help tamp down that response, Honko says. By using both kinds of nanosponges, some containing lung cell fragments and some containing pieces of immune cells, she says it’s possible to “attack the coronavirus and the [body’s] response” responsible for disease and eventual lung failure.

At the NEIDL, Honko and Griffiths are now planning additional experiments to see how well the nanosponges can prevent coronavirus infection in animal models of the disease. They plan to work closely with the team of engineers at UC San Diego, who first developed the nanosponges more than a decade ago, to tailor the technology for eventual safe and effective use in humans.

“Traditionally, drug developers for infectious diseases dive deep on the details of the pathogen in order to find druggable targets,” said Liangfang Zhang, a UC San Diego nanoengineer and leader of the California-based team, according to a UC San Diego press release. “Our approach is different. We only need to know what the target cells are. And then we aim to protect the targets by creating biomimetic decoys.”

When the novel coronavirus first appeared, the idea of using the nanosponges to combat the infection came to Zhang almost immediately. He reached out to the NEIDL for help. Looking ahead, the BU and UC San Diego collaborators believe the nanosponges can easily be converted into a noninvasive treatment.

“We should be able to drop it right into the nose,” Griffiths says. “In humans, it could be something like a nasal spray.”

Honko agrees: “That would be an easy and safe administration method that should target the appropriate [respiratory] tissues. And if you wanted to treat patients that are already intubated, you could deliver it straight into the lung.”

Griffiths and Honko are especially intrigued by the nanosponges as a new platform for treating all types of viral infections. “The broad spectrum aspect of this is exceptionally appealing,” Griffiths says. The researchers say the nanosponge could be easily adapted to house other types of cell membranes preferred by other viruses, creating many new opportunities to use the technology against other tough-to-treat infections like the flu and even deadly hemorrhagic fevers caused by Ebola, Marburg, or Lassa viruses.

“I’m interested in seeing how far we can push this technology,” Honko says.

The University of California at* San Diego has released a video illustrating the nanosponges work,

There’s also this June 17, 2020 University of California at San Diego (UC San Diego) news release (also on EurekAlert) by Ioana Patringenaru, which offers extensive new detail along with, if you’ve read one or both of the news releases in the above, a few redundant bits,

Nanoparticles cloaked in human lung cell membranes and human immune cell membranes can attract and neutralize the SARS-CoV-2 virus in cell culture, causing the virus to lose its ability to hijack host cells and reproduce.

The first data describing this new direction for fighting COVID-19 were published on June 17 in the journal Nano Letters. The “nanosponges” were developed by engineers at the University of California San Diego and tested by researchers at Boston University.

The UC San Diego researchers call their nano-scale particles “nanosponges” because they soak up harmful pathogens and toxins.

In lab experiments, both the lung cell and immune cell types of nanosponges caused the SARS-CoV-2 virus to lose nearly 90% of its “viral infectivity” in a dose-dependent manner. Viral infectivity is a measure of the ability of the virus to enter the host cell and exploit its resources to replicate and produce additional infectious viral particles.

Instead of targeting the virus itself, these nanosponges are designed to protect the healthy cells the virus invades.

“Traditionally, drug developers for infectious diseases dive deep on the details of the pathogen in order to find druggable targets. Our approach is different. We only need to know what the target cells are. And then we aim to protect the targets by creating biomimetic decoys,” said Liangfang Zhang, a nanoengineering professor at the UC San Diego Jacobs School of Engineering.

His lab first created this biomimetic nanosponge platform more than a decade ago and has been developing it for a wide range of applications ever since [emphasis mine]. When the novel coronavirus appeared, the idea of using the nanosponge platform to fight it came to Zhang “almost immediately,” he said.

In addition to the encouraging data on neutralizing the virus in cell culture, the researchers note that nanosponges cloaked with fragments of the outer membranes of macrophages could have an added benefit: soaking up inflammatory cytokine proteins, which are implicated in some of the most dangerous aspects of COVID-19 and are driven by immune response to the infection.

Making and testing COVID-19 nanosponges

Each COVID-19 nanosponge–a thousand times smaller than the width of a human hair–consists of a polymer core coated in cell membranes extracted from either lung epithelial type II cells or macrophage cells. The membranes cover the sponges with all the same protein receptors as the cells they impersonate–and this inherently includes whatever receptors SARS-CoV-2 uses to enter cells in the body.

