Tag Archives: ethics

Café Scientifique Vancouver talk on January 30, 2018 and a couple of February 2018 art/sci events in Toronto

Vancouver

This could be a first for Café Scientifique Vancouver. From a January 28, 2018 Café Scientifique Vancouver announcement (received via email)

This is a reminder that our next café with biotech entrepreneur Dr.Andrew Tait (TUESDAY, JANUARY 30TH [2018] at 7:30PM) in the back room of YAGGER'S DOWNTOWN (433 W Pender).

COMBINING TRADITIONAL NATURAL MEDICINES WITH SCIENTIFIC RESEARCH: UNVEILING THE POTENTIAL OF THE MANDARIN ORANGE PEEL

The orange peel is something most of us may think of as a throw-away compost item, but it is so much more. Travel back in time 9,000 years to China, where orange peel was found in the first fermented alcoholic beverage, and return to today, where mandarin orange peel remains one of China’s top selling herbs that promotes digestion. Now meet Tait Laboratories Inc., a company that was founded based on one chemistry Ph.D. student’s idea, that mandarin orange peel has the potential to reverse incurable neurodegenerative diseases like multiple sclerosis. You will learn about the company’s journey through a scientific lens, from its early days to the present, having developed a mandarin orange peel product sold across Canada in over 1,000 stores including 400 Rexall pharmacies. You will leave with a basic understanding of how herbal products like the company’s mandarin orange peel-based product are developed and brought to market in Canada, and about the science that is required to substantiate health claims on this and other exciting new botanical products.

Bio:

Dr. Andrew Tait is the founder of Tait Laboratories Inc., a company devoted to developing natural medicines from agricultural bi-products. After a B.Sc. in Biochemistry and M.Sc. in Chemistry from Concordia University (Montreal), he completed a Ph.D. in Chemistry at the
University of British Columbia [UBC].

Inspired by his thesis work on multiple sclerosis, he subsequently identified Traditional Chinese Medicines as having potential to treat a wide range of chronic diseases; he founded the company while finishing his graduate studies.

In 2012, he was invited to Ottawa to be awarded the NSERC [{Canada} Natural Sciences and Engineering Research Council] Innovation Challenge Award, for successfully translating his Ph.D. research to an entrepreneurial venture. In 2014, he was awarded the BC Food Processors Association “Rising Star” award.

Dr. Tait is a regularly invited speaker on the topics of entrepreneurship and the science supporting natural health products; he was keynote speaker in 2012 at the Annual Symposium of the Boucher Institute of Naturopathic Medicine (Vancouver) and in 2016 at the
Functional Foods and Natural Health Products Graduate Research Symposium (Winnipeg).

Supported by the Futurpreneur Canada, the Bank of Development of Canada, the UBC’s Entrepreneurship@UBC program, and the NSERC  and NRC  [{Canada} National Research Council] Industry Research Assistance Program (IRAP), he works with industrial and academic researchers developing safe, affordable, and clinically proven medicines. He successfully launched MS+ Mandarin Skin PlusÒ, a patent-pending digestive product now on shelf in over 1000 pharmacies and health food stores across Canada, including 400 Rexall pharmacies.

Dr. Tait mentors young companies as an Entrepreneur in Residence at both SFU [Simon Fraser University] Coast Capital Savings Venture Connection and also the Health Tech Innovation Hub and he also volunteers his time to mentor students of the Student Biotechnology Network.

Lest it be forgotten, many drugs and therapeutic agents are based on natural remedies; a fact often ignored in the discussion about drugs and natural remedies. In any event, I am surprised this talk is being hosted by Café Scientifique Vancouver which has tended to more ‘traditional’ (i.e., university academic) presentations without any hint of ‘alternative’ or ‘entrepreneurial’ aspects. I wonder if this is the harbinger of new things to come from the Café Scientifique Vancouver community.

Meanwhile, interested parties can find out more about Tait Laboratories on their company website. They are selling one product at this time (from the MS+ [Mandarin Skin Plus] product webpage,

MS+™ (Mandarin Skin Plus) is a revolutionary natural health product that aids with digestion and promotes gastrointestinal health. It is a patent-pending proprietary extract based on dry-aged mandarin orange peel, an ancient Traditional Chinese Medicine. This remedy has been safely used for centuries to relieve bloating, indigestion, diarrhea, nausea, upset stomach, cough with phlegm. Experience ULTIMATE DIGESTIVE RELIEF and top gastrointestinal health for only about a dollar a day!

Directions: take one capsule twice a day, up to six capsules per day. Swallow capsule directly OR dissolve powder in water.
60 vegan capsules for ~ 1 month supply

I would have liked to have seen a list of research papers and discussion of human clinical trials regarding their ‘digestive’ product. Will Tait be discussing his research and results into what seems to be a new direction (i.e., the use of mandarin skin peel-derived therapeutics for neurodegenerative diseases)?

I don’t think I’m going to make it to the talk but should anyone who attends care to answer the question, please feel free to add a comment.

ArtSci Salon in Toronto

2018 is proving to be an active year for the ArtSci Salon folks in Toronto. They’ve just finished hosting a January 24-25, 2018 workshop and January 26, 2018 panel discussion on the gene-editing tool CRISPR/CAS9 (see my January 10, 2018 posting for a description).

Now they’ve announced another workshop and panel discussion on successive nights in February, the topic being: cells. From a January 29, 2018 ArtSci Salon announcement (received via email), Note: The panel discussion is listed first, then the workshop, then the artists’ biographies,

FROM CELL TO CANVAS: CREATIVE EXPLORATIONS OF THE MICROSCOPIC [panel discussion]

From the complex forms of the cell to the colonies created by the microbiota; from the undetectable chemical reactions activated by enzymes and natural processes to the environmental information captured through data visualization, the five local and international artists presenting tonight have developed a range of very diverse practices all inspired by the invisible, the undetectable and the microscopic.

We invite you to an evening of artist talks and discussion on the creative process of exploring the microscopic and using living organisms in art, on its potentials and implication for science and its popular dissemination, as well as on its ethics.

