Tag Archives: EPFL

Less pollution from ships with nanofilter

04.05.16 - Cargo ships are among the leading sources of pollution on the planet. Starting in 2020, however, stricter sulfur emission standards will take effect. A low-cost solution for reaching the new targets may come from an EPFL start-up, which is developing a nanostructured filter for use in a ship’s exhaust stacks. Courtesy EPFL

04.05.16 – Cargo ships are among the leading sources of pollution on the planet. Starting in 2020, however, stricter sulfur emission standards will take effect. A low-cost solution for reaching the new targets may come from an EPFL start-up, which is developing a nanostructured filter for use in a ship’s exhaust stacks. Copyright Alain Herzog Courtesy EPFL

A May 4, 2016 news item on Nanowerk describes a marine initiative from the École Polytechnique de Lausanne (EPFL) in Switzerland,

Around 55,000 cargo ships ply the oceans every day, powered by a fuel that is dirtier than diesel. And owing to lax standards, maritime transport has emerged as one of the leading emitters – alongside air transport – of nitrogen oxide and sulfur. But the International Maritime Organization has enacted tighter emission limits, with new standards set to take effect in 2020. In response, an EPFL start-up is developing a low-cost and eco-friendly solution: a filter that can be installed in the ships’ exhaust stacks. The start-up, Daphne Technology, could do well on this massive market.

Given that no oceans or seas border Switzerland, it’s a rather interesting initiative on their part. Here’s more from a May 4, 2015 EPFL press release, which originated the news item,

Lowering sulfur emissions to below 1%

Under laboratory conditions, the nanostructured filter is able to cut sulfur emissions to below 1% and nitrogen oxide emissions to 15% of the current standards. This is a major improvement, seeing as the new standards will require an approximately 14% reduction in sulfur emissions.

Manufacturing the filters is similar to manufacturing solar cells. A thin metal plate – titanium in this case – is nanostructured in order to increase its surface area, and a number of substances are deposited in extremely thin layers. The plates are then placed vertically and evenly spaced, creating channels through which the toxic gases travel. The gases are captured by the nanostructured surfaces. This approach is considered eco-friendly because the substances in the filter are designed to be recycled. And the exhaust gas itself becomes inert and could be used in a variety of products, such as fertilizer.

The main challenges now are to figure out a way to make these filters on large surfaces, and to bring down the cost. It was at EPFL’s Swiss Plasma Center that researcher Mario Michan found a machine that he could modify to meet his needs: it uses plasma to deposit thin layers of substances. The next step is to produce a prototype that can be tested under real-world conditions.

Michan came up with his solution for toxic gas emissions after he worked on merchant ships while completing his Master’s degree in microengineering. It took several years, some techniques he picked up in the various labs in which he worked, and a few patents for Michan to make headway on his project. It was while he was working in another field at CERN and observing the technologies used to coat the inside of particle accelerators that he discovered a process needed for his original concept. An EPFL patent tying together the various aspects of the technology and several manufacturing secrets should be filed this year.

According to the European Environment Agency, merchant ships give off 204 times more sulfur than the billion cars on the roads worldwide. Michan estimates that his nanostructured filters, if they were used by all cargo ships, would reduce these emissions to around twice the level given off by all cars, and the ships would not need to switch to another fuel. Other solutions exist, but his market research showed that they were all lacking in some way: “Marine diesel fuel is cleaner but much more expensive and would drive up fuel costs by 50% according to ship owners. And the other technologies that have been proposed cannot be used on boats or they only cut down on sulfur emissions without addressing the problem of nitrogen oxide.”

The Daphne Technology website is here.

Identifying performance problems in nanoresonators

Use of nanoelectromechanical systems (NEMS) can now be maximised due to a technique developed by researchers at the Commissariat a l’Energie Atomique (CEA) and the University of Grenoble-Alpes (France). From a March 7, 2016 news item on ScienceDaily,

A joint CEA / University of Grenoble-Alpes research team, together with their international partners, have developed a diagnostic technique capable of identifying performance problems in nanoresonators, a type of nanodetector used in research and industry. These nanoelectromechanical systems, or NEMS, have never been used to their maximum capabilities. The detection limits observed in practice have always been well below the theoretical limit and, until now, this difference has remained unexplained. Using a totally new approach, the researchers have now succeeded in evaluating and explaining this phenomenon. Their results, described in the February 29 [2016] issue of Nature Nanotechnology, should now make it possible to find ways of overcoming this performance shortfall.

A Feb. 29, 2016 CEA press release, which originated the news item, provides more detail about NEMS and about the new technique,

NEMS have many applications, including the measurement of mass or force. Like a tiny violin string, a nanoresonator vibrates at a precise resonant frequency. This frequency changes if gas molecules or biological particles settle on the nanoresonator surface. This change in frequency can then be used to detect or identify the substance, enabling a medical diagnosis, for example. The extremely small dimensions of these devices (less than one millionth of a meter) make the detectors highly sensitive.

However, this resolution is constrained by a detection limit. Background noise is present in addition to the wanted measurement signal. Researchers have always considered this background noise to be an intrinsic characteristic of these systems (see Figure 2 [not reproduced here]). Despite the noise levels being significantly greater than predicted by theory, the impossibility of understanding the underlying phenomena has, until now, led the research community to ignore them.

The CEA-Leti research team and their partners reviewed all the frequency stability measurements in the literature, and identified a difference of several orders of magnitude between the accepted theoretical limits and experimental measurements.

In addition to evaluating this shortfall, the researchers also developed a diagnostic technique that could be applied to each individual nanoresonator, using their own high-purity monocrystalline silicon resonators to investigate the problem.

The resonant frequency of a nanoresonator is determined by the geometry of the resonator and the type of material used in its manufacture. It is therefore theoretically fixed. By forcing the resonator to vibrate at defined frequencies close to the resonant frequency, the CEA-Leti researchers have been able to demonstrate a secondary effect that interferes with the resolution of the system and its detection limit in addition to the background noise. This effect causes slight variations in the resonant frequency. These fluctuations in the resonant frequency result from the extreme sensitivity of these systems. While capable of detecting tiny changes in mass and force, they are also very sensitive to minute variations in temperature and the movements of molecules on their surface. At the nano scale, these parameters cannot be ignored as they impose a significant limit on the performance of nanoresonators. For example, a tiny change in temperature can change the parameters of the device material, and hence its frequency. These variations can be rapid and random.

The experimental technique developed by the team makes it possible to evaluate the loss of resolution and to determine whether it is caused by the intrinsic limits of the system or by a secondary fluctuation that can therefore by corrected. A patent has been applied for covering this technique. The research team has also shown that none of the theoretical hypotheses so far advanced to explain these fluctuations in the resonant frequency can currently explain the observed level of variation.