The researchers prepared several different concentrations of nanosponges in solution to test against the novel coronavirus. To test the ability of the nanosponges to block SARS-CoV-2 infectivity, the UC San Diego researchers turned to a team at Boston University’s National Emerging Infectious Diseases Laboratories (NEIDL) to perform independent tests. In this BSL-4 lab–the highest biosafety level for a research facility–the researchers, led by Anthony Griffiths, associate professor of microbiology at Boston University School of Medicine, tested the ability of various concentrations of each nanosponge type to reduce the infectivity of live SARS-CoV-2 virus–the same strains that are being tested in other COVID-19 therapeutic and vaccine research.

At a concentration of 5 milligrams per milliliter, the lung cell membrane-cloaked sponges inhibited 93% of the viral infectivity of SARS-CoV-2. The macrophage-cloaked sponges inhibited 88% of the viral infectivity of SARS-CoV-2. Viral infectivity is a measure of the ability of the virus to enter the host cell and exploit its resources to replicate and produce additional infectious viral particles.

“From the perspective of an immunologist and virologist, the nanosponge platform was immediately appealing as a potential antiviral because of its ability to work against viruses of any kind. This means that as opposed to a drug or antibody that might very specifically block SARS-CoV-2 infection or replication, these cell membrane nanosponges might function in a more holistic manner in treating a broad spectrum of viral infectious diseases. I was optimistically skeptical initially that it would work, and then thrilled once I saw the results and it sunk in what this could mean for therapeutic development as a whole,” said Anna Honko, a co-first author on the paper and a Research Associate Professor, Microbiology at Boston University’s National Emerging Infectious Diseases Laboratories (NEIDL).

In the next few months, the UC San Diego researchers and collaborators will evaluate the nanosponges’ efficacy in animal models. The UC San Diego team has already shown short-term safety in the respiratory tracts and lungs of mice. If and when these COVID-19 nanosponges will be tested in humans depends on a variety of factors, but the researchers are moving as fast as possible.

“Another interesting aspect of our approach is that even as SARS-CoV-2 mutates, as long as the virus can still invade the cells we are mimicking, our nanosponge approach should still work. I’m not sure this can be said for some of the vaccines and therapeutics that are currently being developed,” said Zhang.

The researchers also expect these nanosponges would work against any new coronavirus or even other respiratory viruses, including whatever virus might trigger the next respiratory pandemic.

Mimicking lung epithelial cells and immune cells

Since the novel coronavirus often infects lung epithelial cells as the first step in COVID-19 infection, Zhang and his colleagues reasoned that it would make sense to cloak a nanoparticle in fragments of the outer membranes of lung epithelial cells to see if the virus could be tricked into latching on it instead of a lung cell.

Macrophages, which are white blood cells that play a major role in inflammation, also are very active in the lung during the course of a COVID-19 illness, so Zhang and colleagues created a second sponge cloaked in macrophage membrane.

The research team plans to study whether the macrophage sponges also have the ability to quiet cytokine storms in COVID-19 patients.

“We will see if the macrophage nanosponges can neutralize the excessive amount of these cytokines as well as neutralize the virus,” said Zhang.

Using macrophage cell fragments as cloaks builds on years of work to develop therapies for sepsis using macrophage nanosponges.

In a paper published in 2017 in Proceedings of the National Academy of Sciences, Zhang and a team of researchers at UC San Diego showed that macrophage nanosponges can safely neutralize both endotoxins and pro-inflammatory cytokines in the bloodstream of mice. A San Diego biotechnology company co-founded by Zhang called Cellics Therapeutics is working to translate this macrophage nanosponge work into the clinic.

A potential COVID-19 therapeutic The COVID-19 nanosponge platform has significant testing ahead of it before scientists know whether it would be a safe and effective therapy against the virus in humans, Zhang cautioned [emphasis mine]. But if the sponges reach the clinical trial stage, there are multiple potential ways of delivering the therapy that include direct delivery into the lung for intubated patients, via an inhaler like for asthmatic patients, or intravenously, especially to treat the complication of cytokine storm.

A therapeutic dose of nanosponges might flood the lung with a trillion or more tiny nanosponges that could draw the virus away from healthy cells. Once the virus binds with a sponge, “it loses its viability and is not infective anymore, and will be taken up by our own immune cells and digested,” said Zhang.