WITH:
Robyn Crouch
Mellissa Fisher
JULIA KROLIK
SHAVON MADDEN
TOSCA TERAN

FRIDAY, FEB 9, 2018
6:00-8:00 PM
THE FIELDS INSTITUTE
222 COLLEGE STREET,
RM 230

[Go to this page for access to registration]

FROM CELL TO CANVAS: CREATIVE EXPLORATIONS OF THE MICROSCOPIC [workshop]

THE EVENT WILL BE FOLLOWED BY A WORKSHOP BY: MELLISSA FISHER, SHAVON MADDEN AND JULIA KROLIK
FEB. 10, 2018
11:00AM-5:00PM
AT HACKLAB,
1266 Queen St West

[Go to this page for access to registration]

Workshop:

Design My Microbiome

Artist Mellissa Fisher invites participants to mould parts of her body in agar to create their own microbial version of her, alongside producing their own microbial portrait with painting techniques.

Cooking with the Invasive

Artist Shavon Madden invites participants to discuss invasive species like garlic mustard and cook invasive species whilst exploring, do species which we define and brand as invasive simply have no benefits?

Intoduction to Biological Staining

Artist & Scientist Julia Krolik invites participants to learn about 3 different types of biological staining and have a chance to try staining procedures.

BIOS:

ROBYN CROUCH
The symbolic imagery that comes through Robyn’s work invites one’s gaze inward to the cellular realms. There, one discovers playful depictions of chemical processes; the unseen lattice upon which our macro­cosmic world is constructed. Technological advancements create windows into this molecular realm, and human consciousness acts as the interface between the seen and the unseen worlds. In her functional ceramic work, the influence of Chinese and Japanese tea ceremony encourages contem­plation and appreciation of a quiet
moment. The viewer-participant can lose their train of thought while meandering through geometry and biota, con­nected by strands of double-helical DNA. A flash of recognition, a momentary mirror.

MELLISSA FISHER
Mellissa Fisher is a British Bio Artist based in Kent. Her practice explores the invisible world on our skin by using living organisms and by creating sculptures made with agar to show the public what the surface of our skin really looks like. She is best known for her work with bacteria and works extensively with collaborators in microbiology and immunology. She has exhibited an installation _ “Microbial Me”_with Professor Mark Clements and Dr Richard Harvey at The Eden Project for their permanent exhibition _“The Invisible You: The Human
Microbiome”._The installation included a living portrait in bacteria of the artists face as well as a time-lapse film of the sculpture growing.

JULIA KROLIK
Julia Krolik is a creative director, entrepreneur, scientist and award-winning artist. Her diverse background enables a rare cross-disciplinary empathy, and she continuously advocates for both art and science through several initiatives. Julia is the founder of Art the Science, a non-profit organization dedicated to facilitating artist residencies in scientific research laboratories to foster Canadian science-art culture and expand scientific knowledge communication to benefit the public. Through her consulting agency Pixels and Plans, Julia works with private and public organizations, helping them with strategy, data visualization and knowledge mobilization, often utilizing creative technology and skills-transfer workshops.

SHAVON MADDEN
Shavon Madden is a Brampton based artist, specializing in sculptural, performance and instillation based work exploring the social injustices inflicted on the environment and its creatures. Her work focuses on challenging social-environmental and political ethics, through the embodied experience and feelings of self. She graduated from the University of Toronto Specializing in Art and Art History, along with studies in Environmental Science and will be on her way to Edinburgh for her MFA. Shavon has had works shown at Shelly Peterson, the Burlington Art Gallery and the Art Gallery of Mississauga, among many others. Website: www.greenheartartistry.com [4]

TOSCA TERAN
Working with metal for over 30+ years, Tosca was introduced to glass as an artistic medium in 2004. Through developing bodies of work incorporating metal + glass Tosca has been awarded scholarships at The Corning Museum of Glass, Pilchuck Glass School and The Penland school of Crafts. Her work has been featured at SOFA New York, Culture Canada,
Metalsmith Magazine, The Toronto Design Exchange, and the Memphis Metal Museum. She has been awarded residencies at Gullkistan, Nes, and the Ayatana Research Program. A long-term guest artist instructor at the Ontario Science Centre, Tosca continues to explore materials, code, BioArt, SciArt and teach Metal + Glass courses out of her studio in Toronto.

It seems that these February events and the two events with Marta de Menezes are part of the FACTT (transdisciplinary and transnational festival of art and science) Toronto, from the FACTT Toronto webpage,

FACTT Toronto – Festival of Art & Science posted in: blog, events

The Arte Institute, in partnership with Cultivamos Cultura and ArtSi Salon, has the pleasure to announce FACTT – Festival of Art & Science in Toronto.

The Festival took place in Lisbon, New York, Mexico, Berlin and will continue in Toronto.
Exhibition: The Cabinet Project/ Art Sci Salon / FACTT

Artists:

Andrew Carnie
Elaine Whittaker
Erich Berger
Joana Ricou
Ken Rinaldo
Laura Beloff and Maria Antonia Gonzalez Valerio
Marta de Menezes and Luís Graça
Pedro Cruz

Dates: Jan 26- feb 15 [2018 {sic}]

Where: Meet us on Jan 26 [2018] in the Lobby of the Physics Department, 255 Huron Street
University of Toronto
When: 4:45 PM

You may want to keep an eye on the ArtSci Salon website although I find their posting schedule a bit erratic. Sometimes, I get email notices for events that aren’t yet listed on their website.

CRISPR/Cas9 as a tool for artists (Art/sci Salon January 2018 events in Toronto, Canada) and an event in Winnipeg, Canada

The Art/Sci Salon in Toronto, Canada is offering a workshop and a panel discussion (I think) on the topic of CRISPR( (clustered regularly interspaced short palindromic repeats)/Cas9.

CRISPR Cas9 Workshop with Marta De Menezes

From its Art/Sci Salon event page (on Eventbrite),

This is a two day intensive workshop on

Jan. 24 5:00-9:00 pm
and
Jan. 25 5:00-9:00 pm

This workshop will address issues pertaining to the uses, ethics, and representations of CRISPR-cas9 genome editing system; and the evolution of bioart as a cultural phenomenon . The workshop will focus on:

1. Scientific strategies and ethical issues related to the modification of organisms through the most advanced technology;

2. Techniques and biological materials to develop and express complex concepts into art objects.

This workshop will introduce knowledge, methods and living material from the life sciences to the participants. The class will apply that novel information to the creation of art. Finally, the key concepts, processes and knowledge from the arts will be discussed and related to scientific research. The studio-­‐lab portion of the course will focus on the mastering and understanding of the CRISPR – Cas9 technology and its revolutionary applications. The unparalleled potential of CRISPR ‐ Cas9 for genome editing will be directly assessed as the participants will use the method to make artworks and generate meaning through such a technique. The participants will be expected to complete one small project by the end of the course. In developing and completing these projects, participants will be asked to present their ideas/work to the instructors and fellow participants. As part of the course, participants are expected to document their work/methodology/process by keeping a record of processes, outcomes, and explorations.

