Tag Archives: Emil Venere

Organismic learning—learning to forget

This approach to mimicking the human brain differs from the memristor. (You can find several pieces about memrisors here including this August 24, 2017 post about a derivative, a neuristor).  This approach comes from scientists at Purdue University and employs a quantum material. From an Aug. 15, 2017 news item on phys.org,

A new computing technology called “organismoids” mimics some aspects of human thought by learning how to forget unimportant memories while retaining more vital ones.

“The human brain is capable of continuous lifelong learning,” said Kaushik Roy, Purdue University’s Edward G. Tiedemann Jr. Distinguished Professor of Electrical and Computer Engineering. “And it does this partially by forgetting some information that is not critical. I learn slowly, but I keep forgetting other things along the way, so there is a graceful degradation in my accuracy of detecting things that are old. What we are trying to do is mimic that behavior of the brain to a certain extent, to create computers that not only learn new information but that also learn what to forget.”

The work was performed by researchers at Purdue, Rutgers University, the Massachusetts Institute of Technology, Brookhaven National Laboratory and Argonne National Laboratory.

Central to the research is a ceramic “quantum material” called samarium nickelate, which was used to create devices called organismoids, said Shriram Ramanathan, a Purdue professor of materials engineering.

A video describing the work has been produced,

An August 14, 2017 Purdue University news release by Emil Venere, which originated the news item,  details the work,

“These devices possess certain characteristics of living beings and enable us to advance new learning algorithms that mimic some aspects of the human brain,” Roy said. “The results have far reaching implications for the fields of quantum materials as well as brain-inspired computing.”

When exposed to hydrogen gas, the material undergoes a massive resistance change, as its crystal lattice is “doped” by hydrogen atoms. The material is said to breathe, expanding when hydrogen is added and contracting when the hydrogen is removed.

“The main thing about the material is that when this breathes in hydrogen there is a spectacular quantum mechanical effect that allows the resistance to change by orders of magnitude,” Ramanathan said. “This is very unusual, and the effect is reversible because this dopant can be weakly attached to the lattice, so if you remove the hydrogen from the environment you can change the electrical resistance.”

When hydrogen is exposed to the material, it splits into a proton and an electron, and the electron attaches to the nickel, temporarily causing the material to become an insulator.

“Then, when the hydrogen comes out, this material becomes conducting again,” Ramanathan said. “What we show in this paper is the extent of conduction and insulation can be very carefully tuned.”

This changing conductance and the “decay of that conductance over time” is similar to a key animal behavior called habituation.

“Many animals, even organisms that don’t have a brain, possess this fundamental survival skill,” Roy said. “And that’s why we call this organismic behavior. If I see certain information on a regular basis, I get habituated, retaining memory of it. But if I haven’t seen such information over a long time, then it slowly starts decaying. So, the behavior of conductance going up and down in exponential fashion can be used to create a new computing model that will incrementally learn and at same time forget things in a proper way.”

The researchers have developed a “neural learning model” they have termed adaptive synaptic plasticity.

“This could be really important because it’s one of the first examples of using quantum materials directly for solving a major problem in neural learning,” Ramanathan said.

The researchers used the organismoids to implement the new model for synaptic plasticity.

“Using this effect we are able to model something that is a real problem in neuromorphic computing,” Roy said. “For example, if I have learned your facial features I can still go out and learn someone else’s features without really forgetting yours. However, this is difficult for computing models to do. When learning your features, they can forget the features of the original person, a problem called catastrophic forgetting.”

Neuromorphic computing is not intended to replace conventional general-purpose computer hardware, based on complementary metal-oxide-semiconductor transistors, or CMOS. Instead, it is expected to work in conjunction with CMOS-based computing. Whereas CMOS technology is especially adept at performing complex mathematical computations, neuromorphic computing might be able to perform roles such as facial recognition, reasoning and human-like decision making.

Roy’s team performed the research work on the plasticity model, and other collaborators concentrated on the physics of how to explain the process of doping-driven change in conductance central to the paper. The multidisciplinary team includes experts in materials, electrical engineering, physics, and algorithms.

“It’s not often that a materials science person can talk to a circuits person like professor Roy and come up with something meaningful,” Ramanathan said.

Organismoids might have applications in the emerging field of spintronics. Conventional computers use the presence and absence of an electric charge to represent ones and zeroes in a binary code needed to carry out computations. Spintronics, however, uses the “spin state” of electrons to represent ones and zeros.

It could bring circuits that resemble biological neurons and synapses in a compact design not possible with CMOS circuits. Whereas it would take many CMOS devices to mimic a neuron or synapse, it might take only a single spintronic device.

In future work, the researchers may demonstrate how to achieve habituation in an integrated circuit instead of exposing the material to hydrogen gas.

Here’s a link to and a citation for the paper,

Habituation based synaptic plasticity and organismic learning in a quantum perovskite by Fan Zuo, Priyadarshini Panda, Michele Kotiuga, Jiarui Li, Mingu Kang, Claudio Mazzoli, Hua Zhou, Andi Barbour, Stuart Wilkins, Badri Narayanan, Mathew Cherukara, Zhen Zhang, Subramanian K. R. S. Sankaranarayanan, Riccardo Comin, Karin M. Rabe, Kaushik Roy, & Shriram Ramanathan. Nature Communications 8, Article number: 240 (2017) doi:10.1038/s41467-017-00248-6 Published online: 14 August 2017

This paper is open access.

