Tag Archives: ENMs

Removing titanium dioxide nanoparticles from water may not be that easy

A March 10, 2015 news item on Nanowerk highlights some research into the removal of nanoscale titanium dioxide particles from water supplies (Note: A link has been removed),

The increased use of engineered nanoparticles (ENMs) in commercial and industrial applications is raising concern over the environmental and health effects of nanoparticles released into the water supply. A timely study that analyzes the ability of typical water pretreatment methods to remove titanium dioxide, the most commonly used ENM, is published in Environmental Engineering Science (“Titanium Dioxide Nanoparticle Removal in Primary Prefiltration Stages of Water Treatment: Role of Coating, Natural Organic Matter, Source Water, and Solution Chemistry”). The article is available free on the Environmental Engineering Science website until April 10, 2015.

A March 10, 2015 Mary Ann Liebert, Inc., publishers news release (also on EurekAlert), which originated the news item, provides more details about the work (Note: A link has been removed),

Nichola Kinsinger, Ryan Honda, Valerie Keene, and Sharon Walker, University of California, Riverside, suggest that current methods of water prefiltration treatment cannot adequately remove titanium dioxide ENMs. They describe the results of scaled-down tests to evaluate the effectiveness of three traditional methods—coagulation, flocculation, and sedimentation—in the article “Titanium Dioxide Nanoparticle Removal in Primary Prefiltration Stages of Water Treatment: Role of Coating, Natural Organic Matter, Source Water, and Solution Chemistry.”

“As nanoscience and engineering allow us to develop new exciting products, we must be ever mindful of associated consequences of these advances,” says Domenico Grasso, PhD, PE, DEE, Editor-in-Chief of Environmental Engineering Science and Provost, University of Delaware. “Professor Walker and her team have presented an excellent report raising concerns that some engineered nanomaterials may find their ways into our water supplies.”

“While further optimization of such treatment processes may allow for improved removal efficiencies, this study illustrates the challenges that we must be prepared to face with the emergence of new engineered nanomaterials,” says Sharon Walker, PhD, Professor of Chemical and Environmental Engineering, University of California, Riverside.

Here’s a link to and a citation for the paper,

Titanium Dioxide Nanoparticle Removal in Primary Prefiltration Stages of Water Treatment: Role of Coating, Natural Organic Matter, Source Water, and Solution Chemistry by Nichola Kinsinger, Ryan Honda, Valerie Keene, and Sharon L. Walker. Environmental Engineering Science. doi:10.1089/ees.2014.0288.

This paper is freely available until April 10, 2015.

Interestingly Sharon Walker and Nichola Kinsinger recently co-authored a paper (mentioned in my March 9, 2015 post) about copper nanoparticles and water treatment which concluded this about copper nanoparticles in water supplies,

The researchers found that the copper nanoparticles, when studied outside the septic tank, impacted zebrafish embryo hatching rates at concentrations as low as 0.5 parts per million. However, when the copper nanoparticles were released into the replica septic tank, which included liquids that simulated human digested food and household wastewater, they were not bioavailable and didn’t impact hatching rates.

Taking these these two paper into account (and the many others I’ve read), there is no simple or universal answer to the question of whether or not ENPs or ENMs are going to pose environmental problems.

New method for measuring risks and quantities of engineered nanomaterials delivered to cells

Despite all the talk about testing engineered nanoparticles and their possible effects on cells, there are problems with the testing process which researchers at the Harvard School of Public Health (HSPH) claim to have addressed (h/t Nanowerk, March 28, 2014).

A March 28, 2014 HSPH press release explains the interest in testing the effects of engineered nanomaterials/nanoparticles on health and describes some of the problems associated with testing their interaction with cells,

Thousands of consumer products containing engineered nanoparticles — microscopic particles found in everyday items from cosmetics and clothing to building materials — enter the market every year. Concerns about possible environmental health and safety issues of these nano-enabled products continue to grow with scientists struggling to come up with fast, cheap, and easy-to-use cellular screening systems to determine possible hazards of vast libraries of engineered nanomaterials. However, determining how much exposure to engineered nanoparticles could be unsafe for humans requires precise knowledge of the amount (dose) of nanomaterials interacting with cells and tissues such as lungs and skin.

With chemicals, this is easy to do but when it comes to nanoparticles suspended in physiological media, this is not trivial. Engineered nanoparticles in biological media interact with serum proteins and form larger agglomerates which alter both their so called effective density and active surface area and ultimately define their delivery to cell dose and bio-interactions. This behavior has tremendous implications not only in measuring the exact amount of nanomaterials interacting with cells and tissue but also in defining hazard rankings of various engineered nanomaterials (ENMs). As a result, thousands of published cellular screening assays are difficult to interpret and use for risk assessment purposes.

