Tag Archives: Focus Graphite

Making graphite from coal and a few graphite facts

Canada is the 10th largest (1.2%) producer of graphite in the world with China leading the way in the top spot at 68.1%. That’s right, 1.2% can get you into the top 10.

If you’re curious about which countries fill out the other eight spots, The National Research Council of Canada has a handy webpage titled, Graphite Facts,

Graphite is a non-metallic mineral that has properties similar to metals, such as a good ability to conduct heat and electricity. Graphite occurs naturally or can be produced synthetically. Purified natural graphite has higher crystalline structure and offers better electrical and thermal conductivity than synthetic material.

Among the many applications, natural and synthetic graphite are used for electrodes, refractories, batteries and lubricants and by foundries. Coated spherical graphite is used to manufacture the anode in lithium-ion batteries. High-grade graphite is also used in fuel cells, semiconductors, LEDs and nuclear reactors.

The Lac des Iles mine is the only mine in Canada that is producing graphite. However, many other companies are working on graphite projects.

Canada’s graphite shipments reached 11,937 tonnes in 2020, up slightly from 11,045 tonnes in 2020 [sic].

Global production and demand for graphite are anticipated to increase in the coming years, largely because of the use of graphite in the batteries of electric vehicles. In 2020, global consumption of graphite reached 2.7 million tonnes. Synthetic graphite accounted for about two-thirds of the graphite consumption, which was largely concentrated in Asia.

In 2020, the value of Canada’s exports of graphite was $31.6 million, a 9% decrease compared to the previous year. Imports also decreased in 2020, by 33% to $20.9 million.

Natural graphite accounted for 46.7% ($14.8 million) of the value of Canada’s exports of graphite and 13.5% ($2.8 million) of Canada’s imports of graphite in 2020. Synthetic graphite accounted for 53.3% ($ 16.9 million) of Canada’s exports of graphite and 86.5% ($18.0 million) of Canada’s imports of graphite in 2020.

In 2020, the United States was the primary destination for Canada’s exports of natural and synthetic graphite, accounting for 85% and 42% of the total exports, respectively.

I think the writer meant that shipments were up slightly from 2019. The page was last updated on February 4, 2022.

The news from Ohio

A June 10, 2022 news item on Nanowerk about research into a new type of graphite (Note: A link has been removed),

As the world’s appetite for carbon-based materials like graphite increases, Ohio University researchers presented evidence this week for a new carbon solid they named “amorphous graphite.”

Physicist David Drabold and engineer Jason Trembly started with the question, “Can we make graphite from coal?”

“Graphite is an important carbon material with many uses. A burgeoning application for graphite is for battery anodes in lithium-ion batteries, and it is crucial for the electric vehicle industry — a Tesla Model S on average needs 54 kg of graphite. Such electrodes are best if made with pure carbon materials, which are becoming more difficult to obtain owing to spiraling technological demand,” they write in their paper that published in Physical Review Letters (“Ab initio simulation of amorphous graphite”).

Ab initio means from the beginning, and their work pursues novel paths to synthetic forms of graphite from naturally occurring carbonaceous material. What they found, with several different calculations, was a layered material that forms at very high temperatures (about 3000 degrees Kelvin). Its layers stay together due to the formation of an electron gas between the layers, but they’re not the perfect layers of hexagons that make up ideal graphene. This new material has plenty of hexagons, but also pentagons and heptagons. That ring disorder reduces the electrical conductivity of the new material compared with graphene, but the conductivity is still high in the regions dominated largely by hexagons.

A June 10, 2022 Ohio University news release (also on EurekAlert), which originated the news item, delves further into the research (Note: Links have been removed),

Not all hexagons

“In chemistry, the process of converting carbonaceous materials to a layered graphitic structure by thermal treatment at high temperature is called graphitization. In this letter, we show from ab initio and machine learning molecular dynamic simulations that pure carbon networks have an overwhelming proclivity to convert to a layered structure in a significant density and temperature window with the layering occurring even for random starting configurations. The flat layers are amorphous graphene: topologically disordered three-coordinated carbon atoms arranged in planes with pentagons, hexagons and heptagons of carbon,” said Drabold, Distinguished Professor of Physics and Astronomy in the College of Arts and Sciences at Ohio University.

“Since this phase is topologically disordered, the usual ‘stacking registry’ of graphite is only statistically respected,” Drabold said. “The layering is observed without Van der Waals corrections to density functional (LDA and PBE) forces, and we discuss the formation of a delocalized electron gas in the galleries (voids between planes) and show that interplane cohesion is partly due to this low-density electron gas. The in-plane electronic conductivity is dramatically reduced relative to graphene.”

The researchers expect their announcement to spur experimentation and studies addressing the existence of amorphous graphite, which may be testable from exfoliation and/or experimental surface structural probes.

