Tag Archives: Einstein

Dancing quantum entanglement (Ap. 20 – 22, 2017) and performing mathematics (Ap. 26 – 30, 2017) in Vancouver, Canada

I have listings for two art/science events in Vancouver (Canada).

Dance, poetry and quantum entanglement

From April 20, 2017 (tonight) – April 22, 2017, there will be 8 p.m. performances of Lesley Telford’s ‘Three Sets/Relating At A Distance; My tongue, your ear / If / Spooky Action at a Distance (phase 1)’ at the Scotiabank Dance Centre, 677 Davie St, Yes, that third title is a reference to Einstein’s famous phrase describing his response of the concept of quantum entanglement.

An April 19, 2017 article by Janet Smith for the Georgia Straight features the dancer’s description of the upcoming performances,

One of the clearest definitions of quantum entanglement—a phenomenon Albert Einstein dubbed “spooky action at a distance”—can be found in a vampire movie.

In Jim Jarmusch’s Only Lovers Left Alive Tom Hiddleston’s depressed rock-star bloodsucker explains it this way to Tilda Swinton’s Eve, his centuries-long partner: “When you separate an entwined particle and you move both parts away from the other, even at opposite ends of the universe, if you alter or affect one, the other will be identically altered or affected.”

In fact, it was by watching the dark love story that Vancouver dance artist Lesley Telford learned about quantum entanglement—in which particles are so closely connected that they cannot act independently of one another, no matter how much space lies between them. She became fascinated not just with the scientific possibilities of the concept but with the romantic ones. …

 “I thought, ‘What a great metaphor,’ ” the choreographer tells the Straight over sushi before heading into a Dance Centre studio. “It’s the idea of quantum entanglement and how that could relate to human entanglement.…It’s really a metaphor for human interactions.”

First, though, as is so often the case with Telford, she needed to form those ideas into words. So she approached poet Barbara Adler to talk about the phenomenon, and then to have her build poetry around it—text that the writer will perform live in Telford’s first full evening of work here.

“Barbara talked a lot about how you feel this resonance with people that have been in your life, and how it’s tied into romantic connections and love stories,” Telford explains. “As we dig into it, it’s become less about that and more of an underlying vibration in the work; it feels like we’ve gone beyond that starting point.…I feel like she has a way of making it so down-to-earth and it’s given us so much food to work with. Are we in control of the universe or is it in control of us?”

Spooky Action at a Distance, a work for seven dancers, ends up being a string of duets that weave—entangle—into other duets. …

There’s more information about the performance, which concerns itself with more than quantum entanglement in the Scotiabank Dance Centre’s event webpage,

Lesley Telford’s choreography brings together a technically rigorous vocabulary and a thought-provoking approach, refined by her years dancing with Nederlands Dans Theater and creating for companies at home and abroad, most recently Ballet BC. This triple bill features an excerpt of a new creation inspired by Einstein’s famous phrase “spooky action at a distance”, referring to particles that are so closely linked, they share the same existence: a collaboration with poet Barbara Adler, the piece seeks to extend the theory to human connections in our phenomenally interconnected world. The program also includes a new extended version of If, a trio based on Anne Carson’s poem, and the duet My tongue, your ear, with text by Wislawa Szymborska.

Here’s what appears to be an excerpt from a rehearsal for ‘Spooky Action …’,

I’m not super fond of the atonal music/sound they’re using. The voice you hear is Adler’s and here’s more about Barbara Adler from her Wikipedia entry (Note: Links have been removed),

Barbara Adler is a musician, poet, and storyteller based in Vancouver, British Columbia. She is a past Canadian Team Slam Champion, was a founding member of the Vancouver Youth Slam, and a past CBC Poetry Face Off winner.[1]

She was a founding member of the folk band The Fugitives with Brendan McLeod, C.R. Avery and Mark Berube[2][3] until she left the band in 2011 to pursue other artistic ventures. She was a member of the accordion shout-rock band Fang, later Proud Animal, and works under the pseudonym Ten Thousand Wolves.[4][5][6][7][8]

In 2004 she participated in the inaugural Canadian Festival of Spoken Word, winning the Spoken Wordlympics with her fellow team members Shane Koyczan, C.R. Avery, and Brendan McLeod.[9][10] In 2010 she started on The BC Memory Game, a traveling storytelling project based on the game of memory[11] and has also been involved with the B.C. Schizophrenia Society Reach Out Tour for several years.[12][13][14] She is of Czech-Jewish descent.[15][16]

Barbara Adler has her bachelor’s degree and MFA from Simon Fraser University, with a focus on songwriting, storytelling, and community engagement.[17][18] In 2015 she was a co-star in the film Amerika, directed by Jan Foukal,[19][20] which premiered at the Karlovy Vary International Film Festival.[21]

Finally, Telford is Artist in Residence at the Dance Centre and TRIUMF, Canada’s national laboratory for particle and nuclear physics and accelerator-based science.