“I see potential for a preventive treatment, for a therapeutic that could be given early because once the nanosponges get in the lung, they can stay in the lung for some time,” Zhang said. “If a virus comes, it could be blocked if there are nanosponges waiting for it.”

Growing momentum for nanosponges

Zhang’s lab at UC San Diego created the first membrane-cloaked nanoparticles over a decade ago. The first of these nanosponges were cloaked with fragments of red blood cell membranes. These nanosponges are being developed to treat bacterial pneumonia and have undergone all stages of pre-clinical testing by Cellics Therapeutics, the San Diego startup cofounded by Zhang. The company is currently in the process of submitting the investigational new drug (IND) application to the FDA for their lead candidate: red blood cell nanosponges for the treatment of methicillin-resistant staphylococcus aureus (MRSA) pneumonia. The company estimates the first patients in a clinical trial will be dosed next year.

The UC San Diego researchers have also shown that nanosponges can deliver drugs to a wound site; sop up bacterial toxins that trigger sepsis; and intercept HIV before it can infect human T cells.

The basic construction for each of these nanosponges is the same: a biodegradable, FDA-approved polymer core is coated in a specific type of cell membrane, so that it might be disguised as a red blood cell, or an immune T cell or a platelet cell. The cloaking keeps the immune system from spotting and attacking the particles as dangerous invaders.

“I think of the cell membrane fragments as the active ingredients. This is a different way of looking at drug development,” said Zhang. “For COVID-19, I hope other teams come up with safe and effective therapies and vaccines as soon as possible. At the same time, we are working and planning as if the world is counting on us.”

I wish the researchers good luck. For the curious, here’s a link to and a citation for the paper,

Cellular Nanosponges Inhibit SARS-CoV-2 Infectivity by Qiangzhe Zhang, Anna Honko, Jiarong Zhou, Hua Gong, Sierra N. Downs, Jhonatan Henao Vasquez, Ronnie H. Fang, Weiwei Gao, Anthony Griffiths, and Liangfang Zhang. Nano Lett. 2020, XXXX, XXX, XXX-XXX DOI: https://doi.org/10.1021/acs.nanolett.0c02278 Publication Date:June 17, 2020 Copyright © 2020 American Chemical Society

This paper appears to be open access.

Here, too, is the Cellics Therapeutics website.

*University of California as San Diego corrected to University of California at San Diego on Dec. 30, 2020.

An easier, cheaper way to diagnose Ebola

A Sept. 9, 2015 news item on Nanotechnology Now highlights a new technology for diagnosing the Ebola virus,

A new Ebola test that uses magnetic nanoparticles could help curb the spread of the disease in western Africa. Research published in Biosensors and Bioelectronics shows that the new test is 100 times more sensitive than the current test, and easier to use. Because of this, the new test makes it easier and cheaper to diagnose cases, enabling healthcare workers to isolate patients and prevent the spread of Ebola.

The authors of the study, from the Chinese Academy of Sciences, say their new technology could be applied to the detection of any biological molecules, making it useful to diagnose other infectious diseases, like flu, and potentially detect tumors and even contamination in wastewater.

A Sept. 9, 2015 Elsevier press release, which originated the news item, provides more detail,

The Ebola virus causes an acute illness that is deadly in half of all cases, on average. The current outbreak of Ebola, which started in March 2014, affects countries in west Africa. In the most severely affected countries, like Guinea, Liberia and Sierra Leone, resources are limited, making control of the outbreak challenging. There is no vaccine for Ebola, so detecting the virus is key to controlling the outbreak: with an accurate diagnosis, patients can be isolated and treated properly, reducing the risk of spread.

“In west Africa, resources are under pressure, so complicated, expensive tests are not very helpful,” said Professor Xiyun Yan, one of the authors of the study from the Chinese Academy of Sciences. “Our new strip test is a simple, one-step test that is cheap and easy to use, and provides a visible signal, which means people don’t need training to use it. We think it will be especially helpful in rural areas, where technical equipment and skills are not available.”

Currently there are two ways to test for the Ebola virus: using a method called polymerase chain reaction (PCR), which makes copies of the molecules for detection, and with antibody-capture enzyme-linked immunosorbent assay (ELISA), which gives a visual indication when a given molecule is in a sample. PCR is very sensitive, but is expensive and complicated, requiring special skills and technical equipment. The ELISA – or gold strip test – is cheaper but sensitivity is very low, which means it often gives the wrong results.