The research team will therefore continue experimental work to explore the physical origin of these fluctuations, with the aim of achieving a significant improvement in the performance of nanoresonators.

The Swiss Federal Institute of Technology in Lausanne, the Indian Institute of Science in Bangalore, and the California Institute of Technology (USA) have also participated in this study. The authors have received funding from the Leti Carnot Institute (NEMS-MS project) and the European Union (ERC Consolidator Grant – Enlightened project).

Here’s a link to and a citation for the paper,

Frequency fluctuations in silicon nanoresonators by Marc Sansa, Eric Sage, Elizabeth C. Bullard, Marc Gély, Thomas Alava, Eric Colinet, Akshay K. Naik, Luis Guillermo Villanueva, Laurent Duraffourg, Michael L. Roukes, Guillaume Jourdan & Sébastien Hentz. Nature Nanotechnology (2016) doi:10.1038/nnano.2016.19 Published online 29 February 2016

This paper is behind a paywall.

Back to the mortar and pestle for perovskite-based photovoltaics

This mechanochemistry (think mortar and pestle) story about perovskite comes from Poland. From a Jan. 14, 2016 Institute of Physical Chemistry of the Polish Academy of Sciences press release (also on EurekAlert but dated Jan. 16, 2016),

Perovskites, substances that perfectly absorb light, are the future of solar energy. The opportunity for their rapid dissemination has just increased thanks to a cheap and environmentally safe method of production of these materials, developed by chemists from Warsaw, Poland. Rather than in solutions at a high temperature, perovskites can now be synthesized by solid-state mechanochemical processes: by grinding powders.

We associate the milling of chemicals less often with progress than with old-fashioned pharmacies and their inherent attributes: the pestle and mortar. [emphasis mine] It’s time to change this! Recent research findings show that by the use of mechanical force, effective chemical transformations take place in solid state. Mechanochemical reactions have been under investigation for many years by the teams of Prof. Janusz Lewinski from the Institute of Physical Chemistry of the Polish Academy of Sciences (IPC PAS) and the Faculty of Chemistry of Warsaw University of Technology. In their latest publication, the Warsaw researchers describe a surprisingly simple and effective method of obtaining perovskites – futuristic photovoltaic materials with a spatially complex crystal structure.

“With the aid of mechanochemistry we are able to synthesize a variety of hybrid inorganic-organic functional materials with a potentially great significance for the energy sector. Our youngest ‘offspring’ are high quality perovskites. These compounds can be used to produce thin light-sensitive layers for high efficiency solar cells,” says Prof. Lewinski.

Perovskites are a large group of materials, characterized by a defined spatial crystalline structure. In nature, the perovskite naturally occurring as a mineral is calcium titanium(IV) oxide CaTiO3. Here the calcium atoms are arranged in the corners of the cube, in the middle of each wall there is an oxygen atom and at the centre of the cube lies a titanium atom. In other types of perovskite the same crystalline structure can be constructed of various organic and inorganic compounds, which means titanium can be replaced by, for example, lead, tin or germanium. As a result, the properties of the perovskite can be adjusted so as to best fit the specific application, for example, in photovoltaics or catalysis, but also in the construction of superconducting electromagnets, high voltage transformers, magnetic refrigerators, magnetic field sensors, or RAM memories.

At first glance, the method of production of perovskites using mechanical force, developed at the IPC PAS, looks a little like magic.

“Two powders are poured into the ball mill: a white one, methylammonium iodide CH3NH3I, and a yellow one, lead iodide PbI2. After several minutes of milling no trace is left of the substrates. Inside the mill there is only a homogeneous black powder: the perovskite CH3NH3PbI3,” explains doctoral student Anna Maria Cieslak (IPC PAS).

“Hour after hour of waiting for the reaction product? Solvents? High temperatures? In our method, all this turns out to be unnecessary! We produce chemical compounds by reactions occurring only in solids at room temperature,” stresses Dr. Daniel Prochowicz (IPC PAS).

The mechanochemically manufactured perovskites were sent to the team of Prof. Michael Graetzel from the Ecole Polytechnique de Lausanne in Switzerland, where they were used to build a new laboratory solar cell. The performance of the cell containing the perovskite with a mechanochemical pedigree proved to be more than 10% greater than a cell’s performance with the same construction, but containing an analogous perovskite obtained by the traditional method, involving solvents.

“The mechanochemical method of synthesis of perovskites is the most environmentally friendly method of producing this class of materials. Simple, efficient and fast, it is ideal for industrial applications. With full responsibility we can state: perovskites are the materials of the future, and mechanochemistry is the future of perovskites,” concludes Prof. Lewinski.

The described research will be developed within GOTSolar collaborative project funded by the European Commission under the Horizon 2020 Future and Emerging Technologies action.

Perovskites are not the only group of three-dimensional materials that has been produced mechanochemically by Prof. Lewinski’s team. In a recent publication the Warsaw researchers showed that by using the milling technique they can also synthesize inorganic-organic microporous MOF (Metal-Organic Framework) materials. The free space inside these materials is the perfect place to store different chemicals, including hydrogen.

This research was published back in August 2015,

Mechanosynthesis of the hybrid perovskite CH3NH3PbI3: characterization and the corresponding solar cell efficiency by D. Prochowicz, M. Franckevičius, A. M. Cieślak, S. M. Zakeeruddin, M. Grätzel and J. Lewiński. J. Mater. Chem. A, 2015,3, 20772-20777 DOI: 10.1039/C5TA04904K First published online 27 Aug 2015

This paper is behind a paywall.

Blue Brain Project builds a digital piece of brain

Caption: This is a photo of a virtual brain slice. Credit: Makram et al./Cell 2015

Caption: This is a photo of a virtual brain slice. Credit: Makram et al./Cell 2015

Here’s more *about this virtual brain slice* from an Oct. 8, 2015 Cell (magazine) news release on EurekAlert,

If you want to learn how something works, one strategy is to take it apart and put it back together again [also known as reverse engineering]. For 10 years, a global initiative called the Blue Brain Project–hosted at the Ecole Polytechnique Federale de Lausanne (EPFL)–has been attempting to do this digitally with a section of juvenile rat brain. The project presents a first draft of this reconstruction, which contains over 31,000 neurons, 55 layers of cells, and 207 different neuron subtypes, on October 8 [2015] in Cell.

Heroic efforts are currently being made to define all the different types of neurons in the brain, to measure their electrical firing properties, and to map out the circuits that connect them to one another. These painstaking efforts are giving us a glimpse into the building blocks and logic of brain wiring. However, getting a full, high-resolution picture of all the features and activity of the neurons within a brain region and the circuit-level behaviors of these neurons is a major challenge.