To buy tickets ($32 or less with a discount), go here. Telford will be present on April 21, 2017 for a post-show talk.

Pi Theatre’s ‘Long Division’

This theatrical performance of concepts in mathematics runs from April 26 – 30, 2017 (check here for the times as they vary) at the Annex at 823 Seymour St.  From the Georgia Straight’s April 12, 2017 Arts notice,

Mathematics is an art form in itself, as proven by Pi Theatre’s number-charged Long Division. This is a “refreshed remount” of Peter Dickinson’s ambitious work, one that circles around seven seemingly unrelated characters (including a high-school math teacher, a soccer-loving imam, and a lesbian bar owner) bound together by a single traumatic incident. Directed by Richard Wolfe, with choreography by Lesley Telford and musical score by Owen Belton, it’s a multimedia, movement-driven piece that has a strong cast. …

Here’s more about the play from Pi Theatre’s Long Division page,

Long Division uses text, multimedia, and physical theatre to create a play about the mathematics of human connection.

Long Division focuses on seven characters linked – sometimes directly, sometimes more obliquely – by a sequence of tragic events. These characters offer lessons on number theory, geometry and logic, while revealing aspects of their inner lives, and collectively the nature of their relationships to one another.

Playwright: Peter Dickinson
Director: Richard Wolfe
Choreographer: Lesley Telford, Inverso Productions
Composer: Owen Belton
Assistant Director: Keltie Forsyth

Cast:  Anousha Alamian, Jay Clift, Nicco Lorenzo Garcia, Jennifer Lines, Melissa Oei, LInda Quibell & Kerry Sandomirsky

Costume Designer: Connie Hosie
Lighting Designer: Jergus Oprsal
Set Designer: Lauchlin Johnston
Projection Designer: Jamie Nesbitt
Production Manager: Jayson Mclean
Stage Manager: Jethelo E. Cabilete
Assistant Projection Designer: Cameron Fraser
Lighting Design Associate: Jeff Harrison

Dates/Times: April 26 – 29 at 8pm, April 29 and 30 at 2pm
Student performance on April 27 at 1pm

A Talk-Back will take place after the 2pm show on April 29th.

Shawn Conner engaged the playwright, Peter Dickinson in an April 20, 2017 Q&A (question and answer) for the Vancouver Sun,

Q: Had you been working on Long Division for a long time?

A: I’d been working on it for about five years. I wrote a previous play called The Objecthood of Chairs, which has a similar style in that I combine lecture performance with physical and dance theatre. There are movement scores in both pieces.

In that first play, I told the story of two men and their relationship through the history of chair design. It was a combination of mining my research about that and trying to craft a story that was human and where the audience could find a way in. When I was thinking about a subject for a new play, I took the profession of one of the characters in that first play, who was a math teacher, and said, “Let’s see what happens to his character, let’s see where he goes after the breakup of his relationship.”

At first, I wrote it (Long Division) in an attempt at completely real, kitchen-sink naturalism, and it was a complete disaster. So I went back into this lecture-style performance.

Q: Long Division is set in a bar. Is the setting left over from that attempt at realism?

A: I guess so. It’s kind of a meta-theatrical play in the sense that the characters address the audience, and they’re aware they’re in a theatrical setting. One of the characters is an actress, and she comments on the connection between mathematics and theatre.

Q: This is being called a “refreshed” remount. What’s changed since its first run 

A: It’s mostly been cuts, and some massaging of certain sections. And I think it’s a play that actually needs a little distance.

Like mathematics, the patterns only reveal themselves at a remove. I think I needed that distance to see where things were working and where they could be better. So it’s a gift for me to be given this opportunity, to make things pop a little more and to make the math, which isn’t meant to be difficult, more understandable and relatable.

You may have noticed that Lesley Telford from Spooky Action is also choreographer for this production. I gather she’s making a career of art/science pieces, at least for now.

In the category of ‘Vancouver being a small town’, Telford lists a review of one of her pieces,  ‘AUDC’s Season Finale at The Playhouse’, on her website. Intriguingly, the reviewer is Peter Dickinson who in addition to being the playwright with whom she has collaborated for Pi Theatre’s ‘Long Division’ is also the Director of SFU’s (Simon Fraser University’s) Institute for Performance Studies. I wonder how many more ways these two crisscross professionally? Personally and for what it’s worth, it might be a good idea for Telford (and Dickinson, if he hasn’t already done so) to make readers aware of their professional connections when there’s a review at stake.

Final comment: I’m not sure how quantum entanglement or mathematics with the pieces attributed to concepts from those fields but I’m sure anyone attempting to make the links will find themselves stimulated.