The new test, called the nanozyme test, uses magnetic nanoparticles, which work like enzymes to make the signal stronger, giving a clearer result you can see with the naked eye. The test can detect much smaller amounts of the virus, and is 100 times more sensitive than the gold strip test.

“People have loved the strip test for many years, but it has a major weakness: it’s not sensitive enough. We’re very excited about our new nanozyme test, as it is much more sensitive and you don’t need any specialist equipment to get a quick, accurate result,” said Dr. Yan.

Strip tests work by attaching molecules called antibodies to gold particles to look for a particular molecule in a sample. When they attach to the molecule you’re looking for, in this case a virus, they produce a signal, such as a color change. In order to find the virus, the particles need to be labelled with enzymes, which speed up detection and signalling.

With the new nanozyme test, the researchers applied magnetic nanoparticles as a nanozyme probe in place of gold nanoparticles. After labeling with an antibody that attaches to the Ebola virus, this novel probe is able to recognize and separate the virus in a sample. The nanoparticles are magnetic, so to concentrate the virus particles in a sample, all you need to do is hold the sample against a magnet; no expensive equipment is needed.

The nanozyme test is 100 times more sensitive than the gold strip test, detecting molecules called glycoproteins on the surface of the Ebola virus at concentrations as low as 1 nanogram per milliliter.

The researchers have applied for a patent for the new test, which is currently being taken to west Africa by the CDC to use in the field. The researchers are also collaborating with clinical teams to apply the technology to other diseases, and with a company that treats wastewater to see if it can help remove environmental contamination.

Here’s a link to and a citation for the paper,

Nanozyme-strip for rapid local diagnosis of Ebola by Demin Duan, Kelong Fan, Dexi Zhang, Shuguang Tan, Mifang Liang, Yang Liu, Jianlin Zhang, Panhe Zhang, Wei Liu, Xiangguo Qiu, Gary P. Kobinger, George Fu Gao, Xiyun Yan. Biosensors and Bioelectronics Volume 74, 15 December 2015, Pages 134–141 doi:10.1016/j.bios.2015.05.025

This paper appears to be open access.

Nanotechnology, tobacco plants, and the Ebola virus

Before presenting information about the current Ebola crisis and issues with vaccines and curatives, here’s a description of the disease from its Wikipedia entry,

Ebola virus disease (EVD) or Ebola hemorrhagic fever (EHF) is a disease of humans and other primates caused by an ebola virus. Symptoms start two days to three weeks after contracting the virus, with a fever, sore throat, muscle pain, and headaches. Typically nausea, vomiting, and diarrhea follow, along with decreased functioning of the liver and kidneys. Around this time, affected people may begin to bleed both within the body and externally. [1]

As for the current crisis in countries situated on the west coast of the African continent, there’s this from an Aug. 14, 2014 news item on ScienceDaily,

The outbreak of Ebola virus disease that has claimed more than 1,000 lives in West Africa this year poses a serious, ongoing threat to that region: the spread to capital cities and Nigeria — Africa’s most populous nation — presents new challenges for healthcare professionals. The situation has garnered significant attention and fear around the world, but proven public health measures and sharpened clinical vigilance will contain the epidemic and thwart a global spread, according to a new commentary by Anthony S. Fauci, M.D., director of the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

Dr. Fauci’s Aug. 13, 2014 commentary (open access) in the New England Journal of Medicine provides more detail (Note: A link has been removed),

An outbreak of Ebola virus disease (EVD) has jolted West Africa, claiming more than 1000 lives since the virus emerged in Guinea in early 2014 (see figure) Ebola Virus Cases and Deaths in West Africa (Guinea, Liberia, Nigeria, and Sierra Leone), as of August 11, 2014 (Panel A), and Over Time (Panel B).). The rapidly increasing numbers of cases in the African countries of Guinea, Liberia, and Sierra Leone have had public health authorities on high alert throughout the spring and summer. More recent events including the spread of EVD to Nigeria (Africa’s most populous country) and the recent evacuation to the United States of two American health care workers with EVD have captivated the world’s attention and concern. Health professionals and the general public are struggling to comprehend these unfolding dynamics and to separate misinformation and speculation from truth.