Henry Markram and colleagues have taken an engineering approach to this question by digitally reconstructing a slice of the neocortex, an area of the brain that has benefitted from extensive characterization. Using this wealth of data, they built a virtual brain slice representing the different neuron types present in this region and the key features controlling their firing and, most notably, modeling their connectivity, including nearly 40 million synapses and 2,000 connections between each brain cell type.

“The reconstruction required an enormous number of experiments,” says Markram, of the EPFL. “It paves the way for predicting the location, numbers, and even the amount of ion currents flowing through all 40 million synapses.”

Once the reconstruction was complete, the investigators used powerful supercomputers to simulate the behavior of neurons under different conditions. Remarkably, the researchers found that, by slightly adjusting just one parameter, the level of calcium ions, they could produce broader patterns of circuit-level activity that could not be predicted based on features of the individual neurons. For instance, slow synchronous waves of neuronal activity, which have been observed in the brain during sleep, were triggered in their simulations, suggesting that neural circuits may be able to switch into different “states” that could underlie important behaviors.

“An analogy would be a computer processor that can reconfigure to focus on certain tasks,” Markram says. “The experiments suggest the existence of a spectrum of states, so this raises new types of questions, such as ‘what if you’re stuck in the wrong state?'” For instance, Markram suggests that the findings may open up new avenues for explaining how initiating the fight-or-flight response through the adrenocorticotropic hormone yields tunnel vision and aggression.

The Blue Brain Project researchers plan to continue exploring the state-dependent computational theory while improving the model they’ve built. All of the results to date are now freely available to the scientific community at https://bbp.epfl.ch/nmc-portal.

An Oct. 8, 2015 Hebrew University of Jerusalem press release on the Canadian Friends of the Hebrew University of Jerusalem website provides more detail,

Published by the renowned journal Cell, the paper is the result of a massive effort by 82 scientists and engineers at EPFL and at institutions in Israel, Spain, Hungary, USA, China, Sweden, and the UK. It represents the culmination of 20 years of biological experimentation that generated the core dataset, and 10 years of computational science work that developed the algorithms and built the software ecosystem required to digitally reconstruct and simulate the tissue.

The Hebrew University of Jerusalem’s Prof. Idan Segev, a senior author of the research paper, said: “With the Blue Brain Project, we are creating a digital reconstruction of the brain and using supercomputer simulations of its electrical behavior to reveal a variety of brain states. This allows us to examine brain phenomena within a purely digital environment and conduct experiments previously only possible using biological tissue. The insights we gather from these experiments will help us to understand normal and abnormal brain states, and in the future may have the potential to help us develop new avenues for treating brain disorders.”

Segev, a member of the Hebrew University’s Edmond and Lily Safra Center for Brain Sciences and director of the university’s Department of Neurobiology, sees the paper as building on the pioneering work of the Spanish anatomist Ramon y Cajal from more than 100 years ago: “Ramon y Cajal began drawing every type of neuron in the brain by hand. He even drew in arrows to describe how he thought the information was flowing from one neuron to the next. Today, we are doing what Cajal would be doing with the tools of the day: building a digital representation of the neurons and synapses, and simulating the flow of information between neurons on supercomputers. Furthermore, the digitization of the tissue is open to the community and allows the data and the models to be preserved and reused for future generations.”

While a long way from digitizing the whole brain, the study demonstrates that it is feasible to digitally reconstruct and simulate brain tissue, and most importantly, to reveal novel insights into the brain’s functioning. Simulating the emergent electrical behavior of this virtual tissue on supercomputers reproduced a range of previous observations made in experiments on the brain, validating its biological accuracy and providing new insights into the functioning of the neocortex. This is a first step and a significant contribution to Europe’s Human Brain Project, which Henry Markram founded, and where EPFL is the coordinating partner.

Cell has made a video abstract available (it can be found with the Hebrew University of Jerusalem press release)

Here’s a link to and a citation for the paper,

Reconstruction and Simulation of Neocortical Microcircuitry by Henry Markram, Eilif Muller, Srikanth Ramaswamy, Michael W. Reimann, Marwan Abdellah, Carlos Aguado Sanchez, Anastasia Ailamaki, Lidia Alonso-Nanclares, Nicolas Antille, Selim Arsever, Guy Antoine Atenekeng Kahou, Thomas K. Berger, Ahmet Bilgili, Nenad Buncic, Athanassia Chalimourda, Giuseppe Chindemi, Jean-Denis Courcol, Fabien Delalondre, Vincent Delattre, Shaul Druckmann, Raphael Dumusc, James Dynes, Stefan Eilemann, Eyal Gal, Michael Emiel Gevaert, Jean-Pierre Ghobril, Albert Gidon, Joe W. Graham, Anirudh Gupta, Valentin Haenel, Etay Hay, Thomas Heinis, Juan B. Hernando, Michael Hines, Lida Kanari, Daniel Keller, John Kenyon, Georges Khazen, Yihwa Kim, James G. King, Zoltan Kisvarday, Pramod Kumbhar, Sébastien Lasserre, Jean-Vincent Le Bé, Bruno R.C. Magalhães, Angel Merchán-Pérez, Julie Meystre, Benjamin Roy Morrice, Jeffrey Muller, Alberto Muñoz-Céspedes, Shruti Muralidhar, Keerthan Muthurasa, Daniel Nachbaur, Taylor H. Newton, Max Nolte, Aleksandr Ovcharenko, Juan Palacios, Luis Pastor, Rodrigo Perin, Rajnish Ranjan, Imad Riachi, José-Rodrigo Rodríguez, Juan Luis Riquelme, Christian Rössert, Konstantinos Sfyrakis, Ying Shi, Julian C. Shillcock, Gilad Silberberg, Ricardo Silva, Farhan Tauheed, Martin Telefont, Maria Toledo-Rodriguez, Thomas Tränkler, Werner Van Geit, Jafet Villafranca Díaz, Richard Walker, Yun Wang, Stefano M. Zaninetta, Javier DeFelipe, Sean L. Hill, Idan Segev, Felix Schürmann. Cell, Volume 163, Issue 2, p456–492, 8 October 2015 DOI: http://dx.doi.org/10.1016/j.cell.2015.09.029

This paper appears to be open access.

My most substantive description of the Blue Brain Project , previous to this, was in a Jan. 29, 2013 posting featuring the European Union’s (EU) Human Brain project and involvement from countries that are not members.

* I edited a redundant lede (That’s a virtual slice of a rat brain.), moved the second sentence to the lede while adding this:  *about this virtual brain slice* on Oct. 16, 2015 at 0955 hours PST.