3D printing soft robots and flexible electronics with metal alloys

This research comes from Purdue University (Indiana, US) which seems to be on a publishing binge these days. From an April 7, 2015 news item on Nanowerk,

New research shows how inkjet-printing technology can be used to mass-produce electronic circuits made of liquid-metal alloys for “soft robots” and flexible electronics.

Elastic technologies could make possible a new class of pliable robots and stretchable garments that people might wear to interact with computers or for therapeutic purposes. However, new manufacturing techniques must be developed before soft machines become commercially feasible, said Rebecca Kramer, an assistant professor of mechanical engineering at Purdue University.

“We want to create stretchable electronics that might be compatible with soft machines, such as robots that need to squeeze through small spaces, or wearable technologies that aren’t restrictive of motion,” she said. “Conductors made from liquid metal can stretch and deform without breaking.”

A new potential manufacturing approach focuses on harnessing inkjet printing to create devices made of liquid alloys.

“This process now allows us to print flexible and stretchable conductors onto anything, including elastic materials and fabrics,” Kramer said.

An April 7, 2015 Purdue University news release (also on EurekAlert) by Emil Venere, which originated the news item, expands on the theme,

A research paper about the method will appear on April 18 [2015] in the journal Advanced Materials. The paper generally introduces the method, called mechanically sintered gallium-indium nanoparticles, and describes research leading up to the project. It was authored by postdoctoral researcher John William Boley, graduate student Edward L. White and Kramer.

A printable ink is made by dispersing the liquid metal in a non-metallic solvent using ultrasound, which breaks up the bulk liquid metal into nanoparticles. This nanoparticle-filled ink is compatible with inkjet printing.

“Liquid metal in its native form is not inkjet-able,” Kramer said. “So what we do is create liquid metal nanoparticles that are small enough to pass through an inkjet nozzle. Sonicating liquid metal in a carrier solvent, such as ethanol, both creates the nanoparticles and disperses them in the solvent. Then we can print the ink onto any substrate. The ethanol evaporates away so we are just left with liquid metal nanoparticles on a surface.”

After printing, the nanoparticles must be rejoined by applying light pressure, which renders the material conductive. This step is necessary because the liquid-metal nanoparticles are initially coated with oxidized gallium, which acts as a skin that prevents electrical conductivity.

“But it’s a fragile skin, so when you apply pressure it breaks the skin and everything coalesces into one uniform film,” Kramer said. “We can do this either by stamping or by dragging something across the surface, such as the sharp edge of a silicon tip.”

The approach makes it possible to select which portions to activate depending on particular designs, suggesting that a blank film might be manufactured for a multitude of potential applications.

“We selectively activate what electronics we want to turn on by applying pressure to just those areas,” said Kramer, who this year was awarded an Early Career Development award from the National Science Foundation, which supports research to determine how to best develop the liquid-metal ink.

The process could make it possible to rapidly mass-produce large quantities of the film.

Future research will explore how the interaction between the ink and the surface being printed on might be conducive to the production of specific types of devices.

“For example, how do the nanoparticles orient themselves on hydrophobic versus hydrophilic surfaces? How can we formulate the ink and exploit its interaction with a surface to enable self-assembly of the particles?” she said.

The researchers also will study and model how individual particles rupture when pressure is applied, providing information that could allow the manufacture of ultrathin traces and new types of sensors.

Here’s a link to and a citation for the paper,

Nanoparticles: Mechanically Sintered Gallium–Indium Nanoparticles by John William Boley, Edward L. White and Rebecca K. Kramer. Advanced Materials Volume 27, Issue 14, page 2270, April 8, 2015 DOI: 10.1002/adma.201570094 Article first published online: 7 APR 2015

© 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This article is behind a paywall.

Cellullose nanocrystals (CNC) and better concrete

Earlier this week in a March 30, 2015 post, I was bemoaning the dearth of applications for cellulose nanocrystals (CNC) with concomitant poor prospects for commercialization and problems for producers such as Canada’s CelluForce. Possibly this work at Purdue University (Indiana, US) will help address some of those issues (from a March 31, 2015 news item on Nanowerk),

Cellulose nanocrystals derived from industrial byproducts have been shown to increase the strength of concrete, representing a potential renewable additive to improve the ubiquitous construction material.

The cellulose nanocrystals (CNCs) could be refined from byproducts generated in the paper, bioenergy, agriculture and pulp industries. They are extracted from structures called cellulose microfibrils, which help to give plants and trees their high strength, lightweight and resilience. Now, researchers at Purdue University have demonstrated that the cellulose nanocrystals can increase the tensile strength of concrete by 30 percent.

A March 31, 2015 Purdue University news release by Emil Venere, which originated the news item, further describes the research published in print as of February 2015 (Note: A link has been removed),

One factor limiting the strength and durability of today’s concrete is that not all of the cement particles are hydrated after being mixed, leaving pores and defects that hamper strength and durability.

