Tag Archives: European Union

FOE, nano, and food: part three of three (final guidance)

The first part of this food and nano ‘debate’ started off with the May 22, 2014 news item on Nanowerk announcing the Friends of the Earth (FOE) report ‘Way too little: Our Government’s failure to regulate nanomaterials in food and agriculture‘. Adding energy to FOE’s volley was a Mother Jones article written by Tom Philpott which had Dr. Andrew Maynard (Director of the University of Michigan’s Risk Science Center) replying decisively in an article published both on Nanowerk and on the Conversation.

The second part of this series focused largely on a couple of  research efforts (a June 11, 2014 news item on Nanowerk highlights a Franco-German research project, SolNanoTox) and in the US (a  June 19, 2014 news item on Azonano about research from the University of Arizona focusing on nanoscale additives for dietary supplement drinks) and noted another activist group’s (As You Sow) initiative with Dunkin’ Donuts (a July 11, 2014 article by Sarah Shemkus in a sponsored section in the UK’s Guardian newspaper0).

This final part in the series highlights the US Food and Drug Administration’s (FDA) final guidance document on nanomaterials and food issued some five weeks after the FOE’s report and an essay by a Canadian academic on the topic of nano and food.

A July 9, 2014 news item on Bloomberg BNA sums up the FDA situation,

The Food and Drug Administration June 24 [2014] announced new guidance to provide greater regulatory clarity for industry on the use of nanotechnology in FDA-regulated products, including drugs, devices, cosmetics and food.

In this final guidance, the agency said that nanotechnology “can be used in a broad array of FDA-regulated products, including medical products (e.g., to increase bioavailability of a drug), foods (e.g., to improve food packaging) and cosmetics (e.g., to affect the look and feel of cosmetics).”

Also on the agency website, the FDA said it “does not make a categorical judgment that nanotechnology is inherently safe or harmful. We intend our regulatory approach to be adaptive and flexible and to take into consideration the specific characteristics and the effects of nanomaterials in the particular biological context of each product and its intended use.”

This July 18, 2014 posting by Jeannie Perron, Miriam Guggenheimm and Allan J. Topol of Covington & Burling LLP on the National Law Review blog provides a better summary and additional insight,

On June 24, 2014, the Food and Drug Administration (FDA) released three final guidance documents addressing the agency’s general approach to nanotechnology and its use by the food and cosmetics industries, as well as a draft guidance on the use of nanomaterials in food for animals.

These guidance documents reflect FDA’s understanding of nanomaterials as an emerging technology of major importance with the potential to be used in novel ways across the entire spectrum of FDA- regulated products.

The documents suggest that FDA plans to approach nanotechnology-related issues cautiously, through an evolving regulatory structure that adapts to manufacturers’ changing uses of this technology. FDA has not established regulatory definitions of “nanotechnology,” “nanomaterial,” “nanoscale,” or other related terms. …

The notion of an “evolving regulatory structure” is very appealing in situations with emerging technologies with high levels of uncertainty. It’s surprising that more of the activist groups don’t see an opportunity with this approach. An organization that hasn’t devised a rigid regulatory structure has no investment in defending it. Activist groups can make the same arguments, albeit from a different perspective, about an emerging technology as the companies do and, theoretically, the FDA has become a neutral party with the power to require a company to prove its products’ safety.

You can find the FDA final guidance and other relevant documents here.

Finally, Sylvain Charlebois, associate dean at the College of Business and Economics at the University of Guelph, offers a rather provocative (and not from the perspective you might expect given his credentials) opinion on the topic of ‘nano and food’  in a July 18, 2014 article for TheRecord.com,

Nanotechnology and nanoparticles have been around for quite some time. In fact, consumers have been eating nanoparticles for years without being aware they are in their food.

Some varieties of Dentyne gum and Jell-O, M&M’s, Betty Crocker whipped cream frosting, Kool-Aid, Pop-Tarts, you name it, contain them. Even food packaging, such as plastic containers and beer bottles, have nanoparticles.

While consumers and interest groups alike are registering their concerns about genetically modified organisms, the growing role of nanotechnology in food and agriculture is impressive. When considering the socio-economic and ethical implications of nanotechnology, comparisons to the genetic modification debate are unavoidable.

The big picture is this. For years, capitalism has demonstrated its ability to create wealth while relying on consumers’ willingness to intrinsically trust what is being offered to them. With trans fats, genetically modified organisms and now nanoparticles, our food industry is literally playing with fire. [emphasis mine]

Most consumers may not have the knowledge to fully comprehend the essence of what nanotechnology is or what it can do. However, in an era where data access in almost constant real-time is king, the industry should at least give public education a shot.

In the end and despite their tactics, the activist groups do have a point. The food and agricultural industries need to be more frank about what they’re doing with our food. As Charlebois notes, they might want to invest in some public education, perhaps taking a leaf out of the Irish Food Board’s book and presenting the public with information both flattering and nonflattering about their efforts with our food.

Part one (an FOE report is published)

Part two (the problem with research)

ETA Aug. 22, 2014: Coincidentally, Michael Berger has written an Aug. 22, 2014 Nanowerk Spotlight article titled: How to identify nanomaterials in food.