ETA April 21, 2017: I’m adding this event even though the tickets are completely subscribed. There will be a standby line the night of the event (from the Peter Wall Institute for Advanced Studies The Hidden Beauty of Mathematics event page,

02 May 2017

7:00 pm (doors open at 6:00 pm)

The Vogue Theatre

918 Granville St.

Vancouver, BC


Good luck!

Entangling a single photon with a trillion atoms

Polish scientists have cast light on an eighty-year old ‘paradox’ according to a March 2, 2017 news item on plys.org,

A group of researchers from the Faculty of Physics at the University of Warsaw has shed new light on the famous paradox of Einstein, Podolsky and Rosen after 80 years. They created a multidimensional entangled state of a single photon and a trillion hot rubidium atoms, and stored this hybrid entanglement in the laboratory for several microseconds. …

In their famous Physical Review article, published in 1935, Einstein, Podolsky and Rosen considered the decay of a particle into two products. In their thought experiment, two products of decay were projected in exactly opposite directions—or more scientifically speaking, their momenta were anti-correlated. Though not be a mystery within the framework of classical physics, when applying the rules of quantum theory, the three researchers arrived at a paradox. The Heisenberg uncertainty principle, dictating that position and momentum of a particle cannot be measured at the same time, lies at the center of this paradox. In Einstein’s thought experiment, it is possible to measure the momentum of one particle and immediately know the momentum of the other without measurement, as it is exactly opposite. Then, by measuring the position of the second particle, the Heisenberg uncertainty principle is seemingly violated, an apparent paradox that seriously baffled the three physicists.

A March 2, 2017 University of Warsaw press release (also on EurekAlert), which originated the news item, expands on the topic,

Only today we know that this experiment is not, in fact, a paradox. The mistake of Einstein and co-workers was to use one-particle uncertainty principle to a system of two particles. If we treat these two particles as described by a single quantum state, we learn that the original uncertainty principle ceases to apply, especially if these particles are entangled.

In the Quantum Memories Laboratory at the University of Warsaw, the group of three physicists was first to create such an entangled state consisting of a macroscopic object – a group of about one trillion atoms, and a single photon – a particle of light. “Single photons, scattered during the interaction of a laser beam with atoms, are registered on a sensitive camera. A single registered photon carries information about the quantum state of the entire group of atoms. The atoms may be stored, and their state may be retrieved on demand.” – says Michal Dabrowski, PhD student and co-author of the article.

The results of the experiment confirm that the atoms and the single photon are in a joint, entangled state. By measuring position and momentum of the photon, we gain all information about the state of atoms. To confirm this, polish scientists convert the atomic state into another photon, which again is measured using the state-of-the-art camera developed in the Quantum Memories Laboratory. “We demonstrate the Einstein-Podolsky-Rosen apparent paradox in a very similar version as originally proposed in 1935, however we extend the experiment by adding storage of light within the large group of atoms. Atoms store the photon in a form of a wave made of atomic spins, containing one trillion atoms. Such a state is very robust against loss of a single atoms, as information is spread across so many particles.” – says Michal Parniak, PhD student taking part in the study.

The experiment performed by the group from the University of Warsaw is unique in one other way as well. The quantum memory storing the entangled state, created thanks to “PRELUDIUM” grant from the Poland’s National Science Centre and “Diamentowy Grant” from the Polish Ministry of Science and Higher Education, allows for storage of up to 12 photons at once. This enhanced capacity is promising in terms of applications in quantum information processing. “The multidimensional entanglement is stored in our device for several microseconds, which is roughly a thousand times longer than in any previous experiments, and at the same time long enough to perform subtle quantum operations on the atomic state during storage” – explains Dr. Wojciech Wasilewski, group leader of the Quantum Memories Laboratory team.

The entanglement in the real and momentum space, described in the Optica article, can be used jointly with other well-known degrees of freedom such as polarization, allowing generation of so-called hyper-entanglement. Such elaborate ideas constitute new and original test of the fundamentals of quantum mechanics – a theory that is unceasingly mysterious yet brings immense technological progress.

Here’s a link to and a citation for the paper,

Einstein–Podolsky–Rosen paradox in a hybrid bipartite system by Michał Dąbrowski, Michał Parniak, and Wojciech Wasilewski. Optica Vol. 4, Issue 2, pp. 272-275 (2017) •https://doi.org/10.1364/OPTICA.4.000272

This paper appears to be open access.

2016 thoughts and 2017 hopes from FrogHeart

This is the 4900th post on this blog and as FrogHeart moves forward to 5000, I’m thinking there will be some changes although I’m not sure what they’ll be. In the meantime, here are some random thoughts on the year that was in Canadian science and on the FrogHeart blog.