“So, in essence, we are not using 100 percent of the cement,” Zavattieri [Pablo Zavattieri, an associate professor in the Lyles School of Civil Engineering] said.

However, the researchers have discovered that the cellulose nanocrystals increase the hydration of the concrete mixture, allowing more of it to cure and potentially altering the structure of concrete and strengthening it.  As a result, less concrete needs to be used.

The cellulose nanocrystals are about 3 to 20 nanometers wide by 50-500 nanometers long – or about 1/1,000th the width of a grain of sand – making them too small to study with light microscopes and difficult to measure with laboratory instruments. They come from a variety of biological sources, primarily trees and plants.

The concrete was studied using several analytical and imaging techniques. Because chemical reactions in concrete hardening are exothermic, some of the tests measured the amount of heat released, indicating an increase in hydration of the concrete. The researchers also hypothesized the precise location of the nanocrystals in the cement matrix and learned how they interact with cement particles in both fresh and hardened concrete. The nanocrystals were shown to form little inlets for water to better penetrate the concrete.

The research dovetails with the goals of P3Nano, a public-private partnership supporting development and use of wood-based nanomaterial for a wide-range of commercial products.

“The idea is to support and help Purdue further advance the CNC-Cement technology for full-scale field trials and the potential for commercialization,” Zavattieri said.

The researchers have provided an image,

This transmission electron microscope image shows cellulose nanocrystals, tiny structures derived from renewable sources that might be used to create a new class of biomaterials with many potential applications. The structures have been shown to increase the strength of concrete. (Purdue Life Sciences Microscopy Center)

This transmission electron microscope image shows cellulose nanocrystals, tiny structures derived from renewable sources that might be used to create a new class of biomaterials with many potential applications. The structures have been shown to increase the strength of concrete. (Purdue Life Sciences Microscopy Center)

Here’s a link to and a citation for the paper,

The influence of cellulose nanocrystal additions on the performance of cement paste by Yizheng Cao, Pablo Zavaterri, Jeff Youngblood, Robert Moon, and Jason Weiss. Cement and Concrete Composites, Volume 56, February 2015, Pages 73–83  DOI: 10.1016/j.cemconcomp.2014.11.008 Available online 18 November 2014

The paper is behind a paywall.

One final note, cellulose nanocrystals (CNC) may also be referred to nanocrystalline cellulose (NCC).

 

Nano for car lubricants and for sensors on dashboards

I have two car-oriented news items today. The first concerns the introduction of carbon nanospheres into lubricants as a means of reducing friction. From a March 5, 2015 news item on Nanowerk,

Tiny, perfectly smooth carbon spheres added to motor oil have been shown to reduce friction and wear typically seen in engines by as much as 25 percent, suggesting a similar enhancement in fuel economy.

The researchers also have shown how to potentially mass-produce the spheres, making them hundreds of times faster than previously possible using ultrasound to speed chemical reactions in manufacturing.

“People have been making these spheres for about the last 10 years, but what we discovered was that instead of taking the 24 hours of synthesis normally needed, we can make them in 5 minutes,” said Vilas Pol, an associate professor of chemical engineering at Purdue University.

The spheres are 100-500 nanometers in diameter, a range that generally matches the “surface roughness” of moving engine components.

“So the spheres are able to help fill in these areas and reduce friction,” said mechanical engineering doctoral student Abdullah A. Alazemi.

A March 4, 2015 Purdue University news release by Emil Venere, which originated the news item, elaborates on the impact this finding could have (Note: A link has been removed),

Tests show friction is reduced by 10 percent to 25 percent when using motor oil containing 3 percent of the spheres by weight.

“Reducing friction by 10 to 25 percent would be a significant improvement,” Sadeghi said. “Many industries are trying to reduce friction through modification of lubricants. The primary benefit to reducing friction is improved fuel economy.”

Friction is greatest when an engine is starting and shutting off, so improved lubrication is especially needed at those times.

“Introducing microspheres helps separate the surfaces because the spheres are free to move,” Alazemi said. “It also is possible that these spheres are rolling and acting as little ball bearings, but further research is needed to confirm this.” [emphasis mine]

Findings indicate adding the spheres did not change the viscosity of the oil.

“It’s very important not to increase the viscosity because you want to maintain the fluidity of the oil so that it can penetrate within engine parts,” Alazemi said.

The spheres are created using ultrasound to produce bubbles in a fluid containing a chemical compound called resorcinol and formaldehyde. The bubbles expand and collapse, generating heat that drives chemical reactions to produce polymer particles. These polymeric particles are then heated in a furnace to about 900 degrees Celsius, yielding the perfectly smooth spheres.

“A major innovation is that professor Pol has shown how to make lots of these spheres, which is important for potential industrial applications,” Sadeghi said.

Etacheri said, “Electron microscopy images and Raman spectra taken before and after their use show the spheres are undamaged, suggesting they can withstand the punishing environment inside engines and other machinery.”

Funding was provided by Purdue’s School of Chemical Engineering. Electron microscopy studies were performed at the Birck Nanotechnology Center in Purdue’s Discovery Park.

