Tag Archives: Enrico Fermi

Terahertz imagers at your fingertips

It seems to me that I stumbled across quite a few carbon nanotube (CNT) stories in 2018. This one comes courtesy of Japan (from a June 28, 2018 news item on Nanowerk),

Researchers at Tokyo Tech have developed flexible terahertz imagers based on chemically “tunable” carbon nanotube materials. The findings expand the scope of terahertz applications to include wrap-around, wearable technologies as well as large-area photonic devices.

Here’s a peek at an imager,

Figure 1. The CNT-based flexible THz imager (a) Resting on a fingertip, the CNT THz imager can easily wrap around curved surfaces. (b) Just by inserting and rotating a flexible THz imager attached to the fingertip, damage to a pipe was clearly detected. Courtesy Tokyo Tech

A June 28, 2018 Tokyo Tech Institute press release (also on Eurekalert), which originated the news item, provides more detail,

Carbon nanotubes (CNTs) are beginning to take the electronics world by storm, and now their use in terahertz (THz) technologies has taken a big step forward.

Due to their excellent conductivity and unique physical properties, CNTs are an attractive option for next-generation electronic devices. One of the most promising developments is their application in THz devices. Increasingly, THz imagers are emerging as a safe and viable alternative to conventional imaging systems across a wide range of applications, from airport security, food inspection and art authentication to medical and environmental sensing technologies.

The demand for THz detectors that can deliver real-time imaging for a broad range of industrial applications has spurred research into low-cost, flexible THz imaging systems. Yukio Kawano of the Laboratory for Future Interdisciplinary Research of Science and Technology, Tokyo Tech, is a world-renowned expert in this field. In 2016, for example, he announced the development of wearable terahertz technologies based on multiarrayed carbon nanotubes.

Kawano and his team have since been investigating THz detection performance for various types of CNT materials, in recognition of the fact that there is plenty of room for improvement to meet the needs of industrial-scale applications.

Now, they report the development of flexible THz imagers for CNT films that can be fine-tuned to maximize THz detector performance.

Publishing their findings in ACS Applied Nano Materials, the new THz imagers are based on chemically adjustable semiconducting CNT films.

By making use of a technology known as ionic liquid gating1, the researchers demonstrated that they could obtain a high degree of control over key factors related to THz detector performance for a CNT film with a thickness of 30 micrometers. This level of thickness was important to ensure that the imagers would maintain their free-standing shape and flexibility, as shown in Figure 1 [see above].

“Additionally,” the team says, “we developed gate-free Fermi-level2 tuning based on variable-concentration dopant solutions and fabricated a Fermi-level-tuned p-n junction3 CNT THz imager.” In experiments using this new type of imager, the researchers achieved successful visualization of a metal paper clip inside a standard envelope (see Figure 2.)

Non-contact, non-destructive visualization

Figure 2. Non-contact, non-destructive visualization

The CNT THz imager enabled clear, non-destructive visualization of a metal paper clip inside an envelope.

The bendability of the new THz imager and the possibility of even further fine-tuning will expand the range of CNT-based devices that could be developed in the near future.

Moreover, low-cost fabrication methods such as inkjet coating could make large-area THz imaging devices more readily available.

1 Ionic liquid gating

A technique used to modulate a material’s charge carrier properties.

2 Fermi level

A measure of the electrochemical potential for electrons, which is important for determining the electrical and thermal properties of solids. The term is named after the Italian–American physicist Enrico Fermi.

3 p-n junction

Refers to the interface between positive (p-type) and negative (n-type) semiconducting materials. These junctions form the basis of semiconductor electronic devices.

Here’s a link to and a citation for the paper,

Fermi-Level-Controlled Semiconducting-Separated Carbon Nanotube Films for Flexible Terahertz Imagers by Daichi Suzuki, Yuki Ochiai, Yota Nakagawa, Yuki Kuwahara, Takeshi Saito, and Yukio Kawano. ACS Appl. Nano Mater., 2018, 1 (6), pp 2469–2475 DOI: 10.1021/acsanm.8b00421 Publication Date (Web): June 6, 2018

Copyright © 2018 American Chemical Society

This paper is behind a paywall.