Changeover to Liberal government: year one

Hopes were high after the Trudeau government was elected. Certainly, there seems to have been a loosening where science communication policies have been concerned although it may not have been quite the open and transparent process people dreamed of. On the plus side, it’s been easier to participate in public consultations but there has been no move (perceptible to me) towards open government science or better access to government-funded science papers.

Open Science in Québec

As far as I know, la crème de la crème of open science (internationally) is the Montreal Neurological Institute (Montreal Neuro; affiliated with McGill University. They bookended the year with two announcements. In January 2016, Montreal Neuro announced it was going to be an “Open Science institution (my Jan. 22, 2016 posting),

The Montreal Neurological Institute (MNI) in Québec, Canada, known informally and widely as Montreal Neuro, has ‘opened’ its science research to the world. David Bruggeman tells the story in a Jan. 21, 2016 posting on his Pasco Phronesis blog (Note: Links have been removed),

The Montreal Neurological Institute (MNI) at McGill University announced that it will be the first academic research institute to become what it calls ‘Open Science.’  As Science is reporting, the MNI will make available all research results and research data at the time of publication.  Additionally it will not seek patents on any of the discoveries made on research at the Institute.

Will this catch on?  I have no idea if this particular combination of open access research data and results with no patents will spread to other university research institutes.  But I do believe that those elements will continue to spread.  More universities and federal agencies are pursuing open access options for research they support.  Elon Musk has opted to not pursue patent litigation for any of Tesla Motors’ patents, and has not pursued patents for SpaceX technology (though it has pursued litigation over patents in rocket technology). …

Then, there’s my Dec. 19, 2016 posting about this Montreal Neuro announcement,

It’s one heck of a Christmas present. Canadian businessmen Larry Tannenbaum and his wife Judy have given the Montreal Neurological Institute (Montreal Neuro), which is affiliated with McGill University, a $20M donation. From a Dec. 16, 2016 McGill University news release,

The Prime Minister of Canada, Justin Trudeau, was present today at the Montreal Neurological Institute and Hospital (MNI) for the announcement of an important donation of $20 million by the Larry and Judy Tanenbaum family. This transformative gift will help to establish the Tanenbaum Open Science Institute, a bold initiative that will facilitate the sharing of neuroscience findings worldwide to accelerate the discovery of leading edge therapeutics to treat patients suffering from neurological diseases.

‟Today, we take an important step forward in opening up new horizons in neuroscience research and discovery,” said Mr. Larry Tanenbaum. ‟Our digital world provides for unprecedented opportunities to leverage advances in technology to the benefit of science.  That is what we are celebrating here today: the transformation of research, the removal of barriers, the breaking of silos and, most of all, the courage of researchers to put patients and progress ahead of all other considerations.”

Neuroscience has reached a new frontier, and advances in technology now allow scientists to better understand the brain and all its complexities in ways that were previously deemed impossible. The sharing of research findings amongst scientists is critical, not only due to the sheer scale of data involved, but also because diseases of the brain and the nervous system are amongst the most compelling unmet medical needs of our time.

Neurological diseases, mental illnesses, addictions, and brain and spinal cord injuries directly impact 1 in 3 Canadians, representing approximately 11 million people across the country.

“As internationally-recognized leaders in the field of brain research, we are uniquely placed to deliver on this ambitious initiative and reinforce our reputation as an institution that drives innovation, discovery and advanced patient care,” said Dr. Guy Rouleau, Director of the Montreal Neurological Institute and Hospital and Chair of McGill University’s Department of Neurology and Neurosurgery. “Part of the Tanenbaum family’s donation will be used to incentivize other Canadian researchers and institutions to adopt an Open Science model, thus strengthening the network of like-minded institutes working in this field.”

Chief Science Advisor

Getting back to the federal government, we’re still waiting for a Chief Science Advisor. Should you be interested in the job, apply here. The job search was launched in early Dec. 2016 (see my Dec. 7, 2016 posting for details) a little over a year after the Liberal government was elected. I’m not sure why the process is taking so long. It’s not like the Canadian government is inventing a position or trailblazing in this regard. Many, many countries and jurisdictions have chief science advisors. Heck the European Union managed to find their first chief science advisor in considerably less time than we’ve spent on the project. My guess, it just wasn’t a priority.

Prime Minister Trudeau, quantum, nano, and Canada’s 150th birthday

In April 2016, Prime Minister Justin Trudeau stunned many when he was able to answer, in an articulate and informed manner, a question about quantum physics during a press conference at the Perimeter Institute in Waterloo, Ontario (my April 18, 2016 post discussing that incident and the so called ‘quantum valley’ in Ontario).