Future research will include work to determine whether the spheres are rolling like tiny ball bearings or merely sliding. A rolling mechanism best reduces friction and would portend well for potential applications. Future research also will determine whether the resorcinol-formaldehyde particles might themselves be used as a lubricant additive without heating them to produce pure carbon spheres.

I’m not sure why the researcher is referring to microspheres as the measurements are at the nanoscale, which should mean these are ‘nanospheres’ or, as the researchers have it in the title for their paper, ‘submicrometer spheres’.

Here’s a link to and a citation for the paper,

Ultrasmooth Submicrometer Carbon Spheres as Lubricant Additives for Friction and Wear Reduction by Abdullah A. Alazemi, Vinodkumar Etacheri, Arthur D. Dysart, Lars-Erik Stacke, Vilas G. Pol, and Farshid Sadeghi. ACS Appl. Mater. Interfaces, Article ASAP DOI: 10.1021/acsami.5b00099 Publication Date (Web): February 17, 2015
Copyright © 2015 American Chemical Society

This paper is behind a paywall but there is an instructive image freely available,

This image taken with an electron microscope shows that tiny carbon spheres added to motor oil reduce friction and wear typically seen in engines by as much as 25 percent, suggesting a similar enhancement in fuel economy. Purdue researchers also have shown how to potentially mass-produce the spheres. (Purdue University image)

This image taken with an electron microscope shows that tiny carbon spheres added to motor oil reduce friction and wear typically seen in engines by as much as 25 percent, suggesting a similar enhancement in fuel economy. Purdue researchers also have shown how to potentially mass-produce the spheres. (Purdue University image)

My second car item concerns thin films and touch. From a March 5, 2015 news item on Azonano (Note: A link has been removed),,

Canatu, a leading manufacturer of transparent conductive films, has in partnership with Schuster Group [based in Germany] and Display Solution AG [based in Germany], showcased a pioneering 3D encapsulated touch sensor for the automotive industry.

The partnership is delivering the first ever, button free, 3D shaped true multitouch panel for automotives, being the first to bring much anticipated touch applications to dashboards and paneling. The demonstrator provides an example of multi-functional display with 5 finger touch realized in IML [in mould labeling] technology.

A March 5, 2015 Canatu press release, which originated the news item, provides more details about the technology and some insight into future plans,

The demonstrator provides an example of multi-functional display with 5 finger touch realized in IML technology. The integration of touch applications to dashboards and other paneling in cars has long been a desired by automotive designers but a suitable technology was not available. Finally the technology is now here. Canatu’s CNB™ (Carbon NanoBud®) In-Mold Film, with its unique stretch properties provides a clear path to the eventual replacement of mechanical controls with 3D touch sensors. The touch application was made using an existing mass manufacturing tool and industry standard processes.

Specifically designed for automobile center consoles and dashboards, household machines, wearable devices, industrial user interfaces, commercial applications and consumer devices, CNB™ In-Mold Films can be easily formed into shape. The film is first patterned to the required touch functionality, then formed, then back-molded by injection molding, resulting in a unique 3D shape with multitouch functionality.

With a bending radius of 1mm, CNB™ In-Mold Films can bring touch to almost any surface imaginable. The unique properties of CNB™ In-Mold Films are unmatched as no other film on the market can be stretched 120% and molded without losing their conductivity.

You can find out more about Canatu, based in Finland, here.

Fundamental mechanical behaviour of cellulose nanocrystals (aka nanocrystalline cellulose)

Emil Venere at Purdue University offers an excellent explanation of why there’s so much international interest in cellulose nanocrystals (CNC aka, nanocrystalline cellulose [NCC]) in his Dec. 16, 2013 Purdue University (Indiana, US) news release (also on EurekAlert), Note: A link has been removed,

The same tiny cellulose crystals that give trees and plants their high strength, light weight and resilience, have now been shown to have the stiffness of steel.

The nanocrystals might be used to create a new class of biomaterials with wide-ranging applications, such as strengthening construction materials and automotive components.

Calculations using precise models based on the atomic structure of cellulose show the crystals have a stiffness of 206 gigapascals, which is comparable to steel, said Pablo D. Zavattieri, a Purdue University assistant professor of civil engineering.

Here’s an image of the cellulose crystals being examined,

This transmission electron microscope image shows cellulose nanocrystals, tiny structures that give trees and plants their high strength, light weight and resilience. The nanocrystals might be used to create a new class of biomaterials that would have a wide range of applications. (Purdue Life Sciences Microscopy Center)

This transmission electron microscope image shows cellulose nanocrystals, tiny structures that give trees and plants their high strength, light weight and resilience. The nanocrystals might be used to create a new class of biomaterials that would have a wide range of applications. (Purdue Life Sciences Microscopy Center)

You’ll notice this image is not enhanced and made pretty as compared to the images in my Dec. 16, 2013 posting about Bristol University’s Art of Science competition. It takes a lot of work to turn the types of images scientists use into ‘art’.

Getting back to the CNC, this news release was probably written by someone who’s not familiar with the other work being done in the field (university press officers typically write about a wide range of topics and cannot hope to have in depth knowledge on each topic) and so it’s being presented as if it is brand new information. In fact, there has been several years work done in five other national jurisdictions that I know of (Sweden, Finland, Canada, Brazil, and Israel) and there are likely more. That’s not including other US states pursuing research in this area, notably Wisconsin.