Putting the speed on spin, spintronics that is

This is for physics fans, if you plan on looking at the published paper. Otherwise, the July 20, 2015 news item on ScienceDaily is more accessible to the rest of us,

In a tremendous boost for spintronic technologies, EPFL scientists have shown that electrons can jump through spins much faster than previously thought.

Electrons spin around atoms, but also spin around themselves, and can cross over from one spin state to another. A property which can be exploited for next-generation hard drives. However, “spin cross-over” has been considered too slow to be efficient. Using ultrafast measurements, EPFL scientists have now shown for the first time that electrons can cross spins at least 100,000 times faster than previously thought. Aside for its enormous implications for fundamental physics, the finding can also propel the field of spintronics forward. …

A July 20, 2015 EPFL press release on EurekAlert, which originated the news item, provides context for the research,

The rules of spin

Although difficult to describe in everyday terms, electron spin can be loosely compared to the rotation of a planet or a spinning top around its axis. Electrons can spin in different manners referred to as “spin states” and designated by the numbers 0, 1/2, 1, 3/2, 2 etc. During chemical reactions, electrons can cross from one spin state to another, e.g. from 0 to 1 or 1/2 to 3/2.

Spin cross-over is already used in many technologies, e.g. optical light-emitting devices (OLED), energy conversion systems, and cancer phototherapy. Most prominently, spin cross-over is the basis of the fledgling field of spintronics. The problem is that spin cross-over has been thought to be too slow to be efficient enough in circuits.

Spin cross-over is extremely fast

The lab of Majed Chergui at EPFL has now demonstrated that spin cross-over is considerably faster than previously thought. Using the highest time-resolution technology in the world, the lab was able to “see” electrons crossing through four spin states within 50 quadrillionths of a second — or 50 femtoseconds.

“Time resolution has always been a limitation,” says Chergui. “Over the years, labs have used techniques that could only measure spin changes to a billionth to a millionth of a second. So they thought that spin cross-over happened in this timeframe.”

Chergui’s lab focused on materials that show much promise in spintronics applications. In these materials, electrons jump through four spin-states: from 0 to 1 to 2. In 2009, Chergui’s lab pushed the boundaries of time resolution to show that this 0-2 “jump” can happen within 150 femtoseconds — suggesting that it was a direct event. Despite this, the community still maintained that such spin cross-overs go through intermediate steps.

But Chergui had his doubts. Working with his postdoc Gerald Auböck, they used the lab’s world-recognized expertise in ultrafast spectroscopy to “crank up” the time resolution. Briefly, a laser shines on the material sample under investigation, causing its electrons to move. Another laser measures their spin changes over time in the ultraviolet light range.

The finding essentially demolishes the notion of intermediate steps between spin jumps, as it does not allow enough time for them: only 50 quadrillionths of a second to go from the “0” to the “2” spin state. This is the first study to ever push time resolution to this limit in the ultraviolet domain. “This probably means that it’s even faster,” says Chergui. “But, more importantly, that it is a direct process.”

From observation to explanation

With profound implications for both technology and fundamental physics and chemistry, the study is an observation without an explanation. Chergui believes that the key is electrons shuttling back-and-forth between the iron atom at the center of the material’s molecules and its surrounding elements. “When the laser light shines on the atom, it changes the electron’s spin angle, affecting the entire spin dynamics in the molecule.”

It is now up to theoreticians to develop a new model for ultrafast spin changes. On the experimental side of things, Chergui’s lab is now focusing on actually observing electrons shuttling inside the molecules. This will require even more sophisticated approaches, such as core-level spectroscopy. Nonetheless, the study challenges ideas about spin cross-over, and might offer long-awaited solutions to the limitations of spintronics.

Here’s a link to and citation for the paper,

Sub-50-fs photoinduced spin crossover in [Fe(bpy)3]2+ by Gerald Auböck & Majed Chergui. Nature Chemistry (2015) doi:10.1038/nchem.2305 Published online 20 July 2015

This paper is behind a paywall.

A ‘sweat’mometer—sensing your health through your sweat

At this point, it’s more fitness monitor than diagnostic tool, so, you’ll still need to submit blood, stool, and urine samples when the doctor requests it but the device does offer some tantalizing possibilities according to a May 15, 2015 news item on phys.org,

Made from state-of-the-art silicon transistors, an ultra-low power sensor enables real-time scanning of the contents of liquids such as perspiration. Compatible with advanced electronics, this technology boasts exceptional accuracy – enough to manufacture mobile sensors that monitor health.

Imagine that it is possible, through a tiny adhesive electronic stamp attached to the arm, to know in real time one’s level of hydration, stress or fatigue while jogging. A new sensor developed at the Nanoelectronic Devices Laboratory (Nanolab) at EPFL [École Polytechnique Fédérale de Lausanne in Switzerland] is the first step toward this application. “The ionic equilibrium in a person’s sweat could provide significant information on the state of his health,” says Adrian Ionescu, director of Nanolab. “Our technology detects the presence of elementary charged particles in ultra-small concentrations such as ions and protons, which reflects not only the pH balance of sweat but also more complex hydration of fatigues states. By an adapted functionalization I can also track different kinds of proteins.”

A May 15, 2015 EPFL press release by Laure-Anne Pessina, which originated the news item, includes a good technical explanation of the device for non-experts in the field,

Published in the journal ACS Nano, the device is based on transistors that are comparable to those used by the company Intel in advanced microprocessors. On the state-of-the-art “FinFET” transistor, researchers fixed a microfluidic channel through which the fluid to be analyzed flows. When the molecules pass, their electrical charge disturbs the sensor, which makes it possible to deduce the fluid’s composition.

The new device doesn’t host only sensors, but also transistors and circuits enabling the amplification of the signals – a significant innovation. The feat relies on a layered design that isolates the electronic part from the liquid substance. “Usually it is necessary to use separately a sensor for detection and a circuit for computing and signal amplification,” says Sara Rigante, lead author of the publication. “In our chip, sensors and circuits are in the same device – making it a ‘Sensing integrated circuit’. This proximity ensures that the signal is not disturbed or altered. We can thereby obtain extremely stable and accurate measurements.”

But that’s not all. Due to the size of the transistors – 20 nanometers, which is one hundred to one thousand times smaller than the thickness of a hair – it is possible to place a whole network of sensors on one chip, with each sensor locating a different particle. “We could also detect calcium, sodium or potassium in sweat,” the researcher elaborates.

As to what makes the device special (from the press release),

The technology developed at EPFL stands out from its competitors because it is extremely stable, compatible with existing electronics (CMOS), ultra-low power and easy to reproduce in large arrays of sensors. “In the field of biosensors, research around nanotechnology is intense, particularly regarding silicon nanowires and nanotubes. But these technologies are frequently unstable and therefore unusable for now in industrial applications,” says Ionescu. “In the case of our sensor, we started from extremely powerful, advanced technology and adapted it for sensing need in a liquid-gate FinFET configurations. The precision of the electronics is such that it is easy to clone our device in millions with identical characteristics.”