In early 2014, EVD emerged in a remote region of Guinea near its borders with Sierra Leone and Liberia. Since then, the epidemic has grown dramatically, fueled by several factors. First, Guinea, Sierra Leone, and Liberia are resource-poor countries already coping with major health challenges, such as malaria and other endemic diseases, some of which may be confused with EVD. Next, their borders are porous, and movement between countries is constant. Health care infrastructure is inadequate, and health workers and essential supplies including personal protective equipment are scarce. Traditional practices, such as bathing of corpses before burial, have facilitated transmission. The epidemic has spread to cities, which complicates tracing of contacts. Finally, decades of conflict have left the populations distrustful of governing officials and authority figures such as health professionals. Add to these problems a rapidly spreading virus with a high mortality rate, and the scope of the challenge becomes clear.

Although the regional threat of Ebola in West Africa looms large, the chance that the virus will establish a foothold in the United States or another high-resource country remains extremely small. Although global air transit could, and most likely will, allow an infected, asymptomatic person to board a plane and unknowingly carry Ebola virus to a higher-income country, containment should be readily achievable. Hospitals in such countries generally have excellent capacity to isolate persons with suspected cases and to care for them safely should they become ill. Public health authorities have the resources and training necessary to trace and monitor contacts. Protocols exist for the appropriate handling of corpses and disposal of biohazardous materials. In addition, characteristics of the virus itself limit its spread. Numerous studies indicate that direct contact with infected bodily fluids — usually feces, vomit, or blood — is necessary for transmission and that the virus is not transmitted from person to person through the air or by casual contact. Isolation procedures have been clearly outlined by the Centers for Disease Control and Prevention (CDC). A high index of suspicion, proper infection-control practices, and epidemiologic investigations should quickly limit the spread of the virus.

Fauci’s article makes it clear that public concerns are rising in the US and I imagine that’s true of Canada too and many other parts of the world, not to mention the countries currently experiencing the EVD outbreak. In the midst of all this comes a US Food and Drug Administration (FDA) warning as per an Aug. 15, 2014 news item (originated by Reuters reporter Toni Clarke) on Nanowerk,

The U.S. Food and Drug Administration said on Thursday [Aug. 14, 2014] it has become aware of products being sold online that fraudulently claim to prevent or treat Ebola.

The FDA’s warning comes on the heels of comments by Nigeria’s top health official, Onyebuchi Chukwu, who reportedly said earlier Thursday [Aug. 14, 2014] that eight Ebola patients in Lagos, the country’s capital, will receive an experimental treatment containing nano-silver.

Erica Jefferson, a spokeswoman for the FDA, said she could not provide any information about the product referenced by the Nigerians.

The Aug. 14,  2014 FDA warning reads in part,

The U.S. Food and Drug Administration is advising consumers to be aware of products sold online claiming to prevent or treat the Ebola virus. Since the outbreak of the Ebola virus in West Africa, the FDA has seen and received consumer complaints about a variety of products claiming to either prevent the Ebola virus or treat the infection.

There are currently no FDA-approved vaccines or drugs to prevent or treat Ebola. Although there are experimental Ebola vaccines and treatments under development, these investigational products are in the early stages of product development, have not yet been fully tested for safety or effectiveness, and the supply is very limited. There are no approved vaccines, drugs, or investigational products specifically for Ebola available for purchase on the Internet. By law, dietary supplements cannot claim to prevent or cure disease.

As per the FDA’s reference to experimental vaccines, an Aug. 6, 2014 article by Caroline Chen, Mark Niquette, Mark Langreth, and Marie French for Bloomberg describes the ZMapp vaccine/treatment (Note: Links have been removed),

On a small plot of land incongruously tucked amid a Kentucky industrial park sit five weather-beaten greenhouses. At the site, tobacco plants contain one of the most promising hopes for developing an effective treatment for the deadly Ebola virus.

The plants contain designer antibodies developed by San Diego-based Mapp Biopharmaceutical Inc. and are grown in Kentucky by a unit of Reynolds American Inc. Two stricken U.S. health workers received an experimental treatment containing the antibodies in Liberia last week. Since receiving doses of the drug, both patients’ conditions have improved.

Tobacco plant-derived medicines, which are also being developed by a company whose investors include Philip Morris International Inc., are part of a handful of cutting edge plant-based treatments that are in the works for everything from pandemic flu to rabies using plants such as lettuce, carrots and even duckweed. While the technique has existed for years, the treatments have only recently begun to reach the marketplace.

