Tag Archives: Effects of the Presence or Absence of a Protein Corona on Silica Nanoparticle Uptake and Impact on Cells

Environment influences nanomaterial reactions to biological cells

The discussion I’ve seen around nanomaterials and toxicological effects has largely centered on shapes, size, aggregate/agglomerate, etc. By contrast, Carl Walkey’s July 24, 2012 Nanowerk Spotlight essay focuses on nanomaterial surfaces, bare or coated with serum proteins (Note: I have removed links),

Biomolecule adsorption to nanomaterials is usually studied from physiological fluids with suspended biomolecules. Examples include blood serum/plasma, pulmonary surfactant, and synovial fluid. However, until now the amount of those molecules has not been considered relevant to the study. In a recent article appearing in ACS Nano (“Effects of the Presence or Absence of a Protein Corona on Silica Nanoparticle Uptake and Impact on Cells”), Drs. Anna Salvati, Kenneth Dawson, and their colleagues at the University College in Dublin, Ireland, show that if nanoparticles are exposed directly to cells in the absence of suspended biomolecules, the nanoparticles will extract biomolecules directly from cells themselves.

In their experiments, the team exposed silica nanoparticles to cells in two sets. One set was introduced into cell culture media that was supplemented with the usual concentration of fetal bovine serum, and the other into media that had no serum additives. They then incubated both sets of particles with a lung cancer cell line and measured particle uptake kinetics and cell adhesion. Nanoparticles treated under both conditions associated with cells. However, the particles that were incubated in media alone associated to a much greater extent than those that were first incubated in serum. This indicates that the affinity of the bare nanoparticle surface to the cell is much higher than the affinity of an equivalent surface that is coated with serum proteins. [emphasis mine] Similar observations are reported before for other systems, where it was also found that uptake under serum-free conditions is higher.

Moe specifically,

“When the nanomaterial is put in contact with a physiological environment, it is given a menu of possible biomolecules to adsorb” explains Dawson. “It will essentially go shopping for the biomolecules that it wants. Over time, it will exchange with the environment until it finds the things that it really likes most. If you don’t give it enough biomolecules in the form of serum, it will extract components from the cells themselves.”

The same silica nanoparticles exposed to cells in the two different conditions had different cellular responses as well. Most of the serum-coated particles were taken up within vesicles in the cell cytoplasm and produced no overt signs of toxicity. In contrast, the particles without a serum coating adhered to the cell surface to a greater extent, were present in vesicles, and some were also found free-floating in the cytoplasm. Exposure to particles in absence of serum significantly decreased cell viability and caused cells to take on a rounded morphology that is indicative of cell death. Dawson believes that cell death from uncoated particles is the result of strong interactions between the particle surface and the cell surface, which may damage the cell membrane, and/or initiate aberrant signaling cascades. When serum proteins are adsorbed to the nanoparticles, they ‘passivate’ the surface and limit direct nanomaterial-cell interactions.

When considering the early interactions of a nanomaterial with a cell, Dawson points out that one cannot think of the nanomaterial alone. Instead, one must think of the nanoparticle and its adsorbed biomolecules as a fundamental unit. [emphasis mine]

Most importantly,

Dawson believes that researchers must pay closer attention to the composition of the biomolecular environment surrounding the particles and cells when performing in vitro experiments. In other words, it is as important to consider the composition of the biomolecules in the media as it is to consider the chemical nature of the nanoparticle and the cell type. [emphasis mine]

“What’s absolutely clear is that depending on the type of dispersion that you make up, whether you add 10% serum or 20% serum, you get different levels of cell uptake” says Dawson. “Indeed, you get different levels of damage as well. It is therefore not meaningful to say that the nanoparticle is or is not toxic in that simplistic way. You can make a material toxic if you really want to make it toxic. You can make many materials damage cells simply because these have high surface energy. However, in a realistic physiological environment, part of the particle surface is covered and so that kind of damage would not be applicable.”

I encourage anyone who’s interested in nanotoxicology to read Walkey’s essay in full as I’ve excerpted only a portion.

BTW, Carl Walkey is a PhD graduate student at the University of Toronto and a member of the Integrated Nanotechnology & Biomedical Sciences Laboratory (INBS). I last mentioned Walkey in my July 12, 2012 posting about his Nanowerk Spotlight essay on nanotoxicology and animal studies.