In addition, the technology is not energy intensive. “We could feed 10,000 sensors with a single solar cell,” Professor Ionescu asserts.

Of course, there does seem to be one shortcoming (from the press release),

Thus far, the tests have been carried out by circulating the liquid with a tiny pump. Researchers are currently working on a means of sucking the sweat into the microfluidic tube via wicking. This would rid the small analyzing “band-aid” of the need for an attached pump.

While they work on eliminating the pump part of the device, here’s  a link to and a citation for the paper,

Sensing with Advanced Computing Technology: Fin Field-Effect Transistors with High-k Gate Stack on Bulk Silicon by Sara Rigante, Paolo Scarbolo, Mathias Wipf, Ralph L. Stoop, Kristine Bedner, Elizabeth Buitrago, Antonios Bazigos, Didier Bouvet, Michel Calame, Christian Schönenberger, and Adrian M. Ionescu. ACS Nano, Article ASAP DOI: 10.1021/nn5064216 Publication Date (Web): March 27, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

As for the ‘sweat’mometer in the headline, I was combining sweat with thermometer.

Spinal cords, brains, implants, and remote control

I have two items about implants and brains and an item about being able to exert remote control of the brain, all of which hint at a cyborg future for at least a few of us.

e-Dura, the spinal column, and the brain

The first item concerns some research, at the École Polytechnique de Lausanne (EPFL) which features flexible electronics. From a March 24, 2015 article by Ben Schiller for Fast Company (Note: Links have been removed),

Researchers at the Swiss Federal Institute of Technology, in Lausanne, have developed the e-Dura—a tiny skinlike device that attaches directly to damaged spinal cords. By sending out small electrical pulses, it stimulates the cord as if it were receiving signals from the brain, thus allowing movement.

“The purpose of the neuro-prosthesis is to excite the neurons that are on the spinal cord below the site of the injury and activate them, just like if they were receiving information from the brain,” says Stéphanie Lacour, a professor at the institute.

A January 8, 2015 (?) EPFL press release provides more information about the research,

EPFL scientists have managed to get rats walking on their own again using a combination of electrical and chemical stimulation. But applying this method to humans would require multifunctional implants that could be installed for long periods of time on the spinal cord without causing any tissue damage. This is precisely what the teams of professors Stéphanie Lacour and Grégoire Courtine have developed. Their e-Dura implant is designed specifically for implantation on the surface of the brain or spinal cord. The small device closely imitates the mechanical properties of living tissue, and can simultaneously deliver electric impulses and pharmacological substances. The risks of rejection and/or damage to the spinal cord have been drastically reduced. An article about the implant will appear in early January [2015] in Science Magazine.

So-called “surface implants” have reached a roadblock; they cannot be applied long term to the spinal cord or brain, beneath the nervous system’s protective envelope, otherwise known as the “dura mater,” because when nerve tissues move or stretch, they rub against these rigid devices. After a while, this repeated friction causes inflammation, scar tissue buildup, and rejection.

Here’s what the implant looks like,

Courtesy: EPFL

Courtesy: EPFL

The press release describes how the implant is placed (Note: A link has been removed),

Flexible and stretchy, the implant developed at EPFL is placed beneath the dura mater, directly onto the spinal cord. Its elasticity and its potential for deformation are almost identical to the living tissue surrounding it. This reduces friction and inflammation to a minimum. When implanted into rats, the e-Dura prototype caused neither damage nor rejection, even after two months. More rigid traditional implants would have caused significant nerve tissue damage during this period of time.

The researchers tested the device prototype by applying their rehabilitation protocol — which combines electrical and chemical stimulation – to paralyzed rats. Not only did the implant prove its biocompatibility, but it also did its job perfectly, allowing the rats to regain the ability to walk on their own again after a few weeks of training.

“Our e-Dura implant can remain for a long period of time on the spinal cord or the cortex, precisely because it has the same mechanical properties as the dura mater itself. This opens up new therapeutic possibilities for patients suffering from neurological trauma or disorders, particularly individuals who have become paralyzed following spinal cord injury,” explains Lacour, co-author of the paper, and holder of EPFL’s Bertarelli Chair in Neuroprosthetic Technology.

The press release goes on to describe the engineering achievements,

Developing the e-Dura implant was quite a feat of engineering. As flexible and stretchable as living tissue, it nonetheless includes electronic elements that stimulate the spinal cord at the point of injury. The silicon substrate is covered with cracked gold electric conducting tracks that can be pulled and stretched. The electrodes are made of an innovative composite of silicon and platinum microbeads. They can be deformed in any direction, while still ensuring optimal electrical conductivity. Finally, a fluidic microchannel enables the delivery of pharmacological substances – neurotransmitters in this case – that will reanimate the nerve cells beneath the injured tissue.

The implant can also be used to monitor electrical impulses from the brain in real time. When they did this, the scientists were able to extract with precision the animal’s motor intention before it was translated into movement.

“It’s the first neuronal surface implant designed from the start for long-term application. In order to build it, we had to combine expertise from a considerable number of areas,” explains Courtine, co-author and holder of EPFL’s IRP Chair in Spinal Cord Repair. “These include materials science, electronics, neuroscience, medicine, and algorithm programming. I don’t think there are many places in the world where one finds the level of interdisciplinary cooperation that exists in our Center for Neuroprosthetics.”

For the time being, the e-Dura implant has been primarily tested in cases of spinal cord injury in paralyzed rats. But the potential for applying these surface implants is huge – for example in epilepsy, Parkinson’s disease and pain management. The scientists are planning to move towards clinical trials in humans, and to develop their prototype in preparation for commercialization.

EPFL has provided a video of researcher Stéphanie Lacour describing e-Dura and expressing hopes for its commercialization,

Here’s a link to and a citation for the paper,

Electronic dura mater for long-term multimodal neural interfaces by Ivan R. Minev, Pavel Musienko, Arthur Hirsch, Quentin Barraud, Nikolaus Wenger, Eduardo Martin Moraud, Jérôme Gandar, Marco Capogrosso, Tomislav Milekovic, Léonie Asboth, Rafael Fajardo Torres, Nicolas Vachicouras, Qihan Liu, Natalia Pavlova, Simone Duis, Alexandre Larmagnac, Janos Vörös, Silvestro Micera, Zhigang Suo, Grégoire Courtine, Stéphanie P. Lacour. Science 9 January 2015: Vol. 347 no. 6218 pp. 159-163 DOI: 10.1126/science.1260318

This paper is behind a paywall.