The press release goes on to describe the new technique (Note: Links have been removed),

Scientists at the Center for Nanotechnology and Nanotoxicology at Harvard School of Public Health (HSPH) have discovered a fast, simple, and inexpensive method to measure the effective density of engineered nanoparticles in physiological fluids, thereby making it possible to accurately determine the amount of nanomaterials that come into contact with cells and tissue in culture.

The method, referred to as the Volumetric Centrifugation Method (VCM), was published in the March 28, 2014 Nature Communications.

The new discovery will have a major impact on the hazard assessment of engineered nanoparticles, enabling risk assessors to perform accurate hazard rankings of nanomaterials using cellular systems. Furthermore, by measuring the composition of nanomaterial agglomerates in physiologic fluids, it will allow scientists to design more effective nano-based drug delivery systems for nanomedicine applications.

“The biggest challenge we have in assessing possible health effects associated with nano exposures is deciding when something is hazardous and when it is not, based on the dose level. At low levels, the risks are probably miniscule,” said senior author Philip Demokritou, associate professor of aerosol physics in the Department of Environmental Health at HSPH. “The question is: At what dose level does nano-exposure become problematic? The same question applies to nano-based drugs when we test their efficiency using cellular systems. How much of the administered nano-drug will come in contact with cells and tissue? This will determine the effective dose needed for a given cellular response,” Demokritou said.

Federal regulatory agencies do not require manufacturers to test engineered nanoparticles, if the original form of the bulk material has already been shown to be safe. However, there is evidence that some of these materials could be more harmful in the nanoscale — a scale at which materials may penetrate cells and bypass biological barriers more easily and exhibit unique physical, chemical, and biological properties compared to larger size particles. Nanotoxicologists are struggling to develop fast and cheap toxicological screening cellular assays to cope with the influx of vast forms of engineered nanomaterials and avoid laborious and expensive animal testing. However, this effort has been held back due to the lack of a simple-to-use, fast, method to measure the dose-response relationships and possible toxicological implications. While biological responses are fairly easy to measure, scientists are struggling to develop a fast method to assess the exact amount or dose of nanomaterials coming in contact with cells in biological media.

“Dosimetric considerations are too complicated to consider in nano-bio assessments, but too important to ignore,” Demokritou said. “Comparisons of biological responses to nano-exposures usually rely on guesstimates based on properties measured in the dry powder form (e.g., mass, surface area, and density), without taking into account particle-particle and particle-fluid interactions in biological media. When suspended in fluids, nanoparticles typically form agglomerates that include large amounts of the suspending fluid, and that therefore have effective densities much lower than that of dry material. This greatly influences the particle delivery to cells, and reduces the surface area available for interactions with cells,” said Glen DeLoid, research associate in the Department of Environmental Health, one of the two lead authors of the study. “The VCM method will help nanobiologists and regulators to resolve conflicting in vitro cellular toxicity data that have been reported in the literature for various nanomaterials. These disparities likely result from lack of or inaccurate dosimetric considerations in nano-bio interactions in a cellular screening system,” said Joel Cohen, doctoral student at HSPH and one of the two lead authors of the study.

Here’s a link to and a citation for the paper,

Estimating the effective density of engineered nanomaterials for in vitro dosimetry by Glen DeLoid, Joel M. Cohen, Tom Darrah, Raymond Derk, Liying Rojanasakul, Georgios Pyrgiotakis, Wendel Wohlleben, & Philip Demokritou. Nature Communications 5, Article number: 3514 doi:10.1038/ncomms4514 Published 28 March 2014

This paper is behind a paywall but a free preview is available via ReadCube Access.

US multicenter (Nano GO Consortium) study of engineered nanomaterial toxicology

Nano Go Consortium is the name they gave a multicenter toxicology study of engineered nanomaterials which has pioneered a new approach  in the US to toxicology research. From the May 6, 2013 news item on Azonano,

For the first time, researchers from institutions around the country have conducted an identical series of toxicology tests evaluating lung-related health impacts associated with widely used engineered nanomaterials (ENMs).

The study [on rodents] provides comparable health risk data from multiple labs, which should help regulators develop policies to protect workers and consumers who come into contact with ENMs.

The May 6, 2013 North Carolina State University news release, which originated the news item, describes the results from one of two studies that were recently published by the Nano GO Consortium in Environmental Health Perspectives,

The researchers found that carbon nanotubes, which are used in everything from bicycle frames to high performance electronics, produced inflammation and inflammatory lesions in the lower portions of the lung. However, the researchers found that the nanotubes could be made less hazardous if treated to remove excess metal catalysts used in the manufacturing process or modified by adding carboxyl groups to the outer shell of the tubes to make them more easily dispersed in biological fluids.

The researchers also found that titanium dioxide nanoparticles also caused inflammation in the lower regions of the lung. Belt-shaped titanium nanoparticles caused more cellular damage in the lungs, and more pronounced lesions, than spherical nanoparticles.