Trembly, Russ Professor of Mechanical Engineering and director of the Institute for Sustainable Energy and the Environment in the Russ College of Engineering and Technology at Ohio University, has been working in part on green uses of coal. He and Drabold — along with physics doctoral students Rajendra Thapa, Chinonso Ugwumadu and Kishor Nepal — collaborated on the research. Drabold also is part of the Nanoscale & Quantum Phenomena Institute at OHIO, and he has published a series of papers on the theory of amorphous carbon and amorphous graphene. Drabold also emphasized the excellent work of his graduate students in carrying out this research.

Surprising interplane cohesion

“The question that led us to this is whether we could make graphite from coal,” Drabold said. “This paper does not fully answer that question, but it shows that carbon has an overwhelming tendency to layer — like graphite, but with many ‘defects’ such as pentagons and heptagons (five- and seven-member rings of carbon atoms), which fit quite naturally into the network. We present evidence that amorphous graphite exists, and we describe its process of formation. It has been suspected from experiments that graphitization occurs near 3,000K, but the details of the formation process and nature of disorder in the planes was unknown,” he added.

The Ohio University researchers’ work is also a prediction of a new phase of carbon.

“Until we did this, it was not at all obvious that layers of amorphous graphene (the planes including pentagons and heptagons) would stick together in a layered structure. I find that quite surprising, and it is likely that experimentalists will go hunting for this stuff now that its existence is predicted,” Drabold said. “Carbon is the miracle element — you can make life, diamond, graphite, Bucky Balls, nanotubes, graphene, [emphasis mine] and now this. There is a lot of interesting basic physics in this, too — for example how and why the planes bind, this by itself is quite surprising for technical reasons.”

Here’s a link to and a citation for the paper,

Ab Initio Simulation of Amorphous Graphite by R. Thapa, C. Ugwumadu, K. Nepal, J. Trembly, and D. A. Drabold. Phys. Rev. Lett. 128, 236402 DOI: https://doi.org/10.1103/PhysRevLett.128.236402 Published 10 June 2022 © 2022 American Physical Society

This paper is behind a paywall.

There is an earlier version of the paper which is open access at ArXiv (hosted by Cornell University),

[Submitted on 22 Feb 2022 (v1), last revised 23 Apr 2022 (this version, v2)]

Ab initio simulation of amorphous graphite by Rajendra Thapa, Chinonso Ugwumadu, Kishor Nepal, Jason Trembly, David Drabold

About graphite and Canadian mines

A July 25, 2011 posting marks the earliest appearance of graphite on this blog. Titled, “Canadians as hewers of graphite?” It featured Northern Graphite Corporation, which today (June 21, 2022) is the largest North American graphite producer according to the company’s homepage,

  • Only North American producer
  • Will be 3rd largest non-Chinese producer
  • Two large development projects
  • All projects:
    • In politically stable countries
    • Have “battery quality” graphite
    • Close to infrastructure

There’s also this from the company’s homepage,

Northern owns the Lac des Iles (LDI) mine in Quebec, the only significant graphite producer in North America. Northern plans to increase production and extend the mine life.

Northern is currently upgrading its Okorusu processing plant in Namibia. It will be back on line in 1H 2023 and make Northern the third largest non Chinese graphite producer.

Northern plans to develop its advanced stage Bissett Creek project in Ontario which has a full Feasibility Study. It has been rated as the highest margin graphite deposit in the world.

The Okanjande deposit in Namibia has a very large measured and indicated resource. Northern intends to study building a 150,000tpa plant to supply battery markets in Europe.

I notice the involvement in Namibia. I hope this is a ‘good’ mining company. Canadian mining companies have been known to breach human rights and environmental regulations when operating internationally. There’s a recent tragedy described in this June 20, 2020 news article on the Canadian Broadcasting Corporation (CBC) online news site (Note: A link has been removed),

Trevali Mining Corp. says it has recovered the bodies of the final two of eight workers killed after its Perkoa Mine in Burkina Faso flooded following heavy rainfall on Apr. 16 [2022].

The bodies of the other six workers were recovered by search teams late last month.

The Vancouver-based zinc miner says it is working alongside Burkinabe authorities to coordinate the dewatering and rehabilitation of the mine.

The flooding event is under investigation by the company and government authorities.

MiningWatch Canada, an Ottawa-based industry watchdog, has questioned how well the company was prepared for disaster and criticized the federal government’s lack of regulations on how Canadian mining companies operate internationally. [emphasis mine]

They say tighter rules are necessary for companies operating abroad. 

A May 10, 2022 article by Amanda Follett Hosgood about the disaster for The Tyee provides more details and asks some very pertinent and uncomfortable questions. (Yes, The Tyee is a very ‘left wing’ journalistic effort and they have a point where Canadian mining companies are concerned.)

Getting back to Northern Graphite, there’s this from their Governance page,

Northern Graphite is committed to conducting its activities in a manner that meets best international industry practices regardless of the country or location of operation.  The Company will operate with the highest standards of honesty, integrity, and ethical behaviour.  It will conduct its business in a manner that meets or exceeds all applicable laws, rules, and regulations and meets its social and moral obligations.  This policy applies to all Board members, officers and other employees, contractors, and other third parties working on behalf of or representing the Company.