What I (taking into account  my limitations) find particularly exciting in this work is the detail they’ve been able to determine and the reference to quantum mechanics. Here’s more from the news release (Note: Links have been removed),

“It is very difficult to measure the properties of these crystals experimentally because they are really tiny,” Zavattieri said. “For the first time, we predicted their properties using quantum mechanics.”

The nanocrystals are about 3 nanometers wide by 500 nanometers long – or about 1/1,000th the width of a grain of sand – making them too small to study with light microscopes and difficult to measure with laboratory instruments.

The findings represent a milestone in understanding the fundamental mechanical behavior of the cellulose nanocrystals.

“It is also the first step towards a multiscale modeling approach to understand and predict the behavior of individual crystals, the interaction between them, and their interaction with other materials,” Zavattieri said. “This is important for the design of novel cellulose-based materials as other research groups are considering them for a huge variety of applications, ranging from electronics and medical devices to structural components for the automotive, civil and aerospace industries.”

From an applications perspective (which is what excites so much international interest),

The cellulose nanocrystals represent a potential green alternative to carbon nanotubes for reinforcing materials such as polymers and concrete. Applications for biomaterials made from the cellulose nanocrystals might include biodegradable plastic bags, textiles and wound dressings; flexible batteries made from electrically conductive paper; new drug-delivery technologies; transparent flexible displays for electronic devices; special filters for water purification; new types of sensors; and computer memory.

Cellulose could come from a variety of biological sources including trees, plants, algae, ocean-dwelling organisms called tunicates, and bacteria that create a protective web of cellulose.

“With this in mind, cellulose nanomaterials are inherently renewable, sustainable, biodegradable and carbon-neutral like the sources from which they were extracted,” Moon said. “They have the potential to be processed at industrial-scale quantities and at low cost compared to other materials.”

Biomaterials manufacturing could be a natural extension of the paper and biofuels industries, using technology that is already well-established for cellulose-based materials.

“Some of the byproducts of the paper industry now go to making biofuels, so we could just add another process to use the leftover cellulose to make a composite material,” Moon said. “The cellulose crystals are more difficult to break down into sugars to make liquid fuel. So let’s make a product out of it, building on the existing infrastructure of the pulp and paper industry.”

Their surface can be chemically modified to achieve different surface properties.

“For example, you might want to modify the surface so that it binds strongly with a reinforcing polymer to make a new type of tough composite material, or you might want to change the chemical characteristics so that it behaves differently with its environment,” Moon said.

Zavattieri plans to extend his research to study the properties of alpha-chitin, a material from the shells of organisms including lobsters, crabs, mollusks and insects. Alpha-chitin appears to have similar mechanical properties as cellulose.

“This material is also abundant, renewable and waste of the food industry,” he said.

Here’s a link to and a citation for the paper,

Anisotropy of the Elastic Properties of Crystalline Cellulose Iβ from First Principles Density Functional Theory with Van der Waals Interactions by Fernando L. Dri, Louis G. Hector Jr., Robert J. Moon, Pablo D. Zavattieri.  Cellulose December 2013, Volume 20, Issue 6, pp 2703-2718. 10.1007/s10570-013-0071-8

This paper is behind a paywall although you can preview the first few pages.

Christmas-tree shaped ‘4-D’ nanowires

This Dec. 5, 2012 news item on Nanowerk features a seasonal approach to a study about ‘4-D’ nanowires,

A new type of transistor shaped like a Christmas tree has arrived just in time for the holidays, but the prototype won’t be nestled under the tree along with the other gifts.

“It’s a preview of things to come in the semiconductor industry,” said Peide “Peter” Ye, a professor of electrical and computer engineering at Purdue University.

Researchers from Purdue and Harvard universities created the transistor, which is made from a material that could replace silicon within a decade. Each transistor contains three tiny nanowires made not of silicon, like conventional transistors, but from a material called indium-gallium-arsenide. The three nanowires are progressively smaller, yielding a tapered cross section resembling a Christmas tree.

Sadly, Purdue University (Indiana, US) will not be releasing any images to accompany their Dec. 4, 2012 news release (which originated the news item) about the ‘4-D’ transistor  until Saturday, Dec. 8, 2012.  So here’s an image of a real Christmas tree from the National Christmas Tree Organization’s Common Tree Characteristics webpage,

Douglas Fir Christmas tree from http://www.realchristmastrees.org/dnn/AllAboutTrees/TreeCharacteristics.aspx

 

The Purdue University news release written by Emil Venere provides more detail about the work,

“A one-story house can hold so many people, but more floors, more people, and it’s the same thing with transistors,” Ye said. “Stacking them results in more current and much faster operation for high-speed computing. This adds a whole new dimension, so I call them 4-D.”

The work is led by Purdue doctoral student Jiangjiang Gu and Harvard postdoctoral researcher Xinwei Wang.

The newest generation of silicon computer chips, introduced this year, contain transistors having a vertical 3-D structure instead of a conventional flat design. However, because silicon has a limited “electron mobility” – how fast electrons flow – other materials will likely be needed soon to continue advancing transistors with this 3-D approach, Ye said.