This is a free event. Go here to register.

Do CRISPR monsters dream of synthetic futures?

This second event in Toronto seems to be a panel discussion; here’s more from its Art/Sci Salon event page (on Eventbrite),

The term CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) refers to a range of novel gene editing systems which can be programmed to edit DNA at precise locations. It allows the permanent modification of the genes in cells of living organisms. CRISPR enables novel basic research and promises a wide range of possible applications from biomedicine and agriculture to environmental challenges.

The surprising simplicity of CRISPR and its potentials have led to a wide range of reactions. While some welcome it as a gene editing revolution able to cure diseases that are currently fatal, others urge for a worldwide moratorium, especially when it comes to human germline modifications. The possibility that CRISPR may allow us to intervene in the evolution of organisms has generated particularly divisive thoughts: is gene editing going to cure us all? Or is it opening up a new era of designer babies and new types of privileges measured at the level of genes? Could the relative easiness of the technique allow individuals to modify bodies, identities, sexuality, to create new species and races? will it create new monsters? [emphasis mine] These are all topics that need to be discussed. With this panel/discussion, we wish to address technical, ethical, and creative issues arising from the futuristic scenarios promised by CRISPR.

Our Guests:

Marta De Menezes, Director, Cultivamos Cultura

Dalila Honorato, Assistant Professor, Ionian University

Mark Lipton, Professor, University of Guelph

Date: January 26, 2018

Time: 6:00-8:00 pm

Location: The Fields Institute for Research in Mathematical Sciences
222 College Street, Toronto, ON

Events Facilitators: Roberta Buiani and Stephen Morris (ArtSci Salon) and Nina Czegledy (Leonardo Network)

Bios:

Marta de Menezes is a Portuguese artist (b. Lisbon, 1975) with a degree in Fine Arts by the University in Lisbon, a MSt in History of Art and Visual Culture by the University of Oxford, and a PhD candidate at the University of Leiden. She has been exploring the intersection between Art and Biology, working in research laboratories demonstrating that new biological technologies can be used as new art medium. Her work has been presented internationally in exhibitions, articles and lectures. She is currently the artistic director of Ectopia, an experimental art laboratory in Lisbon, and Director of Cultivamos Cultura in the South of Portugal. http://martademenezes.com

Dalila Honorato, Ph.D., is currently Assistant Professor in Media Aesthetics and Semiotics at the Ionian University in Greece where she is one of the founding members of the Interactive Arts Lab. She is the head of the organizing committee of the conference “Taboo-Transgression-Transcendence in Art & Science” and developer of the studies program concept of the Summer School in Hybrid Arts. She is a guest faculty at the PhD studies program of the Institutum Studiorum Humanitatis in Alma Mater Europaea, Slovenia, and a guest member of the Science Art Philosophy Lab integrated in the Center of Philosophy of Sciences of the University of Lisbon, Portugal. Her research focus is on embodiment in the intersection of performing arts and new media.

Mark Lipton works in the College of Arts; in the School of English and Theatre Studies, and Guelph’s Program in Media Studies. Currently, his work focuses on queering media ecological perspectives of technology’s role in education, with emerging questions about haptics and the body in performance contexts, and political outcomes of neo-liberal economics within Higher Education.

ArtSci Salon thanks the Fields Institute and the Bonham Center for Sexual Diversity Studies (U of T), and the McLuhan Centre for Culture and Technology for their support. We are grateful to the members of DIYBio Toronto and Hacklab for hosting Marta’s workshop.

This series of event is promoted and facilitated as part of FACTT Toronto

LASER – Leonardo Art Science Evening Rendezvous is a project of Leonardo® /ISAST (International Society for the Arts Sciences and Technology)

Go here to click on the Register button.

For anyone who didn’t recognize (or, like me, barely remembers what it means) the title’s reference is to a famous science fiction story by Philip K. Dick. Here’s more from the Do Androids Dream of Electric Sheep? Wikipedia entry (Note: Links have been removed),

Do Androids Dream of Electric Sheep? (retitled Blade Runner: Do Androids Dream of Electric Sheep? in some later printings) is a science fiction novel by American writer Philip K. Dick, first published in 1968. The novel is set in a post-apocalyptic San Francisco, where Earth’s life has been greatly damaged by nuclear global war. Most animal species are endangered or extinct from extreme radiation poisoning, so that owning an animal is now a sign of status and empathy, an attitude encouraged towards animals. The book served as the primary basis for the 1982 film Blade Runner, and many elements and themes from it were used in its 2017 sequel Blade Runner 2049.

The main plot follows Rick Deckard, a bounty hunter who is tasked with “retiring” (i.e. killing) six escaped Nexus-6 model androids, while a secondary plot follows John Isidore, a man of sub-par IQ who aids the fugitive androids. In connection with Deckard’s mission, the novel explores the issue of what it is to be human. Unlike humans, the androids are said to possess no sense of empathy.

I wonder why they didn’t try to reference Orphan Black (its Wikipedia entry)? That television series was all about biotechnology. If not Orphan Black, what about a Frankenstein reference? It’s the 200th anniversary this year (2018) of the publication of the book which is the forerunner to all the cautionary tales that have come after.

A human user manual—for robots

Researchers from the Georgia Institute of Technology (Georgia Tech), funded by the US Office of Naval Research (ONR), have developed a program that teaches robots to read stories and more in an effort to educate them about humans. From a June 16, 2016 ONR news release by Warren Duffie Jr. (also on EurekAlert),

With support from the Office of Naval Research (ONR), researchers at the Georgia Institute of Technology have created an artificial intelligence software program named Quixote to teach robots to read stories, learn acceptable behavior and understand successful ways to conduct themselves in diverse social situations.

“For years, researchers have debated how to teach robots to act in ways that are appropriate, non-intrusive and trustworthy,” said Marc Steinberg, an ONR program manager who oversees the research. “One important question is how to explain complex concepts such as policies, values or ethics to robots. Humans are really good at using narrative stories to make sense of the world and communicate to other people. This could one day be an effective way to interact with robots.”

The rapid pace of artificial intelligence has stirred fears by some that robots could act unethically or harm humans. Dr. Mark Riedl, an associate professor and director of Georgia Tech’s Entertainment Intelligence Lab, hopes to ease concerns by having Quixote serve as a “human user manual” by teaching robots values through simple stories. After all, stories inform, educate and entertain–reflecting shared cultural knowledge, social mores and protocols.