In Sept. 2016, the University of Waterloo publicized the world’s smallest Canadian flag to celebrate the country’s upcoming 150th birthday and to announce its presence in QUANTUM: The Exhibition (a show which will tour across Canada). Here’s more from my Sept. 20, 2016 posting,

The record-setting flag was unveiled at IQC’s [Institute of Quantum Computing at the University of Waterloo] open house on September 17 [2016], which attracted nearly 1,000 visitors. It will also be on display in QUANTUM: The Exhibition, a Canada 150 Fund Signature Initiative, and part of Innovation150, a consortium of five leading Canadian science-outreach organizations. QUANTUM: The Exhibition is a 4,000-square-foot, interactive, travelling exhibit IQC developed highlighting Canada’s leadership in quantum information science and technology.

“I’m delighted that IQC is celebrating Canadian innovation through QUANTUM: The Exhibition and Innovation150,” said Raymond Laflamme, executive director of IQC. “It’s an opportunity to share the transformative technologies resulting from Canadian research and bring quantum computing to fellow Canadians from coast to coast to coast.”

The first of its kind, the exhibition will open at THEMUSEUM in downtown Kitchener on October 14 [2016], and then travel to science centres across the country throughout 2017.

You can find the English language version of QUANTUM: The Exhibition website here and the French language version of QUANTUM: The Exhibition website here.

There are currently four other venues for the show once finishes its run in Waterloo. From QUANTUM’S Join the Celebration webpage,


  • Science World at TELUS World of Science, Vancouver
  • TELUS Spark, Calgary
  • Discovery Centre, Halifax
  • Canada Science and Technology Museum, Ottawa

I gather they’re still looking for other venues to host the exhibition. If interested, there’s this: Contact us.

Other than the flag which is both nanoscale and microscale, they haven’t revealed what else will be included in their 4000 square foot exhibit but it will be “bilingual, accessible, and interactive.” Also, there will be stories.

Hmm. The exhibition is opening in roughly three weeks and they have no details. Strategy or disorganization? Only time will tell.

Calgary and quantum teleportation

This is one of my favourite stories of the year. Scientists at the University of Calgary teleported photons six kilometers from the university to city hall breaking the teleportation record. What I found particularly interesting was the support for science from Calgary City Hall. Here’s more from my Sept. 21, 2016 post,

Through a collaboration between the University of Calgary, The City of Calgary and researchers in the United States, a group of physicists led by Wolfgang Tittel, professor in the Department of Physics and Astronomy at the University of Calgary have successfully demonstrated teleportation of a photon (an elementary particle of light) over a straight-line distance of six kilometres using The City of Calgary’s fibre optic cable infrastructure. The project began with an Urban Alliance seed grant in 2014.

This accomplishment, which set a new record for distance of transferring a quantum state by teleportation, has landed the researchers a spot in the prestigious Nature Photonics scientific journal. The finding was published back-to-back with a similar demonstration by a group of Chinese researchers.

The research could not be possible without access to the proper technology. One of the critical pieces of infrastructure that support quantum networking is accessible dark fibre. Dark fibre, so named because of its composition — a single optical cable with no electronics or network equipment on the alignment — doesn’t interfere with quantum technology.

The City of Calgary is building and provisioning dark fibre to enable next-generation municipal services today and for the future.

“By opening The City’s dark fibre infrastructure to the private and public sector, non-profit companies, and academia, we help enable the development of projects like quantum encryption and create opportunities for further research, innovation and economic growth in Calgary,” said Tyler Andruschak, project manager with Innovation and Collaboration at The City of Calgary.

As for the science of it (also from my post),

A Sept. 20, 2016 article by Robson Fletcher for CBC (Canadian Broadcasting News) online provides a bit more insight from the lead researcher (Note: A link has been removed),

“What is remarkable about this is that this information transfer happens in what we call a disembodied manner,” said physics professor Wolfgang Tittel, whose team’s work was published this week in the journal Nature Photonics.

“Our transfer happens without any need for an object to move between these two particles.”

A Sept. 20, 2016 University of Calgary news release by Drew Scherban, which originated the news item, provides more insight into the research,

“Such a network will enable secure communication without having to worry about eavesdropping, and allow distant quantum computers to connect,” says Tittel.

Experiment draws on ‘spooky action at a distance’

The experiment is based on the entanglement property of quantum mechanics, also known as “spooky action at a distance” — a property so mysterious that not even Einstein could come to terms with it.

“Being entangled means that the two photons that form an entangled pair have properties that are linked regardless of how far the two are separated,” explains Tittel. “When one of the photons was sent over to City Hall, it remained entangled with the photon that stayed at the University of Calgary.”

Next, the photon whose state was teleported to the university was generated in a third location in Calgary and then also travelled to City Hall where it met the photon that was part of the entangled pair.

“What happened is the instantaneous and disembodied transfer of the photon’s quantum state onto the remaining photon of the entangled pair, which is the one that remained six kilometres away at the university,” says Tittel.