Indium-gallium-arsenide is among several promising semiconductors being studied to replace silicon. Such semiconductors are called III-V materials because they combine elements from the third and fifth groups of the periodic table.

Transistors contain critical components called gates, which enable the devices to switch on and off and to direct the flow of electrical current. Smaller gates make faster operation possible. In today’s 3-D silicon transistors, the length of these gates is about 22 nanometers, or billionths of a meter.

The 3-D design is critical because gate lengths of 22 nanometers and smaller do not work well in a flat transistor architecture. Engineers are working to develop transistors that use even smaller gate lengths; 14 nanometers are expected by 2015, and 10 nanometers by 2018.

However, size reductions beyond 10 nanometers and additional performance improvements are likely not possible using silicon, meaning new materials will be needed to continue progress, Ye said.

Creating smaller transistors also will require finding a new type of insulating, or “dielectric” layer that allows the gate to switch off. As gate lengths shrink smaller than 14 nanometers, the dielectric used in conventional transistors fails to perform properly and is said to “leak” electrical charge when the transistor is turned off.

Nanowires in the new transistors are coated with a different type of composite insulator, a 4-nanometer-thick layer of lanthanum aluminate with an ultrathin, half-nanometer layer of aluminum oxide. The new ultrathin dielectric allowed researchers to create transistors made of indium-gallium- arsenide with 20-nanometer gates, which is a milestone, Ye said.

This work will be presented at the 2012 International Electron Devices (IEEE [Institute of Electrical and Electronics Engineers]) meeting in San Francisco, California, Dec. 10 – 12, 2012 (as per the information on the registration page) with the two papers written by the team will be published in the proceedings.

I have a full list of the authors, from the news release,

The authors of the research papers are Gu [Jiangjiang Gu]; Wang [Xinwei Wang]; Purdue doctoral student H. Wu; Purdue postdoctoral research associate J. Shao; Purdue doctoral student A. T. Neal; Michael J. Manfra, Purdue’s William F. and Patty J. Miller Associate Professor of Physics; Roy Gordon, Harvard’s Thomas D. Cabot Professor of Chemistry; and Ye [Peide “Peter” Ye].

Eeek! The sticky tape is coming after us!

Fingers emerged from sticky tape to form claws in a research project conducted at Purdue University (Indiana, US), which will be presented at a meeting of the Materials Research Society (MRS) in Boston from Sunday (Nov. 25) to Nov. 30, 2012. The Nov. 20, 2012 news release on EurekAlert describes the new ‘smart’ material,

Researchers used a laser to form slender half-centimeter-long fingers out of the tape. When exposed to water, the four wispy fingers morph into a tiny robotic claw that captures water droplets.

The innovation could be used to collect water samples for environmental testing, said Babak Ziaie, a Purdue University professor of electrical and computer engineering and biomedical engineering.

“It  [the tape] can be micromachined into different shapes and works as an inexpensive smart material that interacts with its environment to perform specific functions,” he said.

Doctoral student Manuel Ochoa came up with the idea. While using tape to collect pollen, he noticed that it curled when exposed to humidity. The cellulose-acetate absorbs water, but the adhesive film repels water.

“So, when one side absorbs water it expands, the other side stays the same, causing it to curl,” Ziaie said.

A laser was used to machine the tape to a tenth of its original thickness, enhancing this curling action. The researchers coated the graspers with magnetic nanoparticles so that they could be collected with a magnet.

“Say you were sampling for certain bacteria in water,” Ziaie said. “You could drop a bunch of these and then come the next day and collect them.”

Sticky tape is one of  my favourite pieces of science equipment along with inkjet printers and ‘Shrinky Dinks’ as I noted in my Nov. 16, 2012 posting about bio-ink. The Nov. 20, 2012 news release by Emil Venere can also be found on the Purdue University website along with photos and other materials such as this animated GIF of the gripper closing available at https://engineering.purdue.edu/ZBML/img/research/plain-gripper-closing.gif.

Blood, tears, and urine for use in diagnostic tools

Frankly, I’d rather just spit into a cup or onto a slide for diagnostic tests than having to supply urine or have my blood drawn. I don’t think that day has arrived yet but scientists at Purdue University (Indiana, US) have made a breakthrough. From the Aug. 23, 2012 news item on ScienceDaily,

Researchers have created a new type of biosensor that can detect minute concentrations of glucose in saliva, tears and urine and might be manufactured at low cost because it does not require many processing steps to produce.

“It’s an inherently non-invasive way to estimate glucose content in the body,” said Jonathan Claussen, a former Purdue University doctoral student and now a research scientist at the U.S. Naval Research Laboratory. “Because it can detect glucose in the saliva and tears, it’s a platform that might eventually help to eliminate or reduce the frequency of using pinpricks for diabetes testing. We are proving its functionality.”

Claussen and Purdue doctoral student Anurag Kumar led the project, working with Timothy Fisher, a Purdue professor of mechanical engineering; D. Marshall Porterfield, a professor of agricultural and biological engineering; and other researchers at the university’s Birck Nanotechnology Center.