For example, if a robot is tasked with picking up a pharmacy prescription for a human as quickly as possible, it could: a) take the medicine and leave, b) interact politely with pharmacists, c) or wait in line. Without value alignment and positive reinforcement, the robot might logically deduce robbery is the fastest, cheapest way to accomplish its task. However, with value alignment from Quixote, it would be rewarded for waiting patiently in line and paying for the prescription.

For their research, Riedl and his team crowdsourced stories from the Internet. Each tale needed to highlight daily social interactions–going to a pharmacy or restaurant, for example–as well as socially appropriate behaviors (e.g., paying for meals or medicine) within each setting.

The team plugged the data into Quixote to create a virtual agent–in this case, a video game character placed into various game-like scenarios mirroring the stories. As the virtual agent completed a game, it earned points and positive reinforcement for emulating the actions of protagonists in the stories.

Riedl’s team ran the agent through 500,000 simulations, and it displayed proper social interactions more than 90 percent of the time.

“These games are still fairly simple,” said Riedl, “more like ‘Pac-Man’ instead of ‘Halo.’ However, Quixote enables these artificial intelligence agents to immerse themselves in a story, learn the proper sequence of events and be encoded with acceptable behavior patterns. This type of artificial intelligence can be adapted to robots, offering a variety of applications.”

Within the next six months, Riedl’s team hopes to upgrade Quixote’s games from “old-school” to more modern and complex styles like those found in Minecraft–in which players use blocks to build elaborate structures and societies.

Riedl believes Quixote could one day make it easier for humans to train robots to perform diverse tasks. Steinberg notes that robotic and artificial intelligence systems may one day be a much larger part of military life. This could involve mine detection and deactivation, equipment transport and humanitarian and rescue operations.

“Within a decade, there will be more robots in society, rubbing elbows with us,” said Riedl. “Social conventions grease the wheels of society, and robots will need to understand the nuances of how humans do things. That’s where Quixote can serve as a valuable tool. We’re already seeing it with virtual agents like Siri and Cortana, which are programmed not to say hurtful or insulting things to users.”

This story brought to mind two other projects: RoboEarth (an internet for robots only) mentioned in my Jan. 14, 2014 which was an update on the project featuring its use in hospitals and RoboBrain, a robot learning project (sourcing the internet, YouTube, and more for information to teach robots) was mentioned in my Sept. 2, 2014 posting.

Public relations (PR) and nanotechnology

Shannon Bowen of the University of South Carolina has written an March 18, 2016 essay about public relations (PR) and nanotechnology for PR Week,

As a responsible public relations professional, you try to be proactive, keeping up with changes in technology and the resulting demands from your organization or clients. More companies are becoming involved in nanotechnology, and PR pros should not treat the subject as some black hole from which to run. Issues surrounding nanotechnology will have to be dealt with, from media relations to issues management to ethics. Like neurotechnology, the field of nanotechnology is growing at an exponential rate. It is so new that no one is really sure what development will come next — nanotech researchers are currently developing specialty areas such as nanobiology, nanopharmacology, and nanorobots.

Maybe your organization or client has no interest in nanotechnology yet, but as an up-to-date PR pro, you should be able to help separate myth or fear from fact if needed. The implications of nanotechnology in the medical field alone are numerous. In the book The Future of the Mind, physicist Michio Kaku writes of nanobots:

“On the surface, the nanobot is simple: an atomic machine with arms and clippers that grabs molecules, cuts them at specific points, and then splices them back together. By cutting and pasting various atoms, the nanobot can create almost any know molecule, like a magician pulling something out of a hat. It can also self-reproduce, so it is necessary to build only one nanobot. This nanobot will then take raw materials, digest them, and create millions of other nanobots.”

Bowen seems to have discovered nanotechnology relatively recently and seems not to realize how prevalent nanotechnology-enabled products are already,

Soon, nanotech will be unavoidable. It will cut across vast sectors of industry, from computing to defense to mechanical engineering of consumer products. All these business sectors will need communication about safety protocols, privacy concerns, public policy, regulation and lobbying, and the pros and cons of using nanotech. Public relations for the nano world will become huge — figuratively speaking.

It’s an interesting essay with some good points but Bowen is not very well informed about nanotechnology. For example, there’s this from her list of ethical and social issues,

Research ethics
Are some research projects, such as military projects, too dangerous to pursue?

Nano medications
In addition to safety, this also raises privacy concerns about tracking. Human trials of such drugs begin in about two years.

The ship has sailed with regard to military research. So, the question turns from “Should we be doing this?” to “Should we continue doing this? and, possibly, Can we get everyone (all countries) to agree to stop?”

And, there are already human trials of nanotechnology-enabled drug delivery and other biomedical applications. For example there’s this from a March 21, 2016 California Institute of Technology (CalTech) news release about nanoparticles for cancer therapy,

These nanoparticles are currently being tested in a number of phase-II clinical trials. (Information about trials of the nanoparticles, denoted CRLX101, is available at http://www.clinicaltrials.gov.

For anyone unfamiliar with the phases for clinical trials, there’s this from Patients at Heart website on the Clinical Trials Essentials webpage in the section on Research Phases,

Target Patient Population Average Number of Patients
Phase I Healthy patients 20 to 80 participants
Phase II First evaluation in patients with the target disease 100 to 300 participants
Phase III Patients with the target disease 300 to 3,000 participants
Health Canada approval for use in the general population
Phase IV Patients with the target disease Variable – large numbers

Getting back to the essay, as Bowen notes there is a field designated as nanoethics. I found this Nanoethics Group based at California Polytechnic State University and this NanoEthics journal. I’m sure there’s much more out there should you care to search.

Gray Matters volume 2: Integrative Approaches for Neuroscience, Ethics, and Society issued March 2015 by US Presidential Bioethics Commission

The second and final volume in the Grey Matters  set (from the US Presidential Commission for the Study of Bioethical Issues produced in response to a request from President Barack Obama regarding the BRAIN (Brain Research through Advancing Innovative Neurotechnologies) initiative) has just been released.

The formal title of the latest volume is Gray Matters: Topics at the Intersection of Neuroscience, Ethics, and Society, volume two. The first was titled: Gray Matters: Integrative Approaches for Neuroscience, Ethics, and Society, volume one.)

According to volume 2 of the report’s executive summary,

… In its first volume on neuroscience and ethics, Gray Matters: Integrative Approaches for Neuroscience, Ethics, and Society, the Bioethics Commission emphasized the importance of integrating ethics and neuroscience throughout the research endeavor.1 This second volume, Gray Matters: Topics at the Intersection of Neuroscience, Ethics, and Society, takes an in-depth look at three topics at the intersection of neuroscience and society that have captured the public’s attention.

The Bioethics Commission found widespread agreement that contemporary neuroscience holds great promise for relieving human suffering from a number of devastating neurological disorders. Less agreement exists on multiple other topics, and the Bioethics Commission focused on three cauldrons of controversy—cognitive enhancement, consent capacity, and neuroscienceand the legal system. These topics illustrate the ethical tensions and societal implications of advancing neuroscience and technology, and bring into heightened relief many important ethical considerations.

A March 26, 2015 post by David Bruggeman on his Pasco Phronesis blog further describes the 168 pp. second volume of the report,

There are fourteen main recommendations in the report:

Prioritize Existing Strategies to Maintain and Improve Neural Health

Continue to examine and develop existing tools and techniques for brain health

Prioritize Treatment of Neurological Disorders

As with the previous recommendation, it would be valuable to focus on existing means of addressing neurological disorders and working to improve them.

Study Novel Neural Modifiers to Augment or Enhance Neural Function

Existing research in this area is limited and inconclusive.

Ensure Equitable Access to Novel Neural Modifiers to Augment or Enhance Neural Function

Access to cognitive enhancements will need to be handled carefully to avoid exacerbating societal inequities (think the stratified societies of the film Elysium or the Star Trek episode “The Cloud Minders“).

Create Guidance About the Use of Neural Modifiers

Professional societies and expert groups need to develop guidance for health care providers that receive requests for prescriptions for cognitive enhancements (something like an off-label use of attention deficit drugs, beta blockers or other medicines to boost cognition rather than address perceived deficits).

If you don’t have time to look at the 2nd volume, David’s post covers many of the important points.

Art project (autonomous bot purchases illegal goods) seized by Swiss law enforcement

Having just attended a talk on Robotics and Rehabilitation which included a segment on Robo Ethics, news of an art project where an autonomous bot (robot) is set loose on the darknet to purchase goods (not all of them illegal) was fascinating in itself (it was part of an art exhibition which also displayed the proceeds of the darknet activity). But things got more interesting when the exhibit attracted legal scrutiny in the UK and occasioned legal action in Switzerland.

Here’s more from a Jan. 23, 2015 article by Mike Masnick for Techdirt (Note: A link has been removed),

… some London-based Swiss artists, !Mediengruppe Bitnik [(Carmen Weisskopf and Domagoj Smoljo)], presented an exhibition in Zurich of The Darknet: From Memes to Onionland. Specifically, they had programmed a bot with some Bitcoin to randomly buy $100 worth of things each week via a darknet market, like Silk Road (in this case, it was actually Agora). The artists’ focus was more about the nature of dark markets, and whether or not it makes sense to make them illegal:

The pair see parallels between copyright law and drug laws: “You can enforce laws, but what does that mean for society? Trading is something people have always done without regulation, but today it is regulated,” says ays [sic] Weiskopff.

“There have always been darkmarkets in cities, online or offline. These questions need to be explored. But what systems do we have to explore them in? Post Snowden, space for free-thinking online has become limited, and offline is not a lot better.”

Interestingly the bot got excellent service as Mike Power wrote in his Dec. 5, 2014 review of the show. Power also highlights some of the legal, ethical, and moral implications,

The gallery is next door to a police station, but the artists say they are not afraid of legal repercussions of their bot buying illegal goods.

“We are the legal owner of the drugs [the bot purchased 10 ecstasy pills along with a baseball cap, a pair of sneaker/runners/trainers among other items] – we are responsible for everything the bot does, as we executed the code, says Smoljo. “But our lawyer and the Swiss constitution says art in the public interest is allowed to be free.”

The project also aims to explore the ways that trust is built between anonymous participants in a commercial transaction for possibly illegal goods. Perhaps most surprisingly, not one of the 12 deals the robot has made has ended in a scam.

“The markets copied procedures from Amazon and eBay – their rating and feedback system is so interesting,” adds Smojlo. “With such simple tools you can gain trust. The service level was impressive – we had 12 items and everything arrived.”

“There has been no scam, no rip-off, nothing,” says Weiskopff. “One guy could not deliver a handbag the bot ordered, but he then returned the bitcoins to us.”

The exhibition scheduled from Oct. 18, 2014 – Jan. 11, 2015 enjoyed an uninterrupted run but there were concerns in the UK (from the Power article),

A spokesman for the National Crime Agency, which incorporates the National Cyber Crime Unit, was less philosophical, acknowledging that the question of criminal culpability in the case of a randomised software agent making a purchase of an illegal drug was “very unusual”.

“If the purchase is made in Switzerland, then it’s of course potentially subject to Swiss law, on which we couldn’t comment,” said the NCA. “In the UK, it’s obviously illegal to purchase a prohibited drug (such as ecstasy), but any criminal liability would need to assessed on a case-by-case basis.”

Masnick describes the followup,

Apparently, that [case-by[case] assessment has concluded in this case, because right after the exhibit closed in Switzerland, law enforcement showed up to seize stuff …

!Mediengruppe Bitnik  issued a Jan. 15, 2015 press release (Note: Links have been removed),

«Can a robot, or a piece of software, be jailed if it commits a crime? Where does legal culpability lie if code is criminal by design or default? What if a robot buys drugs, weapons, or hacking equipment and has them sent to you, and police intercept the package?» These are some of the questions Mike Power asked when he reviewed the work «Random Darknet Shopper» in The Guardian. The work was part of the exhibition «The Darknet – From Memes to Onionland. An Exploration» in the Kunst Halle St. Gallen, which closed on Sunday, January 11, 2015. For the duration of the exhibition, !Mediengruppe Bitnik sent a software bot on a shopping spree in the Deepweb. Random Darknet Shopper had a budget of $100 in Bitcoins weekly, which it spent on a randomly chosen item from the deepweb shop Agora. The work and the exhibition received wide attention from the public and the press. The exhibition was well-attended and was discussed in a wide range of local and international press from Saiten to Vice, Arte, Libération, CNN, Forbes. «There’s just one problem», The Washington Post wrote in January about the work, «recently, it bought 10 ecstasy pills».

What does it mean for a society, when there are robots which act autonomously? Who is liable, when a robot breaks the law on its own initiative? These were some of the main questions the work Random Darknet Shopper posed. Global questions, which will now be negotiated locally.

On the morning of January 12, the day after the three-month exhibition was closed, the public prosecutor’s office of St. Gallen seized and sealed our work. It seems, the purpose of the confiscation is to impede an endangerment of third parties through the drugs exhibited by destroying them. This is what we know at present. We believe that the confiscation is an unjustified intervention into freedom of art. We’d also like to thank Kunst Halle St. Gallen for their ongoing support and the wonderful collaboration. Furthermore, we are convinced, that it is an objective of art to shed light on the fringes of society and to pose fundamental contemporary questions.

This project brings to mind Isaac Asimov’s three laws of robotics and a question (from the Wikipedia entry; Note: Links have been removed),

The Three Laws of Robotics (often shortened to The Three Laws or Three Laws, also known as Asimov’s Laws) are a set of rules devised by the science fiction author Isaac Asimov. The rules were introduced in his 1942 short story “Runaround”, although they had been foreshadowed in a few earlier stories. The Three Laws are:

A robot may not injure a human being or, through inaction, allow a human being to come to harm.
A robot must obey the orders given it by human beings, except where such orders would conflict with the First Law.
A robot must protect its own existence as long as such protection does not conflict with the First or Second Law.

Here’s my question, how do you programme a robot to know what would injure a human being? For example, if a human ingests an ecstasy pill the bot purchased, would that be covered in the first law?

Getting back to the robot ethics talk I recently attended, it was given by Ajung Moon (Ph.D. student at the University of British Columbia [Vancouver, Canada] studying Human-Robot Interaction and Roboethics. Mechatronics engineer with a sprinkle of Philosophy background). She has a blog,  Roboethic info DataBase where you can read more on robots and ethics.

I strongly recommend reading both Masnick’s post (he positions this action in a larger context) and Power’s article (more details and images from the exhibit).

Plagiarism and cheating in the science community

In late January 2012 there seemed to be a bit of a flutter over scientific plagiarism. There was the Jan. 24, 2012 news item on physorg.com about Howard (Skip) Garner’s work detecting signs of scientific (specifically, medical science) plagiarism,

Garner, creator of eTBLAST plagiarism detection software, identified numerous instances of wholesale plagiarism among citations in MEDLINE [online database of medical science articles]. “When my colleagues and I introduced an automated process to spot similar citations in MEDLINE, we uncovered more than 150 suspected cases of plagiarism in March, 2009.

“Subsequent ethics investigations resulted in 56 retractions within a few months. However, as of November 2011, 12 (20 percent) of those “retracted” papers are still not so tagged in PubMed [clone sister to MEDLINE database]. Another two were labeled with errata that point to a website warning the papers are “duplicate” — but more than 95 percent of the text was identical, with no similar co-authors.”

Garner and Mounir Errami published a comentatary in the Jan. 24, 2012 online edition of Nature magazine about their joint study of plagiarism,

Are scientists publishing more duplicate papers? An automated search of seven million biomedical abstracts suggests that they are, report Mounir Errami and Harold Garner.

Given the pressure to publish, it is important to be aware of the ways in which community standards can be subverted. Our concern here is with the three major sins of modern publishing: duplication, co-submission and plagiarism.

I was quite interested to see the definition of these ‘sins’,

 The most unethical practices involve substantial reproduction of another study (bringing no novelty to the scientific community) without proper acknowledgement. If such duplicates have different authors, then they may be guilty of plagiarism, whereas papers with overlapping authors may represent self-plagiarism. Simultaneous submission of duplicate articles by the same authors to different journals also violates journal policies.

That last one about simultaneous submissions of the same article has never made sense to me. As long as you’re not pretending it’s different than the pieces being published elsewhere, I don’t see a problem other than the journal wants exclusive rights to your work. (I’m talking about scholarly publishing only.) If it’s yours, I think you should be able to publish it in as many places as you can.

After all, no one has time to read every single journal that might apply to their own specialty or look at journals that don’t apply but might have useful or applicable materials. In the interests of scholarship and sharing information, there’s a much better chance of stumbling across something if it’s published in a number of places.

Apparently, I’m not the first to think of this, although they are primarily considering the situation from the perspective of language (from the Nature Commentary),

One argument for duplicate publication is to make significant works available to a wider audience, especially in other languages. However, only 20% of manually verified duplicates in Déjà vu are translations into another language. What of the examples of text directly translated with no reference or credit to the original article? Is this justified or acceptable? And is such behaviour more widespread for review-type articles for which greater dissemination may be justified? We do not yet have answers to these questions.

The authors don’t seem to have considered this issue the problem of finding relevant material in a very ‘information-noisy’ environment.

As for self-plagiarizing, I’m a little muzzier about that. It’s not like you’re taking credit for someone else’s work (which is how I’ve always defined plagiarism). However, presenting your own work as if it’s new when it’s not is unacceptable to me.

Leonard Lopate did an interview with Garner and Professor Melissa Anderson about plagiarism in scholarly and medical journals for this NPR (National Public Radio) show Jan. 19, 2012. I haven’t listened to it all since Anderson begins by discussing the downloading of music from various archives. It seems she’s confused file sharing with plagiarism. She did go on to discuss plagiarism but had lost credibility with me and this is an almost 30 min. interview (or investment of my time).

I do think that plagiarism and cheating have a negative effect on the practice of science and I agree with the observers who all note the tremendous pressure placed on scientists to produce in a very competitive environment.  I just wish they had communicated a little more clearly.

Here’s an example of my problem with their discussion of duplicates (from the Nature Commentary),

In general, duplicates are often published in journals with lower impact factors (undoubtedly at least in part to minimize the odds of detection) but this does not prevent negative consequences — especially in clinical research. Duplication, particularly of the results of patient trials, can negatively affect the practice of medicine, as it can instill a false sense of confidence regarding the efficacy and safety of new drugs and procedures. There are very good reasons why multiple independent studies are required before a new medical practice makes it into the clinic, and duplicate publication subverts that crucial quality control (not to mention defrauding the original authors and journals).

If the duplicate lists someone other than the original author(s), wouldn’t it be plagiarism? This is my problem, there is a lack of clarity in this commentary.

Around the same time this commentary was published, Dennis Normile wrote an article, Whistleblower Uses YouTube to Assert Claims of Scientific Misconduct, for Science Insider about a Japanese whistleblower (I’ve removed links, plse. go to the original article to find them and more information),

ScienceInsider tracked down the whistleblower using an e-mail address connected to a blog linked to the Japanese version of the video. A man who said he posted the video agreed to a phone interview and later answered additional questions by e-mail. He asked to be identified by his online handle, “Juuichi Jigen.”

Juuichi Jigen means “11 dimensions” in Japanese. The phrase is taken from a case of misconduct (English, Japanese) the whistleblower had written about on his blog that involved a researcher who claimed to have developed an “11-dimensional theory of the universe.” According to University of Tokyo press releases, that scientist, Serkan Anilir, plagiarized numerous publications and falsified his resume. He resigned from an assistant professorship at the university in March 2010.

Jigen, who claims to be a life science researcher in the private sector, says his interest in scientific misconduct began in late 2010 when he couldn’t reproduce results reported by a researcher at Dokkyo Medical University in Mibu, Tochigi Prefecture. “This wasted time and money,” he says. After documenting problems with the papers, Jigen notified the university and posted all the evidence on a Web site. According to local press reports gathered on Jigen’s Web site, the researcher resigned his position. Many of his papers have been retracted, according to the Retraction Watch Web site.

Jigen has created separate Web sites for half a dozen cases in Japan in which he alleges scientific misconduct has occurred, and last week he posted details of what he believes is a case of image manipulation by researchers at a U.S. institution.

Not being able to reproduce the results means the data could have been an anomaly. However, if researchers cannot duplicate results from various research projects, then the data has been falsified.

In reading about ‘Juuichi Jigen’s’ work, it would seem that if you find someone who’s plagiarizing work, you might want to check the research data. I think that’s a much more compelling way to discuss plagiarism than worrying over copying and duplication. Ultimately, it’s about the practice of science.

Controlling cyborg insects

After writing about cyborg insects and their possible use in emergency situations in my Nov. 23, 2011 posting, I started wondering how the insects could be made to dig down into the earth to find people trapped underground, etc. As it turns out, scientists have already been working on that problem, from the Jan. 6, 2012 news item on physorg.com,

An insect’s internal chemicals can be converted to electricity, potentially providing power for sensors, recording devices or to control the bug, a group of researchers at Case Western Reserve University report.

The finding is yet another in a growing list from universities across the country that could bring the creation of insect cyborgs – touted as possible first responders to super spies – out of science fiction and into reality. In this case, the power supply, while small, doesn’t rely on movement, light or batteries, just normal feeding.

“It is virtually impossible to start from scratch and make something that works like an insect,” said Daniel Scherson, chemistry professor at Case Western Reserve and senior author of the paper.

“Using an insect is likely to prove far easier,” Scherson said. “For that, you need electrical energy to power sensors or to excite the neurons to make the insect do as you want, by generating enough power out of the insect itself.”

The key to converting the chemical energy is using enzymes in series at the anode.

The first enzyme breaks the sugar, trehalose, which a cockroach constantly produces from its food, into two simpler sugars, called monosaccharides. The second enzyme oxidizes the monosaccharides, releasing electrons.

The current flows as electrons are drawn to the cathode, where oxygen from air takes up the electrons and is reduced to water.

After testing the system using trehalose solutions, prototype electrodes were inserted in a blood sinus in the abdomen of a female cockroach, away from critical internal organs.

The researchers found the cockroaches suffered no long-term damage, which bodes well for long-term use.

More technical details are available in the news item although I notice there is no mention of ethics. I’m happy to see that there doesn’t seem to be any long-term damage to any of the beasties they’ve tested so far but should we really take control of them in this way?

Synthetic biology ethics

Friday, March 25, 2011, the Synthetic Biology Project which is part of the Woodrow Wilson International Center for Scholars is hosting a discussion about “The Ethics of Synthetic Biology” as per the [US]” President’s Commission for the Study of Bioethical Issues.” It runs from 9 am to 11 am EST. If you are in Washington, DC and can attend the event, please RSVP here (a light breakfast will be served at 8:30 am). For the rest of us, there’s a webcast and no RSVP is needed for that. Here are more details about the proposed discussion (from the event page),

In December of 2010 the Presidential Commission for the Study of Bioethical Issues released a new report on synthetic biology, which found “…no reason to endorse additional federal regulations or a moratorium on work in this field at this time.” Instead the Commission urged “monitoring and dialogue between the private and public sectors to achieve open communication and cooperation.” The Commission’s report is the result of six months of discussion and deliberation and advocates a principle of “prudent vigilance,” where benefits and risks are assessed both before and after projects are undertaken. The report contains 18 recommendations focused on ensuring public benefits, responsible stewardship, intellectual freedom, democratic deliberation, and justice and fairness.

The United States is not alone in its effort to craft policies for the emerging field of synthetic biology. Under the auspices of the European Group on Ethics (EGE), the European Union published Opinion No. 25 – Ethics of Synthetic Biology, recommending that the governance of synthetic biology requires a multi-pronged approach that goes beyond ensuring safety to addressing ethical, legal, and political issues in the EU and worldwide.

Join us at the Woodrow Wilson International Center for Scholars on March 25th for a transatlantic discussion of the implications and governance of synthetic biology.

The guest panel includes,

– Dr. Christine Grady, Presidential Commission for the Study of Bioethical Issues

– Dr. Anita Allen, Presidential Commission for the Study of Bioethical Issues;

– Dr. Hille Haker (Germany). Richard McCormick S.J. Chair of Catholic Moral Theology, Loyola University Chicago (since 2010); Professor of Moral Theology and Social Ethics, University of Frankfurt (since 2005), Member European Group on Ethics in Science and New Technologies;

– Dr. Lino Paula, Policy Analyst, Ethics and Gender Unit, Directorate for Innovation and European Research Area, European Commission

– David Rejeski, Director, Science and Technology Innovation Program, will moderate the session

If you have the stamina and the interest, you can read the Bioethics Commission’s report and the EGE report ahead of time. On a personal note, the webcast is little early for me (6 am on the West Coast).

Thinking about nanotechnology, synthetic biology, body hacking, corporate responsibility, and zombies

In the wake of Craig Venter’s announcement (last week) of the creation of a synthetic organism (or most of one), Barack Obama, US President, has requested a special study (click here to see the letter to Dr. Amy Gutmann of the Presidential Commission for the Study of Bioethical Issues). From Andrew Maynard’s 2020 Science blog (May 26, 2010) posting,

It’s no surprise therefore that, hot on the heels of last week’s announcement, President Obama called for an urgent study to identify appropriate ethical boundaries and minimize possible risks associated with the breakthrough.

This was a bold and important move on the part of the White House. But its success will lie in ensuring the debate over risks in particular is based on sound science, and not sidetracked by groundless speculation.

The new “synthetic biology” epitomized by the Venter Institute’s work – in essence the ability to design new genetic code on computers and then “download” it into living organisms – heralds a new era of potentially transformative technology innovation. As if to underline this, the US House of Representatives Committee on Energy and Commerce will be hearing testimony from Craig Venter and others on the technology’s potential on May 27th – just days after last week’s announcement.

Andrew goes on to suggest while the ethical issues are very important that safety issues should not be shortchanged,

The ethics in particular surrounding synthetic biology are far from clear; the ability to custom-design the genetic code that resides in and defines all living organisms challenges our very notions of what is right and what is acceptable. Which is no doubt why President Obama wasted no time in charging the Presidential Commission for the Study of Bioethical Issues to look into the technology.

But in placing ethics so high up the agenda, my fear is that more immediate safety issues might end up being overlooked.

Hilary Sutcliffe in an opinion piece for ethicalcorp.com (writing to promote her organization’s [MATTER] Corporate responsibility and emerging technologies conference on June 4, 2010) suggests this,

Though currently most of the attention is focused on the scientists exploring synthetic biology in universities, this will also include the companies commercialising these technologies.

In addition, many organisations may soon have to consider if and how they use the applications developed using these new technologies in their own search for sustainability.

This is definitely an issue for the ‘Futures’ area of your CSR [corporate social responsibility] strategy, but there is a new ‘ology’ which is being used in products already on the market which may need to be moved up your priority list – ‘Nanotechnology’ or (‘nanotechnologies’ to be precise) – nano for short.

What I’m doing here is drawing together synthetic biology, nanotechnology, safety, and corporate social responsibility (CSR). What follows is an example of a company that apparently embraced CSR.

In the wake of BP’s (British Petroleum) disastrous handling of the Gulf of Mexico oil spill, the notion of corporate social responsibility and  ethics and safety issues being considered and discussed seriously seems unlikely. Sure, there are some smaller companies that act on on those values but those are the values of an owner and are not often seen in action in a larger corporate entity and certainly not in a multinational enterprise such as BP.

Spinwatch offers an intriguing perspective on corporate social responsibility in an article by Tom Borelli,

To demonstrate “responsibility”, BP spent huge sums of money on an advertising campaign promoting the notion that fossil fuel emissions of carbon dioxide is to blame for global warming and its investment in renewable energy was proof the company was seeking a future that was “beyond petroleum”.

The message was clear: oil is bad for society and BP is leading the way in alternative energy.

The BP experience shows there are serious consequences when companies demagogue against its core business. …

… “If you drew up a list of companies that Americans are most disappointed in, BP would definitely feature,” said James Hoopes, professor of business ethics at Babson College, Massachusetts.

Ironically, BP’s experience delivered the exact opposite of CSR’s promise: the company’s reputation was ruined, the company is the target of government agency investigations and Congressional hearings and its stock price lags far behind its competitors and the S&P 500.

Unfortunately, in the aftermath of BP’s failures, many critics blamed corporate greed – not CSR – as the cause. They believed the profit motive forced the company to skimp on basic pipeline maintenance and worker safety.

This conclusion is far from the truth. If profit were its only goal, BP would define its role in society as a company that safely producing oil while providing jobs and energy for the economy.

This article was written in 2006 and presents a view that would never have occurred to me. I find Borelli’s approach puzzling as it seems weirdly naïve. He seems to be unaware that large companies can have competing interests and while one part of an enterprise may be pursuing genuine corporate social responsibility another part of the enterprise may be pursuing goals that are antithetical to that purpose. Another possibility is that the company was cynically pursing corporate social responsibility in the hope that it would mitigate any backlash in the event of a major accident.

Getting back to where this started, I think that nanotechnology, synthetic biology and other emerging technologies require all of the approaches to  ethics, safety rules, corporate social responsibility, regulatory frameworks, and more that we have and can dream up including this from Andrew (from May 26, 2010 posting),

Rather, scientists, policy makers and developers urgently need to consider how synthetic biology might legitimately lead to people and the environment being endangered, and how this is best avoided.

What we need is a science-based dialogue on potential emergent risks that present new challenges, the plausibility of these risks leading to adverse impacts, and the magnitude and nature of the possible harm that might result. Only then will we be able to develop a science-based foundation on which to build a safe technology.

Synthetic biology is still too young to second-guess whether artificial microbes will present new risks; whether bio-terror or bio-error will result in harmful new pathogens; or whether blinkered short-cuts will precipitate catastrophic failure. But the sheer momentum and audacity of the technology will inevitably lead to new and unusual risks emerging.

And this is precisely why the safety dialogue needs to be grounded in science now, before it becomes entrenched in speculation.

You can read more about the science behind Venter’s work in this May 22, 2010 posting by Andrew and Gregor Wolbring provides an excellent roundup of the commentary on Venter’s latest achievement.

I agree we need the discussion but grounding the safety dialogue in science won’t serve as a prophylactic treatment for public panic. I believe that there is always an underlying anxiety about science, technology, and our place in the grand scheme of things. This anxiety is played out in various horror scenarios. I don’t think it’s an accident that interest in vampires, werewolves, and zombies is so high these days.

I had a minor epiphany—a reminder of sorts—the other night watching Zombiemania ( you can read a review of this Canadian documentary here) when I heard the pioneers,  afficionados and experts comment on the political and social implications of zombie movies (full disclosure: I’m squeamish  so I had to miss parts of the documentary).This fear of losing control over nature and destroying the natural order (reversing death as zombies and vampires do) and the worry over the consequences of augmenting ourselves (werewolves, zombies and vampires are stronger than ordinary humans who become their prey) is profound.

Venter’s feat with the bacterium may or may not set off a public panic but there is no question in my mind that at least one will occur as synthetic biology, biotechnology, and nanotechnology take us closer to real life synthetic and transgenic organisms, androids and robots (artificial humans), and cyborgs (body hackers who integrate machines into their bodies).

Let’s proceed with the discussions about safety, ethics, etc. on the assumption that there will be a public panic. Let’s make another assumption, the public panic will be set off by something unexpected. For the final assumption, a public panic may be just what we need. That final comment has been occasioned by Schumpeter’s notion of ‘creative destruction’ (Wikipedia essay here). While the notion is grounded in economics, it has a remarkably useful application as a means of understanding social behaviour.