Researchers try to identify the best antibodies in the lab, before testing them on mice, then eventually on monkeys. Mapp’s experimental drug, dubbed ZMapp, has three antibodies, which work together to alert the immune system and neutralize the Ebola virus, she [Erica Ollman Saphire, a molecular biologist at the Scripps Research Institute,] said.

This is where the tobacco comes in: the plants are used as hosts to grow large amounts of the antibodies. Genes for the desired antibodies are fused to genes for a natural tobacco virus, Charles Arntzen, a plant biotechnology expert at Arizona State University, said in an Aug. 4 [2014] telephone interview.

The tobacco plants are then infected with this new artificial virus, and antibodies are grown inside the plant. Eventually, the tobacco is ground up and the antibody is extracted, Arntzen said.

The process of growing antibodies in mammals risks transferring viruses that could infect humans, whereas “plants are so far removed, so if they had some sort of plant virus we wouldn’t get sick because viruses are host-specific,” said Qiang Chen, a plant biologist at Arizona State University in Tempe, Arizona, in a telephone interview.

There is a Canadian (?) company working on a tobacco-based vaccines including one for EVD but as the Bloomberg writers note the project is highly secret,

Another tobacco giant-backed company working on biotech drugs grown in tobacco plants is Medicago Inc. in Quebec City, which is owned by Mitsubishi Tanabe Pharma Corp. and Philip Morris. [emphasis mine]

Medicago is working on testing a vaccine for pandemic influenza and has a production greenhouse facility in North Carolina, said Jean-Luc Martre, senior director for government affairs at Medicago. Medicago is planning a final stage trial of the pandemic flu vaccine for next year, he said in a telephone interview.

The plant method is flexible and capable of making antibodies and vaccines for numerous types of viruses, said Martre. In addition to influenza, the company’s website says it is in early stages of testing products for rabies and rotavirus.

Medicago ‘‘is currently closely working with partners for the production of an Ebola antibody as well as other antibodies that are of interest for bio-defense,” he said in an e-mail. He would not disclose who the partners were. [emphasis mine]

I have checked both the English and French language versions of Medicago’s website and cannot find any information about their work on ebola. (The Bloomberg article provides a good overview of the ebola situation and more. I recommend reading it and/or the Aug. 15, 2014 posting on CTV [Canadian Television Network] which originated from an Associated Press article by Malcolm Ritter).

Moving on to more research and ebola, Dexter Johnson in an Aug. 14, 2014 posting (on his Nanoclast blog on the IEEE [Institute of Electrical and Electronics Engineers] website,) describes some work from Northeastern University (US), Note: Links have been removed,

With the Ebola virus death toll now topping 1000 and even the much publicized experimental treatment ZMapp failing to save the life of a Spanish missionary priest who was treated with it, it is clear that scientists need to explore new ways of fighting the deadly disease. For researchers at Northeastern University in Boston, one possibility may be using nanotechnology.

“It has been very hard to develop a vaccine or treatment for Ebola or similar viruses because they mutate so quickly,” said Thomas Webster, the chair of Northeastern’s chemical engineering department, in a press release. “In nanotechnology we turned our attention to developing nanoparticles that could be attached chemically to the viruses and stop them from spreading.”

Webster, along with many researchers in the nanotechnology community, have been trying to use gold nanoparticles, in combination with near-infrared light, to kill cancer cells with heat. The hope is that the same approach could be used to kill the Ebola virus.

There is also an Aug. 6, 2014 Northeastern University news release by Joe O’Connell describing the technique being used by Webster’s team,

… According to Web­ster, gold nanopar­ti­cles are cur­rently being used to treat cancer. Infrared waves, he explained, heat up the gold nanopar­ti­cles, which, in turn, attack and destroy every­thing from viruses to cancer cells, but not healthy cells.

Rec­og­nizing that a larger sur­face area would lead to a quicker heat-​​up time, Webster’s team cre­ated gold nanos­tars. “The star has a lot more sur­face area, so it can heat up much faster than a sphere can,” Web­ster said. “And that greater sur­face area allows it to attack more viruses once they absorb to the par­ti­cles.” The problem the researchers face, how­ever, is making sure the hot gold nanopar­ti­cles attack the virus or cancer cells rather than the healthy cells.

At this point, there don’t seem to be any curative measures generally available although some are available experimentally in very small quantities.