The originating Aug. 20, 2012 Purdue University news release by Emil Venere provides details as to how this biosensor works,

The sensor has three main parts: layers of nanosheets resembling tiny rose petals made of a material called graphene, which is a single-atom-thick film of carbon; platinum nanoparticles; and the enzyme glucose oxidase.

Each petal contains a few layers of stacked graphene. The edges of the petals have dangling, incomplete chemical bonds, defects where platinum nanoparticles can attach. Electrodes are formed by combining the nanosheet petals and platinum nanoparticles. Then the glucose oxidase attaches to the platinum nanoparticles. The enzyme converts glucose to peroxide, which generates a signal on the electrode.

“Typically, when you want to make a nanostructured biosensor you have to use a lot of processing steps before you reach the final biosensor product,” Kumar said. “That involves lithography, chemical processing, etching and other steps. The good thing about these petals is that they can be grown on just about any surface, and we don’t need to use any of these steps, so it could be ideal for commercialization.”

In addition to diabetes testing, the technology might be used for sensing a variety of chemical compounds to test for other medical conditions.

Here’s a representation of the ‘rose petal’ nanosheets,

These color-enhanced scanning electron microscope images show nanosheets resembling tiny rose petals. The nanosheets are key components of a new type of biosensor that can detect minute concentrations of glucose in saliva, tears and urine. The technology might eventually help to eliminate or reduce the frequency of using pinpricks for diabetes testing. (Purdue University photo/Jeff Goecker)
Download Photo

My most recent piece, prior to this, about less invasive diagnostic tests was this May 8, 2012 posting on a handheld diagnostic device that tests your breath for disease.

Brains in the US Congress

Tomorrow, May 24, 2012, Jean Paul Allain, associate professor of nuclear engineering at Purdue University (Illinois) will be speaking to members of the US Congress about repairing brain injuries using nanotechnology-enabled bioactive coatings for stents. From the May 21, 2012 news item on Nanowerk,

“Stents coated with a bioactive coating might be inserted at the site of an aneurism to help heal the inside lining of the blood vessel,” said Jean Paul Allain, an associate professor of nuclear engineering. “Aneurisms are saclike bulges in blood vessels caused by weakening of artery walls. We’re talking about using a regenerative approach, attracting cells to reconstruct the arterial wall.”

He will speak before Congress on Thursday (May 24) during the first Brain Mapping Day to discuss the promise of nanotechnology in treating brain injury and disease.

The May 21, 2012 news release (by Emil Venere) for Purdue University offers insight into some of the difficulties of dealing with aneurysms using today’s technologies,

Currently, aneurisms are treated either by performing brain surgery, opening the skull and clipping the sac, or by inserting a catheter through an artery into the brain and implanting a metallic coil into the balloon-like sac.

Both procedures risk major complications, including massive bleeding or the formation of potentially fatal blood clots.

“The survival rate is about 50/50 or worse, and those who do survive could be impaired,” said Allain, who holds a courtesy appointment with materials engineering and is affiliated with the Birck Nanotechnology Center in Purdue’s Discovery Park.

Allain goes on to explain how his team’s research addresses these issues (from the May 21, 2012 Purdue University news release),

Cells needed to repair blood vessels are influenced by both the surface texture – features such as bumps and irregular shapes as tiny as 10 nanometers wide – as well as the surface chemistry of the stent materials.

“We are learning how to regulate cell proliferation and growth by tailoring both the function of surface chemistry and topology,” Allain said. “There is correlation between surface chemistry and how cells send signals back and forth for proliferation. So the surface needs to be tailored to promote regenerative healing.”

The facility being used to irradiate the stents – the Radiation Surface Science and Engineering Laboratory in Purdue’s School of Nuclear Engineering – also is used for work aimed at developing linings for experimental nuclear fusion reactors for power generation.

Irradiating materials with the ion beams causes surface features to “self-organize” and also influences the surface chemistry, Allain said.

The stents are made of nonmagnetic materials, such as stainless steel and an alloy of nickel and titanium. Only a certain part of the stents is rendered magnetic to precisely direct the proliferation of cells to repair a blood vessel where it begins bulging to form the aneurism.

Researchers will study the stents using blood from pigs during the first phase in collaboration with the Walter Reed National Military Medical Center.

The stent coating’s surface is “functionalized” so that it interacts properly with the blood-vessel tissue. Some of the cells are magnetic naturally, and “magnetic nanoparticles” would be injected into the bloodstream to speed tissue regeneration. Researchers also are aiming to engineer the stents so that they show up in medical imaging to reveal how the coatings hold up in the bloodstream.

The research is led by Allain and co-principal investigator Lisa Reece of the Birck Nanotechnology Center. This effort has spawned new collaborations with researchers around the world including those at Universidad de Antioquía, University of Queensland. The research also involves doctoral students Ravi Kempaiah and Emily Walker.

The work is funded with a three-year, $1.5 million grant from the U.S. Army. Cells needed to repair blood vessels are influenced by both the surface texture – features such as bumps and irregular shapes as tiny as 10 nanometers wide – as well as the surface chemistry of the stent materials.