Here’s a link to and a citation for this study on rodents,

Interlaboratory Evaluation of Rodent Pulmonary Responses to Engineered Nanomaterials: The NIEHS NanoGo Consortium by James C. Bonner, Rona M. Silva, Alexia J. Taylor, Jared M. Brown, Susana C. Hilderbrand, Vincent Castranova, Dale Porter, Alison Elder, Günter Oberdörster, Jack R. Harkema, Lori A. Bramble, Terrance J. Kavanagh, Dianne Botta, Andre Nel, and Kent E. Pinkerton. Environ Health Perspect (): .doi:10.1289/ehp.1205693  Published: May 06, 2013

And the information for the other study which this consortium has published,

Interlaboratory Evaluation of in Vitro Cytotoxicity and Inflammatory Responses to Engineered Nanomaterials: The NIEHS NanoGo Consortium by Tian Xia, Raymond F. Hamilton Jr, James C. Bonner, Edward D. Crandall, Alison Elder, Farnoosh Fazlollahi, Teri A. Girtsman, Kwang Kim, Somenath Mitra, Susana A. Ntim, Galya Orr, Mani Tagmount8, Alexia J. Taylor, Donatello Telesca, Ana Tolic, Christopher D. Vulpe, Andrea J. Walker, Xiang Wang, Frank A. Witzmann, Nianqiang Wu, Yumei Xie, Jeffery I. Zink, Andre Nel, and Andrij Holian. Environ Health Perspect (): .doi:10.1289/ehp.1306561 Published: May 06, 2013

Environmental Health Perspectives is an open access journal and the two studies are being offered as ‘early’ publication efforts and will be updated with the full studies at a later date.

Most interesting for me is the editorial offered by four of the researchers involved in the Nano GO Consortium, from the editorial,

Determining the health effects of ENMs presents some unique challenges. The thousands of ENMs in use today are made from an enormous range of substances, vary considerably in size, and take a diversity of shapes, including spheres, cubes, cones, tubes, and other forms. They are also produced in different laboratories across the world using a variety of methods. In the scientific literature, findings on the properties and toxicity of these materials are mixed and often difficult to compare across studies. To improve the reliability and reproducibility of data in this area, there is a need for uniform research protocols and methods, handling guidelines, procurement systems, and models.

Although there is still much to learn about the toxicity of ENMs, we are fortunate to start with a clean slate: There are as yet no documented incidences of human disease due to ENM exposure (Xia et al. 2009). Because ENMs are manmade rather than natural substances, we have an opportunity to design, manufacture, and use these materials in ways that allow us to reap the maximum benefits—and minimal risk—to humans.

With $13 million from the American Recovery and Reinvestment Act (2009), the National Institute of Environmental Health Sciences (NIEHS) awarded 13 2-year grants to advance research on the health impacts of ENMs (NIEHS 2013). [emphasis mine] Ten grants were awarded through the National Institutes of Health (NIH) Grand Opportunities program and three were funded through the NIH Challenge Grants program. One goal of this investment was to develop reliable, reproducible methods to assess exposure and biological response to nanomaterials.

Within the framework of the consortium, grantees designed and conducted a series of “round-robin” experiments in which similar or identical methods were used to perform in vitro and in vivo tests on the toxicity of selected nanomaterials concurrently at 13 different laboratories.

Conducting experiments in a round-robin format within a consortium structure is an unfamiliar approach for most researchers. Although some researchers acknowledged that working collaboratively with such a large and diverse group at times stretched the limits of their comfort zones, the consortium ultimately proved to be “greater than the sum of its parts,” resulting in reliable, standardized protocols that would have been difficult for researchers to achieve by working independently. Indeed, many participants reflected that participating in the consortium not only benefitted their shared goals but also enhanced their individual research efforts. The round-robin approach and the overall consortium structure may be valuable models for other emerging areas of science.

Here’s a link to and a citation for the Consortium’s editorial, which is available in full,

Nano GO Consortium—A Team Science Approach to Assess Engineered Nanomaterials: Reliable Assays and Methods by Thaddeus T. Schug, Srikanth S. Nadadur, and Anne F. Johnson. Environ Health Perspect 121(2013). http://dx.doi.org/10.1289/ehp.1306866 [online 06 May 2013]

I like the idea of researchers working together across institutional and geographical boundaries as that can be a very powerful approach. I hope that won’t devolve into a form of institutionalized oppression where individual researchers are forced out or ignored. In general, it’s the outlier research that often proves to be truly groundbreaking, which often generates extraordinary and informal (and sometimes formal) resistance. For an example of groundbreaking work that was rejected by other researchers who banded together informally, there’s Dan Shechtman, 2011 Nobel Laureate in Chemistry, famously faced hostility from his colleagues for years over his discovery of quasicrystals.