Tag Archives: Erio Tosatti

Bulletproof graphene

A December 18, 2017 news item on Nanowerk announces research that demonstrates graphene can be harder than diamonds (Note: A link has been removed),

Imagine a material as flexible and lightweight as foil that becomes stiff and hard enough to stop a bullet on impact. In a newly published paper in Nature Nanotechnology (“Ultrahard carbon film from epitaxial two-layer graphene”), researchers across The City University of New York (CUNY) describe a process for creating diamene: flexible, layered sheets of graphene that temporarily become harder than diamond and impenetrable upon impact.

Scientists at the Advanced Science Research Center (ASRC) at the Graduate Center, CUNY, worked to theorize and test how two layers of graphene — each one-atom thick — could be made to transform into a diamond-like material upon impact at room temperature. The team also found the moment of conversion resulted in a sudden reduction of electric current, suggesting diamene could have interesting electronic and spintronic properties. The new findings will likely have applications in developing wear-resistant protective coatings and ultra-light bullet-proof films.

A December 18, 2017 CUNY news release, which originated the news item, provides a little more detail,

“This is the thinnest film with the stiffness and hardness of diamond ever created,” said Elisa Riedo, professor of physics at the ASRC and the project’s lead researcher. “Previously, when we tested graphite or a single atomic layer of graphene, we would apply pressure and feel a very soft film. But when the graphite film was exactly two-layers thick, all of a sudden we realized that the material under pressure was becoming extremely hard and as stiff, or stiffer, than bulk diamond.”

Angelo Bongiorno, associate professor of chemistry at CUNY College of Staten Island and part of the research team, developed the theory for creating diamene. He and his colleagues used atomistic computer simulations to model potential outcomes when pressurizing two honeycomb layers of graphene aligned in different configurations. Riedo and other team members then used an atomic force microscope to apply localized pressure to two-layer graphene on silicon carbide substrates and found perfect agreement with the calculations. Experiments and theory both show that this graphite-diamond transition does not occur for more than two layers or for a single graphene layer.

“Graphite and diamonds are both made entirely of carbon, but the atoms are arranged differently in each material, giving them distinct properties such as hardness, flexibility and electrical conduction,” Bongiorno said. “Our new technique allows us to manipulate graphite so that it can take on the beneficial properties of a diamond under specific conditions.”

The research team’s successful work opens up possibilities for investigating graphite-to-diamond phase transition in two-dimensional materials, according to the paper. Future research could explore methods for stabilizing the transition and allow for further applications for the resulting materials.

There’s an artist’s representation of a bullet’s impact on graphene,

By applying pressure at the nanoscale with an indenter to two layers of graphene, each one-atom thick, CUNY researchers transformed the honeycombed graphene into a diamond-like material at room temperature. Photo credit: Ella Maru Studio Courtesy: CUNY

Here’s a link to and a citation for the paper,

Ultrahard carbon film from epitaxial two-layer graphene by Yang Gao, Tengfei Cao, Filippo Cellini, Claire Berger, Walter A. de Heer, Erio Tosatti, Elisa Riedo, & Angelo Bongiorno. Nature Nanotechnology (2017) doi:10.1038/s41565-017-0023-9 Published online: 18 December 2017

This paper is behind a paywall.

The nanotube of a thousand faces (similar nanomaterials behaving differently)

Kudos to any one who recognizes the reference to the ‘man of a thousand faces’, Lon Chaney, a silent film horror star. As for the nanotubes, there’s this Sept. 14, 2016 news item on ScienceDaily,

Nanotubes can be used for many things: electrical circuits, batteries, innovative fabrics and more. Scientists have noted, however, that nanotubes, whose structures appear similar, can actually exhibit different properties, with important consequences in their applications. Carbon nanotubes and boron nitride nanotubes, for example, while nearly indistinguishable in their structure, can be different when it comes to friction. A study conducted by SISSA/CNR-IOM and Tel Aviv University created computer models of these crystals and studied their characteristics in detail and observed differences related to the material’s chirality. …

A Sept. 14, 2016 Scuola Internazionale Superiore di Studi Avanzati (SISSA) press release (PDF), which originated the news item, describes the research in more detail,

“We began with a series of experimental observations which showed that very similar nanotubes exhibit different frictional properties, with intensities ranging up to two orders of magnitude,” says Roberto Guerra, a researcher at CNR-IOM and the International School for Advanced Studies (SISSA) in Trieste, first author of the study. “This led us to hypothesize that the chirality of the materials may play a role in this phenomenon.” The study involving also Andrea Vanossi (CNR-IOM) and Erio Tosatti (SISSA), was conducted in collaboration with the University of Tel Aviv.