As I find the international flavour to the pursuit of science quite engaging, I want to highlight this bit in the May 21, 2012 news item on Nanowerk which mentions a few other collaborators on this project,

Purdue researchers are working with Col. Rocco Armonda, Dr. Teodoro Tigno and other neurosurgeons at Walter Reed National Military Medical Center in Bethesda, Md. Collaborations also are planned with research scientists from the University of Queensland in Australia, Universidad de Antioquía and Universidad de Los Andes, both in Colombia.

The US Congress is not the only place to hear about this work, Allain will also be speaking in Toronto at the 9th Annual World Congress of Society for Brain Mapping & Therapeutics (SBMT) being held June 2 – 4, 2012.

Music can recharge sensors in your body

According to a Jan.26, 2012 news item written by Emil Venere at Purdue University and posted on Nanowerk, researchers have found a new way to recharge batteries in new medical sensors that could be implanted in individuals stricken with aneurysms or bladder incontinence due to paralysis. From the news item,

“You would only need to do this for a couple of minutes every hour or so to monitor either blood pressure or pressure of urine in the bladder,” Ziaie [Babak Ziaie, a Purdue University professor of electrical and computer engineering and biomedical engineering] said. “It doesn’t take long to do the measurement.”

Findings are detailed in a paper (“A Novel Electromechanical Interrogation Scheme for Implantable Passive Transponders”) to be presented during the IEEE [Institute of Electrical and Electronics Engineers] MEMS [Micro Electro Mechanical Systems] 2012 conference, which will be Jan. 29 to Feb. 2 in Paris. The paper was written by doctoral student Albert Kim, research scientist Teimour Maleki and Ziaie.

“This paper demonstrates the feasibility of the concept,” he said.

As you may have guessed from that last line, this hasn’t been tried on people. According to the news item, the concept was tested using a water-filled balloon.

I checked out Venere’s Jan. 26, 2012 news release on the Purdue University website and am excerpting a few details about how these medical sensors work,

The sensor is capable of monitoring pressure in the urinary bladder and in the sack of a blood vessel damaged by an aneurism. Such a technology could be used in a system for treating incontinence in people with paralysis by checking bladder pressure and stimulating the spinal cord to close the sphincter that controls urine flow from the bladder. More immediately, it could be used to diagnose incontinence. The conventional diagnostic method now is to insert a probe with a catheter, which must be in place for several hours while the patient remains at the hospital.

The writer goes on to describe some of the reasons for why this new technology is being pursued,

“A wireless implantable device could be inserted and left in place, allowing the patient to go home while the pressure is monitored,” Ziaie said.

The new technology offers potential benefits over conventional implantable devices, which either use batteries or receive power through a property called inductance, which uses coils on the device and an external transmitter. Both approaches have downsides. Batteries have to be replaced periodically, and data are difficult to retrieve from devices that use inductance; coils on the implanted device and an external receiver must be lined up precisely, and they can only be about a centimeter apart.

The following image is  the researchers’ new sensor, balanced on a coin,

Researchers have created a new type of miniature pressure sensor, shown here, designed to be implanted in the body. Acoustic waves from music or plain tones drive a vibrating device called a cantilever, generating a charge to power the sensor. (Birck Nanotechnology Center, Purdue University)

I found the description of how the cantilever works and can be recharged quite interesting,

The heart of the sensor is a vibrating cantilever, a thin beam attached at one end like a miniature diving board. Music within a certain range of frequencies, from 200-500 hertz, causes the cantilever to vibrate, generating electricity and storing a charge in a capacitor …

The cantilever beam is made from a ceramic material called lead zirconate titanate, or PZT, which is piezoelectric, meaning it generates electricity when compressed. The sensor is about 2 centimeters long …

A receiver that picks up the data from the sensor could be placed several inches from the patient. Playing tones within a certain frequency range also can be used instead of music.

“But a plain tone is a very annoying sound,” Ziaie said. “We thought it would be novel and also more aesthetically pleasing to use music.”

Researchers experimented with four types of music: rap, blues, jazz and rock.

“Rap is the best because it contains a lot of low frequency sound, notably the bass,” Ziaie said.

“The music reaches the correct frequency only at certain times, for example, when there is a strong bass component,” he said. “The acoustic energy from the music can pass through body tissue, causing the cantilever to vibrate.”

When the frequency falls outside of the proper range, the cantilever stops vibrating, automatically sending the electrical charge to the sensor, which takes a pressure reading and transmits data as radio signals. Because the frequency is continually changing according to the rhythm of a musical composition, the sensor can be induced to repeatedly alternate intervals of storing charge and transmitting data.

“You would only need to do this for a couple of minutes every hour or so to monitor either blood pressure or pressure of urine in the bladder,” Ziaie said. “It doesn’t take long to do the measurement.”

It’s usually a long time from testing a concept (in this case, on a water balloon) to bringing a product to the marketplace. In the meantime, I wonder if this concept will work in the ‘wild’ where people are exposed to rap music accidentally or they like to listen to it themselves, all day long, or they loathe rap music and don’t want to listen for a few minutes every hour.

Finally, I have some special appreciation for Venere as he very neatly explained terms I’ve seen many times but for which I’ve only been able to find complicated definitions. Thank you, Mr. Venere and for a very clear description of this technology.