Council of Canadian Academies and The State of Science and Technology and Industrial Research and Development in Canada

Preliminary data was released by the CCA’s expert panel in mid-December 2016. I reviewed that material briefly in my Dec. 15, 2016 post but am eagerly awaiting the full report due late 2017 when, hopefully, I’ll have the time to critique the material, and which I hope will have more surprises and offer greater insights than the preliminary report did.


Thank you to my online colleagues. While we don’t interact much it’s impossible to estimate how encouraging it is to know that these people continually participate and help create the nano and/or science blogosphere.

David Bruggeman at his Pasco Phronesis blog keeps me up-to-date on science policy both in the US, Canada, and internationally, as well as, keeping me abreast of the performing arts/science scene. Also, kudos to David for raising my (and his audience’s) awareness of just how much science is discussed on late night US television. Also, I don’t know how he does it but he keeps scooping me on Canadian science policy matters. Thankfully, I’m not bitter and hope he continues to scoop me which will mean that I will get the information from somewhere since it won’t be from the Canadian government.

Tim Harper of Cientifica Research keeps me on my toes as he keeps shifting his focus. Most lately, it’s been on smart textiles and wearables. You can download his latest White Paper titled, Fashion, Smart Textiles, Wearables and Disappearables, from his website. Tim consults on nanotechnology and other emerging technologies at the international level.

Dexter Johnson of the Nanoclast blog on the IEEE (Institute of Electrical and Electronics Engineers) website consistently provides informed insight into how a particular piece of research fits into the nano scene and often provides historical details that you’re not likely to get from anyone else.

Dr. Andrew Maynard is currently the founding Director of the Risk Innovation Lab at the University of Arizona. I know him through his 2020 Science blog where he posts text and videos on many topics including emerging technologies, nanotechnologies, risk, science communication, and much more. Do check out 2020 Science as it is a treasure trove.

2017 hopes and dreams

I hope Canada’s Chief Science Advisor brings some fresh thinking to science in government and that the Council of Canadian Academies’ upcoming assessment on The State of Science and Technology and Industrial Research and Development in Canada is visionary. Also, let’s send up some collective prayers for the Canada Science and Technology Museum which has been closed since 2014 (?) due to black mold (?). It would be lovely to see it open in time for Canada’s 150th anniversary.

I’d like to see the nanotechnology promise come closer to a reality, which benefits as many people as possible.

As for me and FrogHeart, I’m not sure about the future. I do know there’s one more Steep project (I’m working with Raewyn Turner on a multiple project endeavour known as Steep; this project will involve sound and gold nanoparticles).

Should anything sparkling occur to me, I will add it at a future date.

In the meantime, Happy New Year and thank you from the bottom of my heart for reading this blog!

The space-time continuum as a table

Table: The Fourth Dimension from the Potential for Collapse collection by Axel Yberg (downloaded from http://www.akkefunctionalart.com/potentialforcollapse/fourthdimension_2.html)

Table: The Fourth Dimension from the Potential for Collapse collection by Axel Yberg (downloaded from http://www.akkefunctionalart.com/potentialforcollapse/fourthdimension_2.html)

Thanks to Mark Wilson and his Aug. 6, 2013 article for Fast Company for information about this extraordinary science-themed table,

The first three dimensions of Einstein’s space-time continuum are easy–X, Y, and Z vectors give our world a shape. The fourth dimension is time, but it’s a bit more complicated than just looking at a clock because it’s actually all times happening at once. “The separation between past, present, and future is only an illusion, although a convincing one,” Einstein once said. That’s a nice soundbite, but how do you wrap your brain around it?[emphasis mine]

Yberg’s answer to that question is a table. From the Fourth Dimension webpage on the akke functional art (Yberg’s company) website,

The steel-mesh embedded glass top of this piece represents the space-time continuum and the supporting pipes represent four-vectors. This theory, first proposed by Albert Einstein, states that time — the fourth dimension — is only a direction in space and that “the separation between past, present, and future is only an illusion, although a convincing one.” It’s a challenging concept because we are only able to perceive one path that time takes: the ever-changing present.

I began to think about Einstein’s theory, and how it relates to our life experiences and the time that we have for them, when talking to my brother-in-law, Chris.  He and his wife, Jill, had recently undergone two of the most emotional events that we experience as humans: the birth of a child, and the death of a loved one — their incredible dog, Hazel.  As they joyously welcomed a new member to their family, they grieved for the loss of another. The concept of time — and the importance of cherishing the present — became especially poignant.  I built The Fourth Dimension as a gift for their family, celebrating the new and honoring the old.

The four legs of the table represent the four members of their family and the cables represent how they are all connected to one another. Bound together as a family, they rely on each other for support. If any of the cables were severed, the table would collapse.

There’s also a video that features glimpses of the table as Yberg markets his company and its products,

According the akke website, the Fourth Dimension table became available in January 2012.