For materials, such as those used in the study, chirality is linked to the three-dimensional arrangement of the weft that form the nanotube. “If we wrap a sheet of lined paper around itself to form a tube, the angle that the lines form with the axis of the tube determines its chirality,” says Guerra. “In our work we reconstructed the behavior of double-walled nanototubes, which can be imagined as two tubes of slightly different diameters, one inside the other. We observed that the difference in chirality between the inner tube and the outer tube has a remarkable effect on the three-dimensional shape of the nanotubes.”

A polygonal tube

“If we continue with the paper metaphor, the difference in orientation between the lattice on the inner tube and the outer tube determine to what extent, and, in what way, planar regions (faces) along the tube will form,” says Guerra. To better understand what is meant by “faces,” imagine a cross section of the tube, which is polygonal rather than perfectly circular. “The smaller the difference in chirality, the clearer and more obvious the faces,” concludes Guerra. If, however, the difference in chirality becomes too large, the faces disappear and the nanotubes take on the classic cylindrical shape.

The faces appear spontaneously depending on the characteristics of the material. Double-walled carbon nanotubes tend to form with a greater difference in internal and external chirality compared to boron nitride. Therefore, the former usually maintains a cylindrical shape that allows for less friction. In further studies, Guerra and colleagues intend to work directly on measuring the level of friction between nanotubes.

Here’s a link to and a citation for the paper,

Multiwalled nanotube faceting unravelled by Itai Leven, Roberto Guerra, Andrea Vanossi, Erio Tosatti, & Oded Hod. Nature Nanotechnology (2016) doi:10.1038/nnano.2016.151 Published online 22 August 2016

This paper is behind a paywall.

Atomic force microscopes, images, and friction

To me, this looks like the ‘batman’ symbol but it’s not.

Nanofriction at the tip of the microscope. Courtesy SISSA [Scuola Internazionale Superiore di Studi Avanzat], Italy

Nanofriction at the tip of the microscope. Courtesy SISSA [Scuola Internazionale Superiore di Studi Avanzat], Italy

Here’s more about the work that produced this image from a Dec. 17, 2013 news item on Azonano,

Atomic force microscopes are able to reproduce spectacular images, at the scale of single atoms. This is made possible by the oscillation of a very sharp probe tip over the surface being observed. The tip never touches the surface but gets so close to it, at distances in the order of one billionth of a metre, that it “feels” the force due to the interaction with the atoms making up the material being observed.

These are tiny forces, in the order of nanonewtons (meaning one billion times smaller than the weight of an apple). By measuring these forces one can reproduce an image of the material. A research group, which brings together experimental physicists from the University of Basel and theoretical physicists from SISSA, has observed and explained a peculiar effect, a source of “friction” in this type of nanoscopic observations.

The Dec. 16,  2013 SISSA (Scuola Internazionale Superiore di Studi Avanzat) press release, which originated the news item, provides more specific detail,

 When the tip of the microscope oscillates over certain surfaces, in this case over NbSe2 (niobium selenide), peaks of “dissipation” (i.e., loss of energy) can be seen when the tip is at specific distances from the surface, as if it were held back, at certain locations, by some frictional force. This effect, which is related to a property of the surface known as charge density waves (CDW), was experimentally observed by the Basel physicists and first explained by Franco Pellegrini, Giuseppe Santoro and Erio Tosatti, of SISSA, by means of a theoretical model analysed with the use of numerical simulations.

“Our model describes in detail the interaction between the tip of the atomic force microscope and the CDW,” explains Pellegrini. “The model reproduces – and predicts – the data observed experimentally”.

“Knowledge of nanofriction is important today. Progressive miniaturization of electronic devices makes it crucial to understand the mechanisms underlying energy losses, continues Pelligrini.

Here’s a link to and a citation for the paper,

Giant frictional dissipation peaks and charge-density-wave slips at the NbSe2 surface by Markus Langer, Marcin Kisiel, Rémy Pawlak, Franco Pellegrini, Giuseppe E. Santoro, Renato Buzio, Andrea Gerbi, Geetha Balakrishnan, Alexis Baratoff, Erio Tosatti & Ernst Meyer. Nature Materials (2013) doi:10.1038/nmat3836 Published online 15 December 2013

This paper is behind a paywall although you can obtain a preview through ReadCube Access.