Carbon nanotube fibres could connect to the brain

Researchers at Rice University (Texas, US) are excited about the possibilities that carbon nanotube fibres offer in the field of implantable electronics for the brain. From a March 25, 2015 news item on Nanowerk,

Carbon nanotube fibers invented at Rice University may provide the best way to communicate directly with the brain.

The fibers have proven superior to metal electrodes for deep brain stimulation and to read signals from a neuronal network. Because they provide a two-way connection, they show promise for treating patients with neurological disorders while monitoring the real-time response of neural circuits in areas that control movement, mood and bodily functions.

New experiments at Rice demonstrated the biocompatible fibers are ideal candidates for small, safe electrodes that interact with the brain’s neuronal system, according to the researchers. They could replace much larger electrodes currently used in devices for deep brain stimulation therapies in Parkinson’s disease patients.

They may also advance technologies to restore sensory or motor functions and brain-machine interfaces as well as deep brain stimulation therapies for other neurological disorders, including dystonia and depression, the researchers wrote.

A March 25, 2015 Rice University news release (also on EurekAlert*), which originated the news item, provides more details,

The fibers created by the Rice lab of chemist and chemical engineer Matteo Pasquali consist of bundles of long nanotubes originally intended for aerospace applications where strength, weight and conductivity are paramount.

The individual nanotubes measure only a few nanometers across, but when millions are bundled in a process called wet spinning, they become thread-like fibers about a quarter the width of a human hair.

“We developed these fibers as high-strength, high-conductivity materials,” Pasquali said. “Yet, once we had them in our hand, we realized that they had an unexpected property: They are really soft, much like a thread of silk. Their unique combination of strength, conductivity and softness makes them ideal for interfacing with the electrical function of the human body.”

The simultaneous arrival in 2012 of Caleb Kemere, a Rice assistant professor who brought expertise in animal models of Parkinson’s disease, and lead author Flavia Vitale, a research scientist in Pasquali’s lab with degrees in chemical and biomedical engineering, prompted the investigation.

“The brain is basically the consistency of pudding and doesn’t interact well with stiff metal electrodes,” Kemere said. “The dream is to have electrodes with the same consistency, and that’s why we’re really excited about these flexible carbon nanotube fibers and their long-term biocompatibility.”

Weeks-long tests on cells and then in rats with Parkinson’s symptoms proved the fibers are stable and as efficient as commercial platinum electrodes at only a fraction of the size. The soft fibers caused little inflammation, which helped maintain strong electrical connections to neurons by preventing the body’s defenses from scarring and encapsulating the site of the injury.

The highly conductive carbon nanotube fibers also show much more favorable impedance – the quality of the electrical connection — than state-of-the-art metal electrodes, making for better contact at lower voltages over long periods, Kemere said.

The working end of the fiber is the exposed tip, which is about the width of a neuron. The rest is encased with a three-micron layer of a flexible, biocompatible polymer with excellent insulating properties.

The challenge is in placing the tips. “That’s really just a matter of having a brain atlas, and during the experiment adjusting the electrodes very delicately and putting them into the right place,” said Kemere, whose lab studies ways to connect signal-processing systems and the brain’s memory and cognitive centers.

Doctors who implant deep brain stimulation devices start with a recording probe able to “listen” to neurons that emit characteristic signals depending on their functions, Kemere said. Once a surgeon finds the right spot, the probe is removed and the stimulating electrode gently inserted. Rice carbon nanotube fibers that send and receive signals would simplify implantation, Vitale said.

The fibers could lead to self-regulating therapeutic devices for Parkinson’s and other patients. Current devices include an implant that sends electrical signals to the brain to calm the tremors that afflict Parkinson’s patients.

“But our technology enables the ability to record while stimulating,” Vitale said. “Current electrodes can only stimulate tissue. They’re too big to detect any spiking activity, so basically the clinical devices send continuous pulses regardless of the response of the brain.”

Kemere foresees a closed-loop system that can read neuronal signals and adapt stimulation therapy in real time. He anticipates building a device with many electrodes that can be addressed individually to gain fine control over stimulation and monitoring from a small, implantable device.

“Interestingly, conductivity is not the most important electrical property of the nanotube fibers,” Pasquali said. “These fibers are intrinsically porous and extremely stable, which are both great advantages over metal electrodes for sensing electrochemical signals and maintaining performance over long periods of time.”

Here’s a link to and a citation for the paper,

Neural Stimulation and Recording with Bidirectional, Soft Carbon Nanotube Fiber Microelectrodes by Flavia Vitale, Samantha R. Summerson, Behnaam Aazhang, Caleb Kemere, and Matteo Pasquali. ACS Nano, Just Accepted Manuscript DOI: 10.1021/acsnano.5b01060 Publication Date (Web): March 24, 2015

Copyright © 2015 American Chemical Society

The paper is open access provided you register on the website.

Remote control for stimulation of the brain

Mo Costandi, neuroscientist and freelance science writer, has written a March 24, 2015 post for the Guardian science blog network focusing on neuronal remote control,

Two teams of scientists have developed new ways of stimulating neurons with nanoparticles, allowing them to activate brain cells remotely using light or magnetic fields. The new methods are quicker and far less invasive than other hi-tech methods available, so could be more suitable for potential new treatments for human diseases.

Researchers have various methods for manipulating brain cell activity, arguably the most powerful being optogenetics, which enables them to switch specific brain cells on or off with unprecedented precision, and simultaneously record their behaviour, using pulses of light.

This is very useful for probing neural circuits and behaviour, but involves first creating genetically engineered mice with light-sensitive neurons, and then inserting the optical fibres that deliver light into the brain, so there are major technical and ethical barriers to its use in humans.

Nanomedicine could get around this. Francisco Bezanilla of the University of Chicago and his colleagues knew that gold nanoparticles can absorb light and convert it into heat, and several years ago they discovered that infrared light can make neurons fire nervous impulses by heating up their cell membranes.

Polina Anikeeva’s team at the Massachusetts Institute of Technology adopted a slightly different approach, using spherical iron oxide particles that give off heat when exposed to an alternating magnetic field.

Although still in the experimental stages, research like this may eventually allow for wireless and minimally invasive deep brain stimulation of the human brain. Bezanilla’s group aim to apply their method to develop treatments for macular degeneration and other conditions that kill off light-sensitive cells in the retina. This would involve injecting nanoparticles into the eye so that they bind to other retinal cells, allowing natural light to excite them into firing impulses to the optic nerve.

Costandi’s article is intended for an audience that either understands the science or can deal with the uncertainty of not understanding absolutely everything. Provided you fall into either of those categories, the article is well written and it provides links and citations to the papers for both research teams being featured.

Taken together, the research at EPFL, Rice University, University of Chicago, and Massachusetts Institute of Technology provides a clue as to how much money and intellectual power is being directed at the brain.