The company gets more specific, from their Governance page,

  1. Taking all reasonable precautions to ensure the health and safety of workers and others affected by the Company’s operations.
  2. Managing and minimizing the environmental impact of the Company’s operations by following best international practices and standards and meeting stakeholder expectations while recognizing that mining will always have some unavoidable impacts on the environment. 
  3. Utilizing practices and technologies that minimize the Company’s water and carbon footprints.
  4. Respecting the rights, culture and development of local and Indigenous communities.
  5. The elimination of fraud, bribery, and corruption.
  6.  The protection and respect of human rights.
  7. Providing an adequate return to shareholders and investors while ensuring that all stakeholders benefit from the extraction of the earth’s resources through fair labour and compensation practices, local hiring and contracting, community support, and the payment of all applicable government taxes and royalties.

There are two other Canadian mining companies (that I know of) in pursuit of graphite, Lomiko Metals (British Columbia) and Focus Graphite (Ontario). All the mines in Canada, whether they are producing or not, are in either Québec or Ontario.

As for the research team in Ohio, congratulations on your very exciting work!

Global graphite market predictions

A Feb. 2, 2015 Persistence Market Research (PMR) news release about the worldwide graphite market found its way into my mailbox (on Mar. 2, 2015). Not being familiar with the business investment end of things or with Persistence Market Research I am cautiously interested in their market projections.

Here’s more from the news release,

According to a new market report published by Persistence Market Research “Global Market Study on Graphite: Battery Segment To Witness Highest Growth by 2020”, the global graphite market was valued at USD 13.62 billion in 2013 and is expected to grow at a CAGR [compound annual growth rate] of 3.7% from 2014 to 2020, to reach USD 17.56 billion in 2020.

Browse the full report with TOC at:
http://www.persistencemarketresearch.com/market-research/graphite-market.asp

Increasing the use of graphite in the automotive and battery industries is the major factor driving the demand for graphite. Graphite is an important material used in gaskets, clutch materials, motors, exhaust systems, and cylinder heads. In the past, asbestos was the main component of linings and disk brake pads. Graphite, with benefits such as low-noise braking, makes a good replacement for asbestos in brake pads. Moreover, it is an important element in the manufacture of ultra-lightweight carbon-fiber reinforced plastic (CFRP). Traditionally, CFRP was mainly used in the aerospace and Formula One car industries. However, CFRP is now gaining popularity in the passenger car industry due to its lightweight. This, in turn, helps reduce fuel consumption and CO2 emissions.

Asia-Pacific is the largest market for graphite globally. Rise of technologically advanced applications of graphite in pebble-bed nuclear reactors, fuel cells, solar power systems, and automotive and aerospace industries is driving the graphite market in the Asia Pacific region. China and India are the major markets for graphite in the region. Rising demand for steel and other metals has increased the demand for graphite electrodes in Asia Pacific. This, in turn, is driving the growth of the graphite market. China accounts for over 70% share of total graphite production in the world. According to China’s Twelfth Five-Year Plan, the government plans to have around 5.0 million battery-electric vehicles plying on the roads by 2020. This is expected to increase demand for graphite in the Asia Pacific market during the forecast period.

According to a research report, the sale of plug-in electric vehicles in North America is expected to rise at a CAGR of 30.0% from 2012 to 2020. The total sales of tablets in the U.S. market grew from 9.7 million in 2010 to 40.6 million in 2013. This growth in sales is expected to drive demand for lithium-ion batteries. Rising demand for electric vehicles and other electronic devices such as mobiles, tablets, laptops, and cameras offers huge potential for the growth of the lithium-ion battery industry. This, in turn, is further expected to boost demand for graphite in North America. Europe is the second-largest graphite market in the world. Growing use of carbon fiber instead of steel in the automotive and aerospace industries in Europe is leading to increasing demand for graphite. Graphite is considered as a key material for green technology. Due to this fact, it is widely used in many applications for energy storage, photovoltaics, and in various electronic products.

The graphite market is bifurcated on the basis of form (natural graphite and synthetic graphite). Synthetic graphite is further sub-segmented on the basis of form (graphite electrode, carbon fiber, graphite blocks, graphite powder, and others). Graphite market is also segmented on the basis of end-use (electrode, refractory, lubricant, foundry, battery, and others). All the segments provide market size and forecast by volume and by value. The synthetic graphite segment holds the largest share of USD 12.49 billion in the graphite market in 2013 and is expected to reach USD 16.06 billion by 2020 at a CAGR of 3.7% from 2014 to 2020.

In terms of revenue, the global graphite market grew from USD 12.30 billion in 2010 to USD 13.62 billion in 2013 at a CAGR of 3.4%. In terms of volume, the global graphite market grew from 2.19 million tons in 2010 to 2.68 million tons in 2013 at a CAGR of 7.1%. Under regional segment, the Asia Pacific graphite market (the largest market in 2013) increased by 3.8% CAGR during 2010–2013 to reach USD 9.17 billion in 2013.