Proposed nanodevice made possible by particle that is its own antiparticle (Majorana particle)

I’m not sure how much the mystery of Ettore Majorana’s disappearance in 1938 has to do with the latest research from Brazil on Majorana particles but it’s definitely fascinating,. From an April 6, 2018 news item on ScienceDaily,

In March 1938, the young Italian physicist Ettore Majorana disappeared mysteriously, leaving his country’s scientific community shaken. The episode remains unexplained, despite Leonardo Scascia’s attempt to unravel the enigma in his book The Disappearance of Majorana (1975).

Majorana, whom Enrico Fermi called a genius of Isaac Newton’s stature, vanished a year after making his main contribution to science. In 1937, when he was only 30, Majorana hypothesized a particle that is its own anti-particle and suggested that it might be the neutrino, whose existence had recently been predicted by Fermi and Wolfgang Pauli.

Eight decades later, Majorana fermions, or simply majoranas, are among the objects most studied by physicists. In addition to neutrinos — whose nature, whether or not they are majoranas, is one of the investigative goals of the mega-experiment Dune — another class not of fundamental particles but of quasi-particles or apparent particles has been investigated in the field of condensed matter. These Majorana quasi-particles can emerge as excitations in topological superconductors.

An April 6, 2018 Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) press release on EurekAlert, which originated the news item,  reveals more about the Brazilian research (Note: Links have been removed),

A new study by PhD student Luciano Henrique Siliano Ricco with a scholarship from the São Paulo Research Foundation – FAPESP, in collaboration with his supervisor Antonio Carlos Ferreira Seridonio and others, was conducted on the Ilha Solteira campus of São Paulo State University (UNESP) in Brazil and described in an article in Scientific Reports.

“We propose a theoretical device that acts as a thermoelectric tuner – a tuner of heat and charge – assisted by Majorana fermions,” Seridonio said.

The device consists of a quantum dot (QD), represented in the Figure A by the symbol ε1. QDs are often called “artificial atoms.” In this case, the QD is located between two metallic leads at different temperatures.

The temperature difference is fundamental to allowing thermal energy to flow across the QD. A quasi-one-dimensional superconducting wire – called a Kitaev wire after its proponent, Russian physicist Alexei Kitaev, currently a professor at the California Institute of Technology (Caltech) in the US – is connected to the QD.

In this study, the Kitaev wire was ring- or U-shaped and had two majoranas (η1 and η2) at its edges. The majoranas emerge as excitations characterized by zero-energy modes.

“When the QD is coupled to only one side of the wire, the system behaves resonantly with regard to electrical and thermal conductance. In other words, it behaves like a thermoelectric filter,” said the principal investigator for the FAPESP fellowship.

“I should stress that this behavior as a filter for thermal and electrical energy occurs when the two majoranas ‘see’ each other via the wire, but only one of them ‘sees’ the QD in the connection.”

Another possibility investigated by the researchers involved making the QD “see” the two majoranas at the same time by connecting it to both ends of the Kitaev wire.

“By making the QD ‘see’ more of η1 or η2, i.e., by varying the system’s asymmetry, we can use the artificial atom as a tuner, where the thermal or electrical energy that flows through it is redshifted or blueshifted,” Seridonio said (see Figure B for illustrative explanation).

This theoretical paper, he added, is expected to contribute to the development of thermoelectric devices based on Majorana fermions.

Here’s a link to and a citation for the paper,

Tuning of heat and charge transport by Majorana fermions by L. S. Ricco, F. A. Dessotti, I. A. Shelykh, M. S. Figueira & A. C. Seridonio. Scientific Reportsvolume 8, Article number: 2790 (2018) doi:10.1038/s41598-018-21180-9 Published online: 12 February 2018

This paper is open access.

As I prepared to publish this piece I stumbled across a sad Sept. 3, 2018 article about Brazil and its overnight loss of heritage in a fire by Henry Grabar for slate.com (Note: Links have been removed),

On Sunday night, a fire ripped through Brazil’s National Museum in Rio de Janeiro, destroying the country’s most valuable storehouse of natural and anthropological history within hours.

Most of the 20 million items housed inside—including the skull of Luzia, the oldest human remains ever found in the Americas; one of the world’s largest archives of South America’s indigenous cultures; more than 26,000 fossils, 55,000 stuffed birds, and 5 million insect specimens; and a library of more than 500,000 books—are thought to have been destroyed.

The loss is a symptom of a larger problem as Grabar notes in his article.