* EurekAlert link added on March 26, 2015.

Capturing the particle and the wave: photographing light

On returning to school to get a bachelor’s degree, I registered in a communications course and my first paper was about science, light, and communication. The particle/wave situation still fascinates me (and I imagine many others).

A March 2, 2015 news item on phys.org describes the first successful photography of light as both particle and wave,

Light behaves both as a particle and as a wave. Since the days of Einstein, scientists have been trying to directly observe both of these aspects of light at the same time. Now, scientists at EPFL [École polytechnique fédérale de Lausanne in Switzerland] have succeeded in capturing the first-ever snapshot of this dual behavior.

Quantum mechanics tells us that light can behave simultaneously as a particle or a wave. However, there has never been an experiment able to capture both natures of light at the same time; the closest we have come is seeing either wave or particle, but always at different times. Taking a radically different experimental approach, EPFL scientists have now been able to take the first ever snapshot of light behaving both as a wave and as a particle. The breakthrough work is published in Nature Communications.

A March 2, 2015 EPFL press release (also on EurekAlert), which originated the news item, describes the science and the research,

When UV light hits a metal surface, it causes an emission of electrons. Albert Einstein explained this “photoelectric” effect by proposing that light – thought to only be a wave – is also a stream of particles. Even though a variety of experiments have successfully observed both the particle- and wave-like behaviors of light, they have never been able to observe both at the same time.

A research team led by Fabrizio Carbone at EPFL has now carried out an experiment with a clever twist: using electrons to image light. The researchers have captured, for the first time ever, a single snapshot of light behaving simultaneously as both a wave and a stream of particles particle.

The experiment is set up like this: A pulse of laser light is fired at a tiny metallic nanowire. The laser adds energy to the charged particles in the nanowire, causing them to vibrate. Light travels along this tiny wire in two possible directions, like cars on a highway. When waves traveling in opposite directions meet each other they form a new wave that looks like it is standing in place. Here, this standing wave becomes the source of light for the experiment, radiating around the nanowire.

This is where the experiment’s trick comes in: The scientists shot a stream of electrons close to the nanowire, using them to image the standing wave of light. As the electrons interacted with the confined light on the nanowire, they either sped up or slowed down. Using the ultrafast microscope to image the position where this change in speed occurred, Carbone’s team could now visualize the standing wave, which acts as a fingerprint of the wave-nature of light.

While this phenomenon shows the wave-like nature of light, it simultaneously demonstrated its particle aspect as well. As the electrons pass close to the standing wave of light, they “hit” the light’s particles, the photons. As mentioned above, this affects their speed, making them move faster or slower. This change in speed appears as an exchange of energy “packets” (quanta) between electrons and photons. The very occurrence of these energy packets shows that the light on the nanowire behaves as a particle.

“This experiment demonstrates that, for the first time ever, we can film quantum mechanics – and its paradoxical nature – directly,” says Fabrizio Carbone. In addition, the importance of this pioneering work can extend beyond fundamental science and to future technologies. As Carbone explains: “Being able to image and control quantum phenomena at the nanometer scale like this opens up a new route towards quantum computing.”

This work represents a collaboration between the Laboratory for Ultrafast Microscopy and Electron Scattering of EPFL, the Department of Physics of Trinity College (US) and the Physical and Life Sciences Directorate of the Lawrence Livermore National Laboratory. The imaging was carried out EPFL’s ultrafast energy-filtered transmission electron microscope – one of the two in the world.

For anyone who prefers videos, the EPFL researchers have  prepared a brief description (loaded with some amusing images) of their work,

Here’s a link to and a citation for the research paper,

Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field by L Piazza, T.T.A. Lummen, E Quiñonez, Y Murooka, B.W. Reed, B Barwick & F Carbone. Nature Communications 6, Article number: 6407 doi:10.1038/ncomms7407 Published 02 March 2015

This is an open access paper.

The science behind a firefly’s glow

A Dec. 17, 2014 news item on Nanotechnology Now describes research into the phenomenon of bioluminescence and fireflies,

 Fireflies used rapid light flashes to communicate. This “bioluminescence” is an intriguing phenomenon that has many potential applications, from drug testing and monitoring water contamination, and even lighting up streets using glow-in-dark trees and plants. Fireflies emit light when a compound called luciferin breaks down. We know that this reaction needs oxygen, but what we don’t know is how fireflies actually supply oxygen to their light-emitting cells. Using state-of-the-art imaging techniques, scientists from Switzerland and Taiwan have determined how fireflies control oxygen distribution to light up their cells. The work is published in Physical Review Letters.

A Dec. 17, 2014 EPFL (Ecole Polytechnique Fédérale de Lausanne) news release on EurekAlert provides more description of the work,

The firefly’s light-producing organ is called the “lantern”, and it is located in the insect’s abdomen. It looks like a series of tubes progressing into smaller ones and so one, like a tree’s branches growing into twigs. The function of these tubes, called, is to supply oxygen to the cells of the lantern, which contain luciferase and can produce light. However, the complexity of the firefly’s lantern has made it difficult to study this mechanism in depth, and reproduce it for technological applications.

Giorgio Margaritondo at EPFL, Yeukuang Hwu at the Academia Sinica and their colleagues at the National Tsing Hua University in Taiwan have successfully used two sophisticated imaging techniques to overcome the complexity of the firefly lantern and map out how oxygen is supplied to light-emitting cells. The techniques are called synchrotron phase contrast microtomography and transmission x-ray microscopy. They can scan down to the level of a single cell, even allowing researchers to look inside it.

By applying these techniques on live fireflies, the scientists were able to see the entire structure of the lantern for the first time, and to also make quantitative evaluations of oxygen distribution.

The imaging showed that the firefly diverts oxygen from other cellular functions and puts it into the reaction that breaks up luciferin. Specifically, the researchers found that oxygen consumption in the cell decreased, slowing down energy production. At the same time, oxygen supply switched to light-emission.

The study is the first to ever show the firefly’s lantern in such detail, while also providing clear evidence that it is optimized for light emission thanks to the state-of-the-art techniques used by the scientists. But Margaritondo points out another innovation: “The techniques we used have an advantage over, say, conventional x-ray techniques, which cannot easily distinguish between soft tissues. By using an approach based on changes in light intensity (phase-contrast) as opposed to light absorption (x-rays), we were able to achieve high-resolution imaging of the delicate firefly lantern.”

Here’s an image illustrating the work,

Tomographic Reconstruction of Part of the Firefly Lantern;  This detailed microimage shows larger channels branching into smaller ones, supplying oxygen for the firefly's light emission. The smallest channels are ten thousand times smaller than a millimeter and therefore invisible to other experimental probes: this has prevented scientists so far to unlock the mystery of firefly light flashes. Credit: Giorgio Margaritondo/EPFL

Tomographic Reconstruction of Part of the Firefly Lantern; This detailed microimage shows larger channels branching into smaller ones, supplying oxygen for the firefly’s light emission. The smallest channels are ten thousand times smaller than a millimeter and therefore invisible to other experimental probes: this has prevented scientists so far to unlock the mystery of firefly light flashes. Credit: Giorgio Margaritondo/EPFL

Here’s a link to and a citation for the paper,

Firefly Light Flashing: Oxygen Supply Mechanism by Yueh-Lin Tsai, Chia-Wei Li, Tzay-Ming Hong, Jen-Zon Ho, En-Cheng Yang, Wen-Yen Wu, G. Margaritondo, Su-Ting Hsu, Edwin B. L. Ong, and Y. Hwu. Phys. Rev. Lett. 113, 258103 – Published 17 December 2014 DOI:  http://dx.doi.org/10.1103/PhysRevLett.113.258103

This paper is behind a paywall.

Solar cells and ‘tinkertoys’

A Nov. 3, 2014 news item on Nanowerk features a project researchers hope will improve photovoltaic efficiency and make solar cells competitive with other sources of energy,

 Researchers at Sandia National Laboratories have received a $1.2 million award from the U.S. Department of Energy’s SunShot Initiative to develop a technique that they believe will significantly improve the efficiencies of photovoltaic materials and help make solar electricity cost-competitive with other sources of energy.

The work builds on Sandia’s recent successes with metal-organic framework (MOF) materials by combining them with dye-sensitized solar cells (DSSC).

“A lot of people are working with DSSCs, but we think our expertise with MOFs gives us a tool that others don’t have,” said Sandia’s Erik Spoerke, a materials scientist with a long history of solar cell exploration at the labs.

A Nov. 3, 2014 Sandia National Laboratories news release, which originated the news item, describes the project and the technology in more detail,

Sandia’s project is funded through SunShot’s Next Generation Photovoltaic Technologies III program, which sponsors projects that apply promising basic materials science that has been proven at the materials properties level to demonstrate photovoltaic conversion improvements to address or exceed SunShot goals.

The SunShot Initiative is a collaborative national effort that aggressively drives innovation with the aim of making solar energy fully cost-competitive with traditional energy sources before the end of the decade. Through SunShot, the Energy Department supports efforts by private companies, universities and national laboratories to drive down the cost of solar electricity to 6 cents per kilowatt-hour.

DSSCs provide basis for future advancements in solar electricity production

Dye-sensitized solar cells, invented in the 1980s, use dyes designed to efficiently absorb light in the solar spectrum. The dye is mated with a semiconductor, typically titanium dioxide, that facilitates conversion of the energy in the optically excited dye into usable electrical current.

DSSCs are considered a significant advancement in photovoltaic technology since they separate the various processes of generating current from a solar cell. Michael Grätzel, a professor at the École Polytechnique Fédérale de Lausanne in Switzerland, was awarded the 2010 Millennium Technology Prize for inventing the first high-efficiency DSSC.

“If you don’t have everything in the DSSC dependent on everything else, it’s a lot easier to optimize your photovoltaic device in the most flexible and effective way,” explained Sandia senior scientist Mark Allendorf. DSSCs, for example, can capture more of the sun’s energy than silicon-based solar cells by using varied or multiple dyes and also can use different molecular systems, Allendorf said.

“It becomes almost modular in terms of the cell’s components, all of which contribute to making electricity out of sunlight more efficiently,” said Spoerke.

MOFs’ structure, versatility and porosity help overcome DSSC limitations

Though a source of optimism for the solar research community, DSSCs possess certain challenges that the Sandia research team thinks can be overcome by combining them with MOFs.

Allendorf said researchers hope to use the ordered structure and versatile chemistry of MOFs to help the dyes in DSSCs absorb more solar light, which he says is a fundamental limit on their efficiency.

“Our hypothesis is that we can put a thin layer of MOF on top of the titanium dioxide, thus enabling us to order the dye in exactly the way we want it,” Allendorf explained. That, he said, should avoid the efficiency-decreasing problem of dye aggregation, since the dye would then be locked into the MOF’s crystalline structure.

MOFs are highly-ordered materials that also offer high levels of porosity, said Allendorf, a MOF expert and 29-year veteran of Sandia. He calls the materials “Tinkertoys for chemists” because of the ease with which new structures can be envisioned and assembled. [emphasis mine]

Allendorf said the unique porosity of MOFs will allow researchers to add a second dye, placed into the pores of the MOF, that will cover additional parts of the solar spectrum that weren’t covered with the initial dye. Finally, he and Spoerke are convinced that MOFs can help improve the overall electron charge and flow of the solar cell, which currently faces instability issues.

“Essentially, we believe MOFs can help to more effectively organize the electronic and nano-structure of the molecules in the solar cell,” said Spoerke. “This can go a long way toward improving the efficiency and stability of these assembled devices.”

In addition to the Sandia team, the project includes researchers at the University of Colorado-Boulder, particularly Steve George, an expert in a thin film technology known as atomic layer deposition.

The technique, said Spoerke, is important in that it offers a pathway for highly controlled materials chemistry with potentially low-cost manufacturing of the DSSC/MOF process.

“With the combination of MOFs, dye-sensitized solar cells and atomic layer deposition, we think we can figure out how to control all of the key cell interfaces and material elements in a way that’s never been done before,” said Spoerke. “That’s what makes this project exciting.”

Here’s a picture showing an early Tinkertoy set,

Original Tinkertoy, Giant Engineer #155. Questor Education Products Co., c.1950 [downloaded from http://en.wikipedia.org/wiki/Tinkertoy#mediaviewer/File:Tinkertoy_300126232168.JPG]

Original Tinkertoy, Giant Engineer #155. Questor Education Products Co., c.1950 [downloaded from http://en.wikipedia.org/wiki/Tinkertoy#mediaviewer/File:Tinkertoy_300126232168.JPG]

The Tinkertoy entry on Wikipedia has this,

The Tinkertoy Construction Set is a toy construction set for children. It was created in 1914—six years after the Frank Hornby’s Meccano sets—by Charles H. Pajeau and Robert Pettit and Gordon Tinker in Evanston, Illinois. Pajeau, a stonemason, designed the toy after seeing children play with sticks and empty spools of thread. He and Pettit set out to market a toy that would allow and inspire children to use their imaginations. At first, this did not go well, but after a year or two over a million were sold.

Shrinky Dinks, tinkertoys, Lego have all been mentioned here in conjunction with lab work. I’m always delighted to see scientists working with or using children’s toys as inspiration of one type or another.