Request Sample Report of Graphite Market:
http://www.persistencemarketresearch.com/samples/3367

I was intrigued to note Canadian businesses included in a list of the major companies in this field,

Some of the major companies operating in the global graphite market are Triton Minerals Ltd., Lamboo Resources Limited, Mason Graphite, Focus Graphite Inc., Energizer Resources Inc., Northern Graphite Corporation, Alabama Graphite Corp., Flinders Resources Ltd., Syrah Resources Limited, SGL Carbon SE, GrafTech International Holdings Inc, Graphite India Limited, Nippon Graphite Industries, Co., Ltd., Asbury Graphite Mills, Inc, Showa Denko K.K., and Tokai Carbon Co., Ltd.  [emphases mine]

The highlighted companies are Canadian and have been mentioned on this blog at least once in relation to graphite and/or graphene. One observation, Lomiko Metals (a British Columbia-based company mentioned here a few times) didn’t make the list.

Getting back to the PMR news release,

Related Published Report:

Global Market Study on Paints and Coatings: Industrial Paints and Coatings to Witness Highest Growth by 2020: http://www.persistencemarketresearch.com/market-research/paints-coatings-market.asp

Graphite Market, by Form

  • Natural graphite
  • Synthetic graphite

Synthetic Graphite Market, by Form

  • Graphite electrode
  • Carbon fiber
  • Graphite blocks
  • Graphite powder
  • Others

Graphite Market, by End Use

  • Electrode
  • Refractory
  • Lubricant
  • Foundry
  • Battery
  • Others

Graphite Market, by Region

  • North America
  • Europe
  • Asia Pacific
  • Rest of the World

Browse PMR Chemicals and Materials Market Research Reports @
http://www.persistencemarketresearch.com/category/chemicals-and-materials.asp

About Us

Persistence Market Research (PMR) is a U.S.-based full-service market intelligence firm specializing in syndicated research, custom research, and consulting services. PMR boasts market research expertise across the Healthcare, Chemicals and Materials, Technology and Media, Energy and Mining, Food and Beverages, Semiconductor and Electronics, Consumer Goods, and Shipping and Transportation industries. The company draws from its multi-disciplinary capabilities and high pedigree team of analysts to share data that precisely corresponds to clients’ business needs.

Again, I cannot attest to the quality of the analysis but it’s safe to say it’s interesting.

For anyone as ignorant about business and investing terminology as I am, here’s a definition for CAGR (compound annual growth rate) from the Investopedia website,

CAGR isn’t the actual return in reality. It’s an imaginary number that describes the rate at which an investment would have grown if it grew at a steady rate. You can think of CAGR as a way to smooth out the returns.

Don’t worry if this concept is still fuzzy to you – CAGR is one of those terms best defined by example. Suppose you invested $10,000 in a portfolio on Jan 1, 2005. Let’s say by Jan 1, 2006, your portfolio had grown to $13,000, then $14,000 by 2007, and finally ended up at $19,500 by 2008.

Your CAGR would be the ratio of your ending value to beginning value ($19,500 / $10,000 = 1.95) raised to the power of 1/3 (since 1/# of years = 1/3), then subtracting 1 from the resulting number:

1.95 raised to 1/3 power = 1.2493. (This could be written as 1.95^0.3333).1.2493 – 1 = 0.2493Another way of writing 0.2493 is 24.93%. [sic]

Thus, your CAGR for your three-year investment is equal to 24.93%, representing the smoothed annualized gain you earned over your investment time horizon.

Investment in graphene (Grafoid), the Canadian government, and a 2015 federal election

The federal government of Canada is facing an election this year and many analysts believe it will be held in October 2015. Interestingly, there have been a few recent announcements about funding, also referred to as contributions, for technology companies in the provinces of Ontario and Québec. (You need to win at least one of these provinces if you want to enjoy a majority government.) My Cellulose nanocrystals (CNC), also known as nanocrystalline cellulose (NCC), and toxicity; some Celluforce news; anti-petroleum extremists post* on Feb. 19, 2015 includes my observations (scroll down past the toxicity topic) about the government’s ‘clean technology’ promotional efforts and the rebranding of environmentalism into an ‘anti-petroleum’ movement.

This latest announcement about a ‘non-repayable grant’ is to be found in a Feb. 20, 2015 news item on Azonano,

The Hon. Greg Rickford, Minister of Natural Resources and Minister Responsible for Sustainable Development Technology Canada (SDTC) announced today the award of $8.1 million to Grafoid Inc. – Canada’s leading graphene technologies and applications developer – to automate Grafoid’s production of its low-cost, high-purity MesoGraf™ graphene.

“Our government is investing in advanced clean energy technologies that create well-paying jobs and generate economic opportunities. Today’s announcement contributes to economic prosperity and a cleaner environment in Ontario and across Canada,” said Mr. Rickford, who is also the Minister Responsible for Federal Economic Development Initiative for Northern Ontario.