ETA Sept. 1, 2014: Even more coincidentally, Michael Berger has written a 2nd Nanowerk Spotlight (dated Aug. 25, 2014) on the food and nano topic titled, ‘Nanotechnology in Agriculture’ based on the European Union’s Joint Research Centre’s ‘Workshop on Nanotechnology for the agricultural sector: from research to the field”, held on November 21-22 2013′.

Nanotechnology announcements: a new book and a new report

Two quick announcements. The first concerns a forthcoming book to be published in March 2015. Titled, Nanotechnology Law & Guidelines: A Practical Guide for the Nanotechnology Industries in Europe, the book is featured in an Aug. 15, 2014 news item on Nanowerk,

The book is a concise guideline to different issues of nanotechnology in the European Legislation.- It offers an extensive review of all European Patent Office (EPO) cases on nanotechnological inventions. The challenge for new nanotechnology patents is to determine how patent criteria could be met in a patent application. This book shows how to identify the approach and the ways to cope with this challenge.

More about the book and purchasing options can be found on the publisher’s (Springer) Nanotechnology Law & Guidelines webpage,

[Table of Contents:]

Introduction.- Part I Nanotechnology from Research to Manufacture: The legal framework of the nanotechnology research and development.- Structuring the research and development of nanotechnologies.- Manufacturing nanotechnologies.-

Part II Protecting Nanotechnological Inventions: A Matter of Strategy : Trade Secrets vs. Patents and Utility Models.- Trade Secrets and Nanotechnologies.- International, European or National Patent for Nanotechnological Inventions ?- Nanotechnology Patents and Novelty.- Nanotechnology Patents and the Inventive Step.- Nanotechnology Patents and the Industrial Application.- Drafting Nanotechnology Patents Applications.- Utility Models as Alternative Means for Protecting Nanotechnological Inventions.- Copyright, Databases and Designs in the Nano Industry.- Managing and Transferring Nanotechnology Intellectual Property.-

Part III Nanotechnologies Investment and Finance.- Corporate Law and the nanotechnology industry.- Tax Law for the nanotechnology industry.- Investing and financing a nanotechnological project.-

Part IV Marketing Nanotechnologies.- Authorization and Registration Systems.- Product Safety and Liability.- Advertising “Nano”.- “Nano” Trademarks.- Importing and Exporting Nanotechnologies. Annexes: Analytic Table of EPO Cases on Nanotechnologies.- Analytic Table of National Cases on Nanotechnologies.- Analytic Table of OHIM Cases on Nano Trademarks.

I was able to find some information about the author, Anthony Bochon on his University of Stanford (where he is a Fellow) biography page,

Anthony Bochon is an associate in a Brussels-based law firm, an associate lecturer in EU Law & Trade Law/IP Law at the Université libre de Bruxelles and a lecturer in EU Law at the Brussels Business Institute. He is an associate researcher at the unit of Economic Law of the Faculty of Law of the Université libre de Bruxelles. Anthony graduated magna cum laude from the Université libre de Bruxelles in 2010 and received a year later an LL.M. from the University of Cambridge where he studied EU Law, WTO Law and IP Law. He has published on topics such as biotechnological patents, EU trade law and antitrust law since 2008. Anthony is also the author of the first European website devoted to the emerging legal area of nanotechnology law, a field about which he writes frequently and speaks regularly at international conferences. His legal practice is mainly focussed on EU Law, competition law and regulatory issues and he has a strong and relevant experience in IP/IT Law. He devotes his current research to EU and U.S. trade secrets law. Anthony has been a TTLF Fellow since June 2013.

On a completely other note and in the more recent future, there’s a report about the US National Nanotechnology Initiative to be released Aug. 28, 2014 as per David Bruggeman’s Aug. 14. 2014 posting on his Pasco Phronesis blog, (Note: A link has been removed)

On August 28 PCAST [President's Council of Advisors on Science and Technology] will hold a public conference call in connection with the release of two new reports.  One will be a review of the National Nanotechnology Initiative (periodically required by law) … .

The call runs from 11:45 a.m. to 12:30 p.m. Eastern.  Registration is required, and closes at noon Eastern on the 26th..

That’s it for nanotechnology announcements today (Aug. 15, 2014).

Graphene and an artificial retina

A graphene-based artificial retina project has managed to intermingle the European Union’s two major FET (Future and Emerging Technologies) funding projects, 1B Euros each to be disbursed over 10 years, the Graphene Flagship and the Human Brain Project. From an Aug. 7, 2014 Technische Universitaet Muenchen (TUM) news release (also on EurekAlert),

Because of its unusual properties, graphene holds great potential for applications, especially in the field of medical technology. A team of researchers led by Dr. Jose A. Garrido at the Walter Schottky Institut of the TUM is taking advantage of these properties. In collaboration with partners from the Institut de la Vision of the Université Pierre et Marie Curie in Paris and the French company Pixium Vision, the physicists are developing key components of an artificial retina made of graphene.

Retina implants can serve as optical prostheses for blind people whose optical nerves are still intact. The implants convert incident light into electrical impulses that are transmitted to the brain via the optical nerve. There, the information is transformed into images. Although various approaches for implants exist today, the devices are often rejected by the body and the signals transmitted to the brain are generally not optimal.

Already funded by the Human Brain Project as part of the Neurobotics effort, Garrido and his colleagues will now also receive funding from the Graphene Flagship. As of July 2014, the Graphene Flagship has added 86 new partners including TUM according to the news release.

Here’s an image of an ‘invisible’ graphene sensor (a precursor to developing an artificial retina),

Graphene electronics can be prepared on flexible substrates. Only the gold metal leads are visible in the transparent graphene sensor. (Photo: Natalia Hutanu / TUM)

Graphene electronics can be prepared on flexible substrates. Only the gold metal leads are visible in the transparent graphene sensor. (Photo: Natalia Hutanu / TUM)

Artificial retinas were first featured on this blog in an Aug. 18, 2011 posting about video game Deus Ex: Human Revolution which features a human character with artificial sight. The post includes links to a video of a scientist describing an artificial retina trial with 30 people and an Israeli start-up company, ‘Nano Retina’, along with information about ‘Eyeborg’, a Canadian filmmaker who on losing an eye in an accident had a camera implanted in the previously occupied eye socket.

More recently, a Feb. 15, 2013 posting featured news about the US Food and Drug Administration’s decision to allow sale of the first commercial artificial retinas in the US in the context of news about a neuroprosthetic implant in a rat which allowed it to see in the infrared range, normally an impossible feat.

A new science advice network launched in the European Union

On June 23, 2014, the Euroscience Open Forum (in Copenhagen) saw the launch of a new pan-European science advice network. From a June 23, 2014 account by James Wilsdon (more about him in a moment) for the Guardian,

This afternoon, at the Euroscience Open Forum in Copenhagen, a new pan-EU network of government science advisers will hold its first meeting. Senior scientific representatives from twelve member states, including the UK’s Sir Mark Walport, will discuss how to strengthen the use of evidence in EU policymaking and improve coordination between national systems, particularly during emergencies, such as when clouds of volcanic ash from Iceland grounded flights across Europe in 2011.

Today’s [June 24, 2014] meeting is indeed the product of dedication: a painstaking 18-month effort by Glover [Anne Glover, chief scientific adviser to the outgoing President of the European commission, José Manuel Barroso] to persuade member states of the benefits of such a network. One of the challenges she has faced is the sheer diversity of models for scientific advice across Europe: while the UK, Ireland and (until recently) Czech Republic have a government chief scientist, several countries – including Portugal, Denmark, Finland and Greece – prefer to use an advisory committee. In another handful of member states, including Italy, Spain and Sweden, science advice is provided by civil servants. Others, such as Austria, Hungary and the Netherlands, look to the president of the national academy of science to perform the role. The rest, including France and Germany, use a hybrid of these models, or none at all.

The new network intends to respect this diversity, and not advance one approach as preferable to the others. (Indeed, it could be particularly counter-productive to promote the UK model in the current EU climate.)

Interestingly, Wilsdon goes on to note that a Chief Science Adviser for the European Union is a relatively new position having been in existence for two years (as of 2014) and there is no certainty that the new president (not yet confirmed) of the European Union will continue with the practice.

Wilsdon also mentions an international science advice conference to take place in New Zealand in August 2014. You can find out more about it in my April 8, 2014 posting where I noted that Wilsdon is one of the speakers or you can go directly to the conference website,  2014 Science Advice to Governments; a global conference for leading practitioners.

Getting back to James Wilsdon, this is the description they have for him at the Guardian,

James Wilsdon is professor of science and democracy at SPRU (Science and Technology Policy Research), University of Sussex. From 2008 to 2011 he was director of science policy at the Royal Society.

He’s also known in Canada as a member of the Council of Canadian Academies Expert Panel on The State of Canada’s Science Culture as per my Feb. 22, 2013 posting. The report is due this year and I expect it will be delivered in the Fall, just in time for the Canadian Science Policy Conference, Oct. 15 -17, 2014.

Finally, you might want to check out Wilsdon’s Twitter feed (https://twitter.com/jameswilsdon) for the latest on European science policy endeavours.

Tackling antibiotic resistance with inhalable nanotherapeutics

A June 25, 2014 news item on Nanowerk highlights PneumoNP a new European Union ‘theragnostic’ research project (Note: Links have been removed) ,

A new research project (PneumoNP) is aimed at tackling antibiotic resistance in respiratory tract infections via the use of inhalable nanotherapeutic compounds. Funded under the FP7 programme by the European Commission, the 4-year long PneumoNP project brings together top research institutes, universities, clinicians and enterprises from 6 EU member states. This novel collaboration will contribute to answer the call of the World Health Organization (WHO), who recently released an alarming report on the global threat of antibiotic resistance.

The project will develop an innovative solution to antibiotic resistance by coupling new antibiotics to inhalable carrier molecules, resulting in more efficient targeting of antibiotics to infection-causing bacteria present in the respiratory tract.

An April 30, 2014 WHO news release details the level of antibiotic resistance,

New WHO report provides the most comprehensive picture of antibiotic resistance to date, with data from 114 countries

A new report by WHO–its first to look at antimicrobial resistance, including antibiotic resistance, globally–reveals that this serious threat is no longer a prediction for the future, it is happening right now in every region of the world and has the potential to affect anyone, of any age, in any country. Antibiotic resistance–when bacteria change so antibiotics no longer work in people who need them to treat infections–is now a major threat to public health.

The report, “Antimicrobial resistance: global report on surveillance”, notes that resistance is occurring across many different infectious agents but the report focuses on antibiotic resistance in seven different bacteria responsible for common, serious diseases such as bloodstream infections (sepsis), diarrhoea, pneumonia, urinary tract infections and gonorrhoea. The results are cause for high concern, documenting resistance to antibiotics, especially “last resort” antibiotics, in all regions of the world.

Key findings from the report include:

Resistance to the treatment of last resort for life-threatening infections caused by a common intestinal bacteria, Klebsiella pneumoniae–carbapenem antibiotics–has spread to all regions of the world. K. pneumoniae is a major cause of hospital-acquired infections such as pneumonia, bloodstream infections, infections in newborns and intensive-care unit patients. In some countries, because of resistance, carbapenem antibiotics would not work in more than half of people treated for K. pneumoniae infections.

Resistance to one of the most widely used antibacterial medicines for the treatment of urinary tract infections caused by E. coli–fluoroquinolones–is very widespread. In the 1980s, when these drugs were first introduced, resistance was virtually zero. Today, there are countries in many parts of the world where this treatment is now ineffective in more than half of patients.

Treatment failure to the last resort of treatment for gonorrhoea–third generation cephalosporins–has been confirmed in Austria, Australia, Canada, France, Japan, Norway, Slovenia, South Africa, Sweden and the United Kingdom. More than 1 million people are infected with gonorrhoea around the world every day.

Antibiotic resistance causes people to be sick for longer and increases the risk of death. For example, people with MRSA (methicillin-resistant Staphylococcus aureus) are estimated to be 64% more likely to die than people with a non-resistant form of the infection. Resistance also increases the cost of health care with lengthier stays in hospital and more intensive care required.

The suggestions offered for tackling antibiotic resistance will be familiar to many (from the news release),

 People can help tackle resistance by:

  •  using antibiotics only when prescribed by a doctor;
  •  completing the full prescription, even if they feel better;
  •  never sharing antibiotics with others or using leftover prescriptions.

A June 25, 2014 PneumoNP press release describes both the European Union’s response to massive, global antibiotic resistance and the specifics of the new programme (PneumoNP),

In this context, the European Commission launched 15 projects under its7 Framework Programme to fight antimicrobial resistance, with PneumoNP being one of these projects. Started in 2014, the aim of this 4-year project is to develop novel therapeutic and diagnostic tools for bacterial respiratory tract infections, focusing on infections caused by Klebsiella pneumoniae. PneumoNP will pioneer the development of a therapeutic treatment based on a combination of nanocarriers coupled to new antibiotics. This novel combination is expected to enhance the efficiency of antibiotic delivery to the patient. The project is expected to generate:

  • a new inhalable drug system made of a new nanotherapeutic system (an antimicrobial peptide or an active pharmaceutical ingredient and a nanocarrier);
  • a new aerosol technology that will allow direct access to the main focus of infection;
  • an innovative efficiency-efficacy test to follow-up the treatment;
  • a new diagnostic test for faster detection and identification of antibiotic resistance in bacteria causing respiratory infections.

European funding allows PneumoNP to combine scientific research capacities with the expert healthcare capabilities of European enterprises. The result is an interdisciplinary collaboration between 11 teams from 6 EU member states – Spain, Italy, France, Germany, The Netherlands, and Denmark. Each partner has a distinct yet collaborative role according to its own expertise involving a total of 8 work packages.

There is a figure in the news release which illustrates the PneumoNP concept,

Figure 2: PneumoNP concept

Figure 2: PneumoNP concept

There is more information about PneumoNP on its website. I wasn’t able to glean much in the way of technical details (are they using silver nanoparticles, what kind of nanocarriers are they considering, etc.) but I imagine those will emerge with time. There is this from the homepage which features the relatively new (to me) word, theragnostic,

Development of a theragnostic system for the treatment of lung Gram-negative bacterial infections

I assume they are conflating two processes, therapeutics and diagnostics for theragnostics.

Graphene Flagship experiences an upsurge in new partners

Almost doubling in size, from 78 partners to 140 partners, the European Union’s Graphene Flagship is doing nicely. From a June 23, 2014 news item on Nanowerk (Note: A link has been removed),

To coincide with Graphene Week 2014, the Graphene Flagship announced that today one of the largest-ever European research initiatives is doubling in size. 66 new partners are being invited to join the consortium following the results of a €9 million competitive call. [emphasis mine]

While most partners are universities and research institutes, the share of companies, mainly SMEs [small to medium enterprises], involved is increasing. This shows the growing interest of economic actors in graphene. The partnership now includes more than 140 organisations from 23 countries. [emphasis mine] It is fully set to take ‘wonder material’ graphene and related layered materials from academic laboratories to everyday use.

A June 23, 2014 Graphene Flagship news release (also on EurekAlert), which originated the news item, provides more detail about the partners and the call which attracted them,

The 66 new partners come from 19 countries, six of which are new to the consortium: Belarus, Bulgaria, the Czech Republic, Estonia, Hungary and Israel.

With its 16 new partners, Italy now has the highest number of partners in the Graphene Flagship alongside Germany (with 23 each), followed by Spain (18), UK (17) and France (13).

The incoming 66 partners will add new capabilities to the scientific and technological scope of the flagship. Over one third of new partners are companies, mainly SMEs, showing the growing interest of economic actors in graphene. In the initial consortium this ratio was 20%.

Big Interest in Joining the Initiative

The €9 million competitive call of the €54 million ramp-up phase (2014-2015) attracted a total of 218 proposals, representing 738 organisations from 37 countries. The proposals received were evaluated on the basis of their scientific and technological expertise, implementation and impact (further information on the call) and ranked by an international panel of leading experts, mostly eminent professors from all over the world. 21 proposals were selected for funding.

Prof. Jari Kinaret, Professor of Physics at the Chalmers University of Technology, Sweden, and Director of the Graphene Flagship, said: “The response was overwhelming, which is an indicator of the recognition for and trust in the flagship effort throughout Europe. Competition has been extremely tough. I am grateful for the engagement by the applicants and our nearly 60 independent expert reviewers who helped us through this process. I am impressed by the high quality of the proposals we received and looking forward to working with all the new partners to realise the goals of the Graphene Flagship.”

Europe in the Driving Seat

Graphene was made and tested in Europe, leading to the 2010 Nobel Prize in Physics for Andre Geim and Konstantin Novoselov from the University of Manchester.

With the €1 billion Graphene Flagship, Europe will be able to turn cutting-edge scientific research into marketable products. This major initiative places Europe in the driving seat for the global race to develop graphene technologies.

Prof. Andrea Ferrari, Director of the Cambridge Graphene Centre and Chair of the Executive Board of the Graphene Flagship commented today’s announcement on new partners: “This adds strength to our unprecedented effort to take graphene and related materials from the lab to the factory floor, so that the world-leading position of Europe in graphene science can be translated into technology, creating a new graphene-based industry, with benefits for Europe in terms of job creation and competitiveness”.

For anyone unfamiliar with the Graphene Flagship, the news release provides this backgrounder,

The Graphene Flagship @GrapheneCA represents a European investment of €1 billion over the next 10 years. It is part of the Future and Emerging Technologies (FET) Flagships @FETFlagships announced by the European Commission in January 2013 (press release). The goal of the FET Flagships programme is to encourage visionary research with the potential to deliver breakthroughs and major benefits for European society and industry. FET Flagships are highly ambitious initiatives involving close collaboration with national and regional funding agencies, industry and partners from outside the European Union.

Research in the next generation of technologies is key for Europe’s competitiveness. This is why €2.7 billion will be invested in Future and Emerging Technologies (FET) under the new research programme Horizon 2020 #H2020 (2014-2020). This represents a nearly threefold increase in budget compared to the previous research programme, FP7. FET actions are part of the Excellent science pillar of Horizon 2020.

You can find a full press kit for this announcement here, it includes,

I have long wondered how Sweden became the lead for the European Union effort. It seemed odd given that much of the initial work was done at the University of Manchester and the UK has not been shy about its ambition to lead the graphene effort internationally.

DARPA (US Defense Advanced Research Projects Agency) awards funds for implantable neural interface

I’m not a huge fan of neural implantable devices (at least not the ones that facilitate phone calls directly to and from the brain as per my April 30, 2010 posting; scroll down about 40% of the way) but they are important from a therapeutic perspective. On that  note, the Lawrence Livermore National Laboratory (LLNL) has received an award of $5.6M from the US Defense Advanced Research Projects Agency (DARPA) to advance their work on neural implantable interfaces. From a June 13, 2014 news item on Azonano,

Lawrence Livermore National Laboratory recently received $5.6 million from the Department of Defense’s Defense Advanced Research Projects Agency (DARPA) to develop an implantable neural interface with the ability to record and stimulate neurons within the brain for treating neuropsychiatric disorders.

The technology will help doctors to better understand and treat post-traumatic stress disorder (PTSD), traumatic brain injury (TBI), chronic pain and other conditions.

Several years ago, researchers at Lawrence Livermore in conjunction with Second Sight Medical Products developed the world’s first neural interface (an artificial retina) that was successfully implanted into blind patients to help partially restore their vision. The new neural device is based on similar technology used to create the artificial retina.

An LLNL June 11, 2014 news release, which originated the news item, provides some fascinating insight into the interrelations between various US programs focused on the brain and neural implants,

“DARPA is an organization that advances technology by leaps and bounds,” said LLNL’s project leader Satinderpall Pannu, director of the Lab’s Center for Micro- and Nanotechnology and Center for Bioengineering, a facility dedicated to fabricating biocompatible neural interfaces. “This DARPA program will allow us to develop a revolutionary device to help patients suffering from neuropsychiatric disorders and other neural conditions.”

The project is part of DARPA’s SUBNETS (Systems-Based Neurotechnology for Emerging Therapies) program. The agency is launching new programs to support President Obama’s BRAIN (Brain Research through Advancing Innovative Neurotechnologies) Initiative, a new research effort aimed to revolutionize our understanding of the human mind and uncover ways to treat, prevent and cure brain disorders.

LLNL and Medtronic are collaborating with UCSF, UC Berkeley, Cornell University, New York University, PositScience Inc. and Cortera Neurotechnologies on the DARPA SUBNETS project. Some collaborators will be developing the electronic components of the device, while others will be validating and characterizing it.

As part of its collaboration with LLNL, Medtronic will consult on the development of new technologies and provide its investigational Activa PC+S deep brain stimulation (DBS) system, which is the first to enable the sensing and recording of brain signals while simultaneously providing targeted DBS. This system has recently been made available to leading researchers for early-stage research and could lead to a better understanding of how various devastating neurological conditions develop and progress. The knowledge gained as part of this collaboration could lead to the next generation of advanced systems for treating neural disease.

As for what LLNL will contribute (from the news release),

The LLNL Neural Technology group will develop an implantable neural device with hundreds of electrodes by leveraging their thin-film neural interface technology, a more than tenfold increase over current Deep Brain Stimulation (DBS) devices. The electrodes will be integrated with electronics using advanced LLNL integration and 3D packaging technologies. The goal is to seal the electronic components in miniaturized, self-contained, wireless neural hardware. The microelectrodes that are the heart of this device are embedded in a biocompatible, flexible polymer.

Surgically implanted into the brain, the neural device is designed to help researchers understand the underlying dynamics of neuropsychiatric disorders and re-train neural networks to unlearn these disorders and restore proper function. This will enable the device to be eventually removed from the patient instead of being dependent on it.

This image from LLNL illustrates their next generation neural implant,

This rendering shows the next generation neural device capable of recording and stimulating the human central nervous system being developed at Lawrence Livermore National Laboratory. The implantable neural interface will record from and stimulate neurons within the brain for treating neuropsychiatric disorders.

This rendering shows the next generation neural device capable of recording and stimulating the human central nervous system being developed at Lawrence Livermore National Laboratory. The implantable neural interface will record from and stimulate neurons within the brain for treating neuropsychiatric disorders.

i expect there will be many more ‘brain’ projects to come with the advent of the US BRAIN initiative (funds of $100M in 2014 and $200M in 2015) and the European Union’s Human Brain Project (1B Euros to be spent on research over a 10 year period).

European NanoSafety Cluster issues 2014 compendium of projects

A June 16, 2014 news item on Nanowerk profiles a recently published compendium of projects from the European NanoSafety Cluster (Note:  A link has been removed),

The EU NanoSafety Cluster is an initiative to maximise the synergies between the existing FP6 and FP7 projects addressing all aspects of nanosafety including toxicology, ecotoxicology, exposure assessment, mechanisms of interaction, risk assessment and standardisation.

About fifty projects are either completed or running and represent a total RTD investment of €137M, from the NMP and other programmes, under FP6 (13 projects, €31M) and FP7 (34 projects, €106M). [FP 6 and FP 7 are the Sixth Framework Programme and /seventh Framework, respectively; European Union-wide science funding programmes,the Horizon 2020 funding project supersedes FP 7]

These projects together with a significant number of projects supported by government resources in the EU member states and the FP7 associated states, and other projects addressing safety as side objective, represent the valuable efforts of the scientific and industrial research community for progress.

Here’s a description of the compendium from p. 5 of the PDF version of the Compendium of Projects in the European NanoSafety Cluster 2014 Edition,

This is the fourth edition of the Nanosafety Cluster compendium. It documents the status of important EU-funded projects on nanomaterial toxicity and exposure monitoring, integrated risk management, research infrastructure and coordination and support activities as well as regulatory-focussed research on nanosafety.

The compendium is not intended to be a guidance document for human health and environmental safety management of nanotechnologies, as such guidance documents already exist and are widely available.

Neither is the compendium intended to be a medium for the publication of scientific data and research results, as this task is covered by scientific conferences and the peer reviewed press.

The compendium aims to showcase the exciting and important European-wide collaborative research being undertaken to ensure the safe implementation of nanotechnologies, and to act as a one-stop-shop for all stakeholders interested in acquiring an overview of current research activities.This years’ compendium contains information on 30 running (or very recently finished) projects, including new entries describing the projects resulting from the last call of FP7, including eNanoMapper, NanoDefine and FutureNanoNeeds. …

What a good idea! I wonder if there’s an equivalent for the international scene?

The long road to commercializing nanotechnology-enabled products in Europe: the IP Nanoker Project

IP Nanoker, a nanotechnology commercialization project, was a European Union 7th Framework Programme-funded project from 2005 – 2009. So, how does IP Nanoker end up in a June 11, 2014 news item on Nanowerk? The road to commercialization is not only long, it is also winding as this news item points out in an illuminating fashion,

Superior hip, knee and dental implants, a new generation of transparent airplane windows and more durable coatings for automotive engines are just some of the products made possible – and cheaper – by the EU-funded IP NANOKER project. Many of these materials are now heading to market, boosting Europe’s competitiveness and creating jobs.

Launched back in 2005, the four-year project set out to build upon Europe’s expertise and knowledge in nanoceramics and nanocomposites.

Nanocomposites entirely made up of ceramic and metallic nanoscale particles – particles that are usually between 1 and 100 nanometres in size – are a broad new class of engineered materials that combine excellent mechanical performance with critical functionalities such as transparency, biocompatibility, and wear resistance.

These materials offer improvements over conventional materials. For some advanced optical applications – such as windows for aircraft – glass is too brittle. Nanoceramics offer both transparency and toughness, and thanks to IP NANOKER, can now be manufactured at a significantly reduced cost.
Indeed, one of the most important outcomes of IP NANOKER has been the development of new dense nanostructured materials as hard as diamond. The fabrication of these super hard materials require extreme conditions of high temperature and pressure, which is why IP NANOKER project partners developed a customised Spark Plasma Sintering machine.

“This new equipment is the largest in the world (12 metres high, 6 metres wide and 5 metres deep), and features a pressing force up to 400 tonnes and will allow the fabrication of near-net shaped products up to 400mm in diameter”, explains project coordinator Ramon Torrecillas from Spain’s Council for Scientific Research (CSIC).

This is obviously a distilled and simplified version of what occurred but, first, they developed the technology, then they developed a machine that would allow them to manufacture their nanotechnology-enabled materials. It’s unclear as to whether or not the machine was developed during the project years of 2005 – 2009 but the project can trace its impact in other ways (from the March 27, 2014 European Union news release), which originated the news item,

The project promises to have a long-lasting impact. In 2013, some former IP NANOKER partners launched a public-private initiative with the objective of bridging the gap between research and industry and boosting the industrial application of Spark Plasma Sintering in the development of nanostructured multifunctional materials.

Potential new nanomaterial-based products hitting the market soon include ultra-hard cutting and mining tools, tough ceramic armour and mirrors for space telescopes.

“Another positive result arising from IP NANOKER was the launch in 2011 of Nanoker Research, a Spanish spin-off company,” says Prof Torrecillas. “This company was formed by researchers from two of the project partners, CSIC and Cerámica Industrial Montgatina, and currently employs 19 people.”
IP NANOKER was also instrumental in creating the Nanomaterials and Nanotechnology Research Centre (CINN) in Spain, a joint initiative of the CSIC, the University of Oviedo and the Regional Government of Asturias.

As a result of its economic and societal impact, IP NANOKER was selected as project finalist in two European project competitions: Industrial Technologies 2012 and Euronanoforum 2013.
Some three years after its completion, the positive effects of the project are still being felt. Prof Torrecillas is delighted with the results, and argues that only a pan-European project could have achieved such ambitious goals.

“As an industry-led project, IP NANOKER provided a suitable framework for research on top-end applications that require not only costly technologies but also very specific know-how,” he says. “Thus, bringing together the best European experts in materials science, chemistry, physics and engineering and focusing the work of these multidisciplinary teams on specific applications, was the only way to face the project challenges.”

The technology for producing these materials/coatings has yet to be truly commercialized. They face a somewhat tumultuous future as they develop markets for their products and build up manufacturing capabilities almost simultaneously.

They will definitely use ‘push’ strategies, i.e., try to convince car manufacturers, hip implant manufacturers,etc. their materials are a necessity for improved sales of the product (car, hip implant, etc.).

They could also use ‘pull’ strategies with retailers (convince them their sales will improve) and or the general public (this will make your life easier, better, more exciting, safer, etc.). The hope with a pull strategy is that retailers and/or the general public will start demanding these improved products (car, hip implants, etc.) and the manufacturers will be clamouring for your nanotechnology-enabled materials.

Of course, if you manage to create a big demand, then you have the problem of delivering your product, which brings this post back to manufacturing and having to address capacity issues. You will also have competitors, which likely means the technology and/or  the buyers’ ideas about the technology, will evolve, at least in the short term, while the market (as they say) shakes out.

If you want to read more about some of the issues associated with commercializing nanotechnology-enabled products, there’s this Feb. 10, 2014 post titled, ‘Valley of Death’, ‘Manufacturing Middle’, and other concerns in new government report about the future of nanomanufacturing in the US‘ about a report from the US Government Accountability Office (GAO) and a May 23, 2014 post titled, ‘Competition, collaboration, and a smaller budget: the US nano community responds‘, which touches on some commercialization issues, albeit, within a very different context.

One final note, it’s interesting to note that the March 2014 news release about IP Nanoker is on a Horizon 2020 (this replaces the European Union’s 7th Framework Programme) news website. I expect officials want to emphasize the reach and impact these funded projects have over time.

Flatland, an 1884 novella or optics with graphene?

Flatland is both novella and a story about optics with graphene. First, here’s more about the novella from its Wikipedia entry (Note: Links have been removed),

Flatland: A Romance of Many Dimensions is an 1884 satirical novella by the English schoolmaster Edwin Abbott Abbott. Writing pseudonymously as “A Square”,[1] the book used the fictional two-dimensional world of Flatland to offer pointed observations on the social hierarchy of Victorian culture. However, the novella’s more enduring contribution is its examination of dimensions.[2]

For the uninitiated, graphene is two-dimensional and, apparently, this characteristic could prove helpful for new types of optics (from a May 23, 2014 news item on Nanowerk; Note:  Links have been removed),

Researchers from CIC nanoGUNE, in collaboration with ICFO  [Institute of Photonic Sciences] and Graphenea, introduce a platform technology based on optical antennas for trapping and controlling light with the one-atom-thick material graphene. The experiments show that the dramatically squeezed graphene-guided light can be focused and bent, following the fundamental principles of conventional optics. The work, published yesterday in Science (“Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns”), opens new opportunities for smaller and faster photonic devices and circuits.

A May 23, 2014 CIC nanoGUNE news release (also on EurekAlert), which originated the news item,

Optical circuits and devices could make signal processing and computing much faster. “However, although light is very fast it needs too much space”, explains Rainer Hillenbrand, Ikerbasque Professor at nanoGUNE and UPV/EHU. In fact, propagating light needs at least the space of half its wavelength, which is much larger than state-of-the-art electronic building blocks in our computers. For that reason, a quest for squeezing light to propagate it through nanoscale materials arises.

The wonder material graphene, a single layer of carbon atoms with extraordinary properties, has been proposed as one solution. The wavelength of light captured by a graphene layer can be strongly shortened by a factor of 10 to 100 compared to light propagating in free space. As a consequence, this light propagating along the graphene layer – called graphene plasmon – requires much less space.

However, transforming light efficiently into graphene plasmons and manipulating them with a compact device has been a major challenge. A team of researchers from nanoGUNE, ICFO and Graphenea – members of the EU Graphene Flagship – now demonstrates that the antenna concept of radio wave technology could be a promising solution. The team shows that a nanoscale metal rod on graphene (acting as an antenna for light) can capture infrared light and transform it into graphene plasmons, analogous to a radio antenna converting radio waves into electromagnetic waves in a metal cable.

“We introduce a versatile platform technology based on resonant optical antennas for launching and controlling of propagating graphene plasmons, which represents an essential step for the development of graphene plasmonic circuits”, says team leader Rainer Hillenbrand. Pablo Alonso-González, who performed the experiments at nanoGUNE, highlights some of the advantages offered by the antenna device: “the excitation of graphene plasmons is purely optical, the device is compact and the phase and wavefronts of the graphene plasmons can be directly controlled by geometrically tailoring the antennas. This is essential to develop applications based on focusing and guiding of light”.

The news release describes few of the more technical aspects of the research,

The research team also performed theoretical studies. Alexey Nikitin, Ikerbasque Research Fellow at nanoGUNE, performed the calculations and explains that “according to theory, the operation of our device is very efficient, and all the future technological applications will essentially depend upon fabrication limitations and quality of graphene”.

Based on Nikitin´s calculations, nanoGUNE’s Nanodevices group fabricated gold nanoantennas on graphene provided by Graphenea. The Nanooptics group then used the Neaspec near-field microscope to image how infrared graphene plasmons are launched and propagate along the graphene layer. In the images, the researchers saw that, indeed, waves on graphene propagate away from the antenna, like waves on a water surface when a stone is thrown in.

In order to test whether the two-dimensional propagation of light waves along a one-atom-thick carbon layer follow the laws of conventional optics, the researchers tried to focus and refract the waves. For the focusing experiment, they curved the antenna. The images then showed that the graphene plasmons focus away from the antenna, similar to the light beam that is concentrated with a lens or concave mirror.

The team also observed that graphene plasmons refract (bend) when they pass through a prism-shaped graphene bilayer, analogous to the bending of a light beam passing through a glass prism. “The big difference is that the graphene prism is only two atoms thick. It is the thinnest refracting optical prism ever”, says Rainer Hillenbrand. Intriguingly, the graphene plasmons are bent because the conductivity in the two-atom-thick prism is larger than in the surrounding one-atom-thick layer. In the future, such conductivity changes in graphene could be also generated by simple electronic means, allowing for highly efficient electric control of refraction, among others for steering applications.

Altogether, the experiments show that the fundamental and most important principles of conventional optics also apply for graphene plasmons, in other words, squeezed light propagating along a one-atom-thick layer of carbon atoms. Future developments based on these results could lead to extremely miniaturized optical circuits and devices that could be useful for sensing and computing, among other applications.

Here’s a link to and a citation for the paper,

Controlling graphene plasmons with resonant metal antennas and spatial conductivity patterns by P. Alonso-González, A. Y. Nikitin, F. Golmar, A. Centeno, A. Pesquera, S. Vélez, J. Chen, G. Navickaite, F. Koppens, A. Zurutuza, F. Casanova1, L. E. Hueso1, and R. Hillenbrand. Science (2014) DOI: 10.1126/science.1253202 Published Online May 22 2014

This paper is behind a paywall.

You can find our more about the Institute of Photonic Sciences (ICFO) here and Graphenea, a graphene producer, here and CIC nanoGUNE here.