Is a philosophy of the Higgs and other physics particles a good idea?

Michael  Krämer of the RWTH Aachen University (Germany) muses about philosophy, the Higgs Boson, and more in a Mar. 24, 2013 posting on Jon Butterworth’s Life and Physics blog (Guardian science blogs; Note: A link has been removed),

Many of the great physicists of the 20th century have appreciated the importance of philosophy for science. Einstein, for example, wrote in a letter in 1944:

    I fully agree with you about the significance and educational value of methodology as well as history and philosophy of science. So many people today—and even professional scientists—seem to me like somebody who has seen thousands of trees but has never seen a forest.

At the same time, physics has always played a vital role in shaping ideas in modern philosophy. It appears, however, that we are now faced with the ruins of this beautiful marriage between physics and philosophy. Stephen Hawking has claimed recently that philosophy is “dead” because philosophers have not kept up with science …

Krämer is part of an interdisciplinary (physics and philosophy) project at the LHC (Large Hadron Collider at CERN [European Particle Physics Laboratory]), The Epistemology of the Large Hadron Collider. From the project home page (Note: A link has been removed),

This research collaboration works at the crossroads of physics, philosophy of science, and contemporary history of science. It aims at an epistemological analysis of the recently launched new accelerator experiment at CERN, the Large Hadron Collider (LHC). Central themes are (i) the mechanisms of generating the masses of the particles of the standard model, especially the Higgs-mechanism and the Higgs-particle the LHC has set out to detect; (ii) the ongoing research process with special emphasis on the interaction between a large experiment and a community of theoreticians; and (iii) the implications of an experiment that is characterized by its enormous complexity and the need to be highly selective in data gathering. With the heading “Epistemology of the LHC” the research group intends both a philosophical analysis of the theoretical structures and of the conditions of knowledge production, among them the criteria of acceptance, and a real-time monitoring of the ongoing physical development from the perspective of the history of science. Theresearch group has emerged from a collaboration between a High Energy Working group and the Interdisciplinary Centre for Science and Technology Studies and is based in Wuppertal but also involves external members and collaborators.

Krämer shares some of his ideas and the type of thinking generated when physicists and philosophers collide (I plead guilty to the word play; from Butterworth’s Guardian science blog),

… The relationship between experiment and theory (what impact does theoretical prejudice have on empirical findings?) or the role of models (how can we assess the uncertainty of a simplified representation of reality?) are scientific issues, but also issues from the foundation of philosophy of science. In that sense they are equally important for both fields, and philosophy may add a wider and critical perspective to the scientific discussion. And while not every particle physicist may be concerned with the ontological question of whether particles or fields are the more fundamental objects, our research practice is shaped by philosophical concepts. We do, for example, demand that a physical theory can be tested experimentally and thereby falsified, a criterion that has been emphasized by the philosopher Karl Popper already in 1934. The Higgs mechanism can be falsified, because it predicts how Higgs particles are produced and how they can be detected at the Large Hadron Collider.

On the other hand, some philosophers tell us that falsification is strictly speaking not possible: What if a Higgs property does not agree with the standard theory of particle physics? How do we know it is not influenced by some unknown and thus unaccounted factor, like a mysterious blonde walking past the LHC experiments and triggering the Higgs to decay? (This was an actual argument given in the meeting!)

The meeting Krämer is referring to is this one (from the meeting/conference website),

The first international conference and kick-off meeting of the German Society for Philosophy of Science/Gesellschaft für Wissenschaftsphilosophie (GWP) will take place from 11-14 March 2013 at the University of Hannover under the title:

How Much Philosophy in the Philosophy of Science?

Krämer then highlights some of the discussion that most interested in him (Note: A link has been removed),

… It is very hard for a philosopher to keep up with scientific progress, and how could one integrate various fields without having fully appreciated the essential features of the individual sciences? As Margaret Morrison from the University of Toronto pointed out in her talk, if philosophy steps back too far from the individual sciences, the account becomes too general and isolated from scientific practice. On the other hand, if philosophy is too close to an individual science, it may not be philosophy any longer.

I think philosophy of science should not consider itself primarily as a service to science, but rather identify and answer questions within its own domain. I certainly would not be concerned if my own research went unnoticed by biologists, chemists, or philosophers, as long as it advances particle physics. On the other hand, as Morrison pointed out, science does generate its own philosophical problems, and philosophy may provide some kind of broader perspective for understanding those problems.

It’s well worth reading Krämer’s full post for anyone who’s interested in how physicists (or Krämer) think about the role that philosophy could play (or not) in the field of physics.

The reference to Margaret Morrison from the University of Toronto (U of T) reminded me of the Bubble Chamber blog which is written by U of T historians and philosophers of science. Here’s a July 10, 2012 posting by Mike Thicke about the Higgs Boson and his response to philosopher Wayne Myrvold’s (University of Western Ontario) explanation of the statistics claims being made about the particle at that time,

We can all agree that reasoning and decision making in science is complicated. Scientists reason in many different contexts: in the lab, in their published papers, as career-minded professionals, as interested consumers of science, and as people going about their lives. It’s plausible to think that they reason in different ways in all of these contexts. When we’re discussing their reasoning as scientists, I believe distinguishing between the first three contexts is especially important. While Wayne’s explanation of the statistics behind the Higgs Boson discovery is very interesting, informative, and as far as I can tell correct, I think there are some confusions arising from his failure to make these distinctions.

Thicke does advise reading Myrvold’s July 4, 2012 posting before tackling his riposte.

Teaching nano the haptic way; Brownian motion ain’t what we thought; EPA issues final new rules for carbon nanotubes

In keeping with my interest in the multimodal communication of science, I have found a slide show about teaching nanotechnology using haptics here. The technique is intended for the visually impaired but as the authors point out visual contact at the nano scale is impossible. So, everyone, visually impaired or not, makes haptic contact with material at the nano scale with the consequence that the teaching technique is suitable for everybody.

As suggested in my July 27, 2009 blog posting (part 4 of the robots and human enhancement series), developments such as these suggest that the notion of physical impairment may change significantly or disappear.

In a media release, on the Azonano site, detailing new revelations about Brownian motion,  Steve Granick, Founder Professor of Engineering at the University of Illinois, describes how many of us are taught about Brownian motion,

“In high school science classes, students are often assigned the task of using a microscope to watch a particle of dust sitting in a drop of water,” Granick said. “The dust particle seems alive, moving back and forth, never in the same way. The motion of the dust particle is caused by the random ‘kicks’ of surrounding water molecules.”

Granick goes on to describe what he and his researchers have observed,

“Like Einstein, we used to think we could describe Brownian motion with a standard bell-shaped curve,” Granick said. “But now, with the ability to measure very small distances much more precisely than was possible 100 years ago, we have found that we can have extremes much farther than previously imagined.”

Please do take a look at the story on the Azonano site for more about the significance of this discovery.

Nanowerk News has posted a media release from the US Environmental Protection Agency (EPA) about new rules which allow for commercialization of carbon nanotubes under limited conditions.  The EPA document is here and pages 9 (multi-walled carbon nanotubes) and 10 (single-walled nanotubes) are the relevant pages.

The quantum made quotidian

It hit me one day; an idea that is. Nanotechnology is the application of quantum theory to our every day lives. That idea helped me to make sense of all the information I’ve been gathering for the last two and half years. (Aside: I’m still not sure why I decided to follow nanotechnology rather than some other emerging technology.) I mention this now because physicist Alexander Mayer is presenting a new theory of time at a talk for the American Physical Society, May 2, 2009. Richard Feynman, the physicist who proposed the nanotechnology concept, had tackled a phenomenon in relativity (Einstein’s theory) called ‘time dilation’. Mayer is proposing an amendment to the theory of relativity which explains time dilation and  will change modern physics. There’s a much better explanation for this at Nanowerk News. My point with all of this is that ideas tie together in unexpected ways and scientific theories proposed and understood by experts can eventually have an impact on our everyday lives. I don’t grasp Mayer’s ideas well but it’s intriguing to think that one day children may learn these ideas and consider them easy. After all, the concept of zero was initially considered complicated and yet most of us take it for granted.

President Obama has been making quite a splash with his promises of funding for the science community. He’s pledged 3% of the gross domestic product, which is more money than the US spent at the height of their last golden science funding period (the race for space in the 1960s). What a contrast with the current Canadian scene!

Einstein’s ghosts and a nano education programme in Europe

He named it ‘spooky action’ as the concept so unnerved him. Einstein used it to describe distant particles’ communication with each other. Today, scientists at Bristol University and the Imperial College London are using ‘spooky action’ to solve the problem of identifying quantum devices. As to why this might be useful, (from the article),

Anthony Laing, PhD student in the Department of Physics, who performed the study, said: “Apart from providing insight into the fundamentals of quantum physics, this work may be crucial for future quantum technologies.

“How else could a future quantum engineer build a quantum computer if they can’t tell which circuits they have?”

The European Commission has awarded a 1.5M Euros education contract to Israel’s Organization for Rehabilitation and Training. 30,000 European students (11 – 18 years [additional programmes for young adults 19 – 25] will be introduced to nanotechnology through the NANOYOU project. There’s more information here and here.

I’ve been wondering when they’d find a way to fuse nanotechnology with sex and they’ve done it. Apparently nanotechnology may be helpful for erectile dysfunction. There’s a project which focuses on drug delivery and has been tested on rats. So I don’t think there’s anything to get too excited about yet but if you are interested, there’s more here.