The contribution from SDTC is an $8.1 million non-repayable grant to design and test the automation system for the production of constant quality MesoGraf™. Further, the grant enables the testing of pre-commercial products using MesoGraf™ graphene from the automated system.

The minister announced the funding at a news conference in Toronto attended by Grafoid and five other Canadian non graphene-related technology companies.

Ottawa-based [Ottawa is in the province of Ontario] Grafoid, the developer of a diverse range of renewable energy, industrial, military and consumer applications from its MesoGraf™ materials is the first Canadian graphene technologies developer to partner with the Canadian Government.

A Feb. 20, 2015 Grafoid news release on Marketwired.com, which originated the news item, describes how this makes Canada like other constituencies and gives a bit more detail about the company and its aims,

Canada joins the European Union, the United States, China and South Korea in providing funding assistance to privately-held graphene enterprises.

Grafoid Founding Partner and CEO Gary Economo praised Canada’s decision to stake its claim in the graphene space as the world races toward the commercialization of a potentially disruptive, pan-industrial nanomaterial.

“This is a great day for the Canadian graphene industry and for Grafoid, in particular, because it leads us out of the laboratory and into the automated manufacturing of the world’s new wonder material,” he told the news conference.

“Effectively, today’s $8.1million Federal government funding grant enables us to take a giant leap towards graphene’s broader commercialization,” Mr. Economo said. “It will permit us to increase MesoGraf™ production output from kilograms to tonnes within our global technology centre in Kingston, Ontario.

“For this we are truly appreciative of Canada’s actions in recognizing our science and commercial objectives. In the past three years Grafoid has travelled the globe staking our unique position in the graphene revolution. Today we are gratified to do this going forward with the Government of Canada,” Mr. Economo said.

Grafoid produces MesoGraf™ directly from high-grade graphite ore on a safe, economically scalable, environmentally sustainable basis. Its patent pending one-step process is unique in the industry, producing single layer, bi-layer and tri-layer graphene.

It is then adapted – or functionalized – by Grafoid for use in biomedical, renewable energy storage and production, military, aerospace and automotive, additive materials for 3D printing, water purification, construction, lubricants, solar solutions, coatings, sporting equipment and other sectoral applications.

At one atom thin, graphene is a two-dimensional pure carbon derived from graphite.

It is the strongest material known to science, is barely visible to the naked eye, yet it holds the potential to become a disruptive technology across all industrial sectors and ultimately, for the benefit of humanity.

Grafoid’s Game-Changing Process

Grafoid’s unique graphite ore-to-graphene process produces a material that eliminates cost barriers to graphene’s broad commercialization in a number of industries, some of which include building materials, automotive, aerospace, military, biomedical, renewable energy and sporting equipment.

In order to bring those application developments to market Grafoid’s partners require a scaling up of MesoGraf™ production to supply their needs for pre-production development testing and commercial production, and; the expansion of Grafoid’s research and development.

The automation of bulk MesoGraf™ graphene production is a global first. Uniformity and consistency are critical to the development of mass produced commercial applications.

One of the company’s first-to-market MesoGraf™ developments is in the renewable energy storage and power generation sectors. The market for quick charge long-life batteries is vast, and growing.

Hydro-Quebec – one of the world’s premier patent holders and suppliers of renewable energy technologies – is one of Grafoid’s first long-term sustainable technology development partners. [emphasis mine]

Within six months of development, multiple patents were filed and initial tests of the joint venture’s MesoGraf™ lithium-iron phosphate materials resulted in extreme gains in power performance over conventional batteries.

Grafoid’s corporate goal is not to simply be a graphene supplier but a global partner in commercial application development. With the ability to ramp up graphene output the company’s long-term financial prospects are secured from royalties and licensing fees from jointly developed technologies.

Competitive cost advantages built into an automated MesoGraf™ graphene production regime results in anticipated cost advantages to customers and licensees.

The Hydro-Québec deal with Grafoid was mentioned here in a Nov. 27, 2012 posting which includes this nugget,

There’s also the announcement of a joint venture between Grafoid (a company where, I believe, 40% is owned by Focus Graphite) with the University of Waterloo, from the Apr. 17, 2013 news item on Azonano,

Focus Graphite Inc. on behalf of Grafoid Inc. (“Grafoid”) is pleased to announce the signing of a two-year R&D agreement between Grafoid Inc. and the University of Waterloo to investigate and develop a graphene-based composite for electrochemical energy storage for the automotive and/or portable electronics sectors.

Given the company information included in the news release, there seems to have been a change in the corporate relationship between Grafoid and Focus Graphite. At the very least, Grafoid announcements are now generated by Grafoid itself,

About Grafoid Inc.

Incorporated in late 2011, Grafoid invested in a novel process that transforms raw, unprocessed, high grade graphite ore from its sister company, Focus Graphite to produce single layer, bi-layer and tri-layer MesoGraf™ graphene.

Today, Grafoid, a private company, sits as Canada’s innovation leader and standard-bearer in the global graphene technology space.

The company’s diverse commercial application developments include more than 15 global corporate partnerships – including Fortune 500 companies.

With 17 active projects under development with 11 universities and laboratories, and; some 64 patent applications filed or in development, Grafoid’s business goes beyond scientific R&D.

Grafoid’s Canadian-developed technologies are exported globally.

During the last three years Grafoid has experienced exponential growth as a global enterprise through joint-venture partnerships with Hydro-Quebec, Japan’s Mitsui & Company and other multinational corporations in the United States and Europe.

Grafoid’s wholly-owned subsidiaries Alcereco of Kingston, Ontario and Braille Battery, of Sarasota, Florida extend the company’s capabilities into graphene related material science and nano-engineering.

Braille is a world leader in ultra lightweight Lithium-ion high performance battery production and is a supplier to Formula 1, NASCAR and IndyCar racing vehicles.

The sister company, Focus Graphite also based in Ottawa, which provides Grafoid’s graphite flakes, owns a deposit in the northeastern part of Québec. (You can read more about graphite deposits and mines in my Feb. 20, 2015 post, NanoXplore: graphene and graphite in Québec (Canada).

Of course, this flurry of announcements may point to a Spring 2015 election.

*’posted’ changed to ‘post’ on Oct. 26, 2015.

NanoXplore: graphene and graphite in Québec (Canada)

For the second time this week I’m going to be mentioning the province of Québec (Canada) in relation to its ‘nanotechnology’ businesses (see: Cellulose nanocrystals (CNC), also known as nanocrystalline cellulose (NCC), and toxicity; some Celluforce news; anti-petroleum extremists posted on Feb. 19, 2015). A Feb. 20, 2015 news item on Azonano announces a graphene production facility in the Montréal area,

Group NanoXplore Inc., a Montreal-based company specialising in the production and application of graphene and its derivative materials, announced today that its graphene production facility is in full operation with a capacity of 3 metric tonnes per year. This is the largest graphene production capacity in Canada and, outside of China, one of the 5 largest in the world.

A Feb. 19, 2015 NanoXplore news release on MarketWire, which originated the news item, provides a bit more detail in amidst the promotional hype,

NanoXplore’s production process is unique and the core of the company’s competitive advantage. The proprietary process gently and efficiently creates pristine graphene from natural flake graphite without creating the crystalline defects that can limit performance. The process also functionalises the graphene material during production making subsequent mixing with a broad range of industrial materials simple and efficient. NanoXplore’s facility is routinely producing several standard grades of graphene as well as derivative products such as a unique graphite-graphene composite suitable for anodes in Li-ion batteries. [emphasis mine]

Another graphite connection in Québec

Interestingly, back in 2012 Hydro-Québec signed a deal with another Québec-based company, Focus Graphite (which owns a graphite deposit in the northeastern part of the province) to explore ways to produce more efficient lithium-ion batteries (my Nov 27, 2012 posting).

Getting back to the news release, it also provides a summary description of NanoXplore,

NanoXplore is a privately held advanced materials company focused on the large-scale production of high quality graphene and the integration of graphene into real world industrial products. NanoXplore achieves significant improvements in performance for its customers with very low levels of graphene because its material is of high quality (few defects, highly dispersible), because the production process can easily tune the dimensions of the graphene platelets, and because NanoXplore has specific expertise in dispersing graphene in a broad range of industrial materials. NanoXplore partners with its customers to integrate graphene into their products and processes, providing them with innovative products and a strong competitive advantage.

Graphite mines

NanoXplore, too, has some sort of relationship with a graphite mine or, in this case mining company, Mason Graphite (from the NanoXplore website’s Investors’ page),

FROM MINE TO PRODUCT

Partnered with Canadian mining company Mason Graphite, NanoXplore has access to lower quartile graphite/graphene production costs as well as a stable, long term, large flake source of raw material. Local government bodies have embraced the graphite-graphene cluster. With production and R&D centrally located in Montreal, NanoXplore offers world class innovation and true intellectual property safety for its formulation partners.

By the way, Benoit Gascon, NanoXplore’s board chair (scroll down to the bottom  of the team list) is also Mason Graphite’s Chief Executive Officer (CEO). The company has recently announced a detailed study on large-scale production of value-added graphite products (from a Feb. 11, 2015 Mason Graphite news release),

Mason Graphite Inc. (“Mason Graphite” or the “Company”) (TSX VENTURE:LLG)(OTCQX:MGPHF) announces that it has initiated a detailed study for large scale processing of value-added graphite products.

Value-added processing includes micronization, additional purification, spheronization and coating, resulting in graphite products that are suitable for a wide range of electrochemical applications (including alkaline batteries, lithium-ion batteries and fuel cells), technical applications (including carbon brushes, brake linings, plastics and lubricants), and other specialized uses.

The development and validation of the fabrication processes for these graphite products will be carried out by the National Research Council of Canada (“NRC”) along with Hatch, and is expected to conclude by the end of 2015. Following initial scoping work, equipment trials and product testing, the Company intends to provide preliminary results and an updated work program by mid-2015.

The NRC is the Government of Canada’s premier research and technology organization. Hatch is an engineering firm located in Montreal which is already working closely with Mason Graphite on the development of the Lac Gueret Graphite Project.

Other parts of Canada and the graphite/graphene enterprise

NanoXplore and Focus Graphite are not the only companies with connections to a graphite mine in Québec. There’s also Vancouver (Canada)-based Lomiko Metals (mentioned here in an April 17, 2013 posting [for the first time]. A. Paul Gill, Lomiko’s CEO, seems to be pursuing a similar business strategy in that Lomiko, too, has a number of business alliances, e.g., the mine, a research and development laboratory, etc. Moving out of Québec, there is also a graphite mine in Ontario owned by Northern Graphite (my Feb. 6, 2012 posting). It seems Canadians in eastern Canada have a valuable resource in graphite flakes.

A ‘graphite today, graphene tomorrow’ philosophy from Focus Graphite

Focus Graphite, a Canadian company with the tag line ‘Think Graphite today, Think Graphene tomorrow’, is making a bit of splash this month (April 2013) with its announcement of three deals (two joint ventures and the commissioning of their pilot plant) and it’s only April 17.

The most recent is the pilot plant announcement, from Focus Graphite’s Apr. 17, 2013 press release,

Focus Graphite Inc. (TSX-V:FMS)(OTCQX:FCSMF)(FRANKFURT:FKC) (“Focus” or the “Company”) is pleased to report the commissioning of its pilot plant and the start-up of circuit testing for the production of high-grade graphite concentrates from the Company’s wholly-owned Lac Knife, Québec graphite project.

The principal objectives of the pilot plant testwork are to confirm the results from Phase II bench scale Locked Cycle Tests (LCT)*; to assess the technical viability and operational performance of the processing plant design; to generate tailings for environmental testing, and; to produce a range of graphite raw materials for customer assessments and for further upgrading.

The Lac Knife project pilot plant was designed and built and is being operated by SGS Canada Inc. (“SGS”) in Lakefield, Ontario. The testing is expected to last 4-6 weeks.

….

The highlights of those tests conducted by SGS confirmed:-       The average amount of graphite flake recovered from the core samples in the Phase II LCT increased to 92.2% compared with a recovery of 84.7% graphite flake in the Phase I LCT;

–       The proportion of large flakes (+80 mesh) in the graphite concentrates ranged between 35% and 58%;

–       The carbon content of graphite concentrates produced from the four (4) composites averaged 96.6 %C, including the fine flake fraction (-200 mesh), a 4.6% increase over Phase I LCT completed in mid-2012.

Final results for Phase II LCT including for the two composite drill core samples of massive graphite mineralisation are pending.

* A locked cycle test is a repetitive batch flotation test conducted to assess flow sheet design. It is the preferred method for arriving at a metallurgical projection from laboratory testing. The final cycles of the test are designed to simulate a continuous, stable flotation circuit.

There’s also the announcement of a joint venture between Grafoid (a company where, I believe, 40% is owned by Focus Graphite) with the University of Waterloo, from the Apr. 17, 2013 news item on Azonano,

Focus Graphite Inc. on behalf of Grafoid Inc. (“Grafoid”) is pleased to announce the signing of a two-year R&D agreement between Grafoid Inc. and the University of Waterloo to investigate and develop a graphene-based composite for electrochemical energy storage for the automotive and/or portable electronics sectors.

Gary Economo, President and CEO of Focus Graphite Inc. and Grafoid Inc., said the objective of the agreement is to research and develop patentable applications using Grafoid’s unique investment which derives graphene from raw, graphite ore to target specialty high value graphene derivatives ranging from sulfur graphene to nanoporous graphene foam.

“Today’s announcement marks Grafoid’s fifth publicly declared graphene development project with a major academic or corporate institution, and the third related directly to a next generation green technology or renewable energy development project,” Mr. Economo said.

It follows R&D partnering projects announced with Rutgers University’s AMIPP, CVD Equipment Corporation, with Hydro-Quebec’s research institute, IREQ, and with British Columbia-based CapTherm Systems, an advanced thermal management technologies developer and producer.

Focus Graphite’s Apr. 16, 2013 press release, which originated the news item on Azonano, provides some context for the intense worldwide interest in graphene and the business imperatives,

Alternative Energy & Graphene:

The quest for alternative energy sources is one of the most important and exciting challenges facing science and technology in the 21st century. Environmentally-friendly, efficient and sustainable energy generation and usage have become large efforts for advancing human societal needs.  Graphene is a pure form of carbon with powerful characteristics which can bring about success in portable, stationary and transportation applications in high energy demanding areas in which electrochemical energy storage and conversion devices such as batteries, fuel cells and electrochemical supercapacitors  are the necessary devices.

Electrochemical Supercapacitors:

Supercapacitors, a zero-emission energy storage system, have a number of high-impact characteristics, such as fast charging, long charge-discharge cycles and broad operating temperature ranges, currently used or heavily researched in hybrid or electrical vehicles, electronics, aircrafts, and smart grids for energy storage. The US Department of Energy has assigned the same importance to supercapacitors and batteries. There is much research looking at combining electrochemical supercapacitors with battery systems or fuel cells.

Fuel Cells:

A fuel cell is a zero-emission source of power, and the only byproduct of a fuel cell is water. Some fuel cells use natural gas or hydrocarbons as fuel, but even those produce far less emissions than conventional sources. As a result, fuel cells eliminate or at least vastly reduce the pollution and greenhouse gas emissions caused by burning fossil fuels, and since they are also quiet in operation, they also reduce noise pollution. Fuel cells are more efficient than combustion engines as they generate electricity electrochemically. Since they can produce electricity onsite, the waste heat produced can also be used for heating purposes. Small fuel cells are already replacing batteries in portable products.

Toyota is planning to launch fuel cell cars in 2015, and has licensed its fuel cell vehicle technology to Germany’s BMW AG. BMW will use the technology to build a prototype vehicle by 2015, with plans for a market release around 2020.

By 2020, market penetration could rise as high as 1.2 million fuel cell vehicles, which would represent 7.6% of the total U.S. automotive market. Other fuel cell end users are fork lift and mining industries which continuously add profits to this growing industry.

Proton or polymer exchange membranes (PEM) have become the dominant fuel cell technology in the automotive market.

The U.S. Department of Energy has set fuel cell performance standards for 2015. As of today, no technologies under development have been able to meet the DOE’s  targets for performance and cost.

As I am from British Columbia and it was where* the first joint venture deal signed in April, here’s a bit more from Focus Graphite’s Apr. 9, 2013 press release,

Focus Graphite Inc. (TSX-V:FMS)(OTCQX:FCSMF)(FRANKFURT:FKC) on behalf of Grafoid Inc., announced today Grafoid’s joint venture development agreement with Coquitlam, British Columbia-based CapTherm Systems Inc. to develop and commercialize next generation, multiphase thermal management systems for electric vehicle (EV) battery and light emitting diode (LED) technologies.

CapTherm Systems Inc – Progressive Thermal Management is a thermal management/cooling company specializing in personal computer, server, LED, and electric vehicle cooling systems. It develops and commercializes proprietary, next-generation high-power electronics cooling technologies.

Its multiphase cooling technologies represent the core of its products that harness the power of latent heat from vaporization.

Under the terms of the agreement, Grafoid Inc., a company invested in the production of high-energy graphene and the development of graphene industrial applications will supply both materials and its science for adapting graphene to CapTherm’s existing EV and LED cooling systems.

Focus Graphite is a Canadian company, you can find more information on their website and the same for Grafoid and SGS Canada, and CapTherm Systems.

I have previously mentioned Focus Graphite in a Nov. 27, 2012 posting about their deal with Hydro Québec’s research institute, IREQ. I have also mentioned graphite mining in Canada with regard to the Northern Graphite Corporation and its Bissett Creek mine (my July 25, 2011 posting and my Feb. 6, 2012 posting). Apparently, Canada has high quality, large graphic flakes.

* ‘where’ added to sentence on Feb. 23, 2015.

Hydro-Québec, graphite, and lithium-ion batteries

While Dexter Johnson at Nanoclast blog writes about an investigation into why the storage capacity of lithium-ion (Li-ion) batteries degrades in his Nov. 26, 2012 posting (Newly Developed Live Nanoscale Imaging Technique Promises Improvement in Li-ion Batteries), Hydro-Québec and Grafoid Inc. have signed a development deal for the next generation of lithium iron phosphate materials to be combined with graphene for next generation rechargeable batteries. From the Nov. 27, 2012 news item on Nanowerk,

The 50-50 collaborative agreement sets out terms with the objective of creating patentable inventions by combining graphene, supplied by Grafoid, with Hydro-Québec’s patented lithium iron phosphate technologies.

Two key, specific commercial target markets – the rechargeable automobile battery sectors and batteries for mobile electronic devices used in smartphones, computing tablets and laptop computers – were identified in the agreement.

Hydro-Québec will study Grafoid’s graphene conductivity, electrochemical performance and its effects in electrode formulations, electrolyte and separator optimizations. Detailed characterizations of Grafoid’s supplied materials will be undertaken at IREQ’s cutting edge facilities using its advanced electron microscopy, spectrographic and other in-house technologies.

Hydro-Québec will also supply lithium iron phosphate materials and its electrochemistry know how which it acquired under license from famed American inventor Dr. John Goodenough.

The Nov. 26, 2012 news release from Focus Graphite, which originated the news item, provides additional detail about the various principles in the deal,

About Focus Graphite

Focus Graphite Inc. is an emerging mid-tier junior mining development company, a technology solutions supplier and a business innovator. Focus is the owner of the Lac Knife graphite deposit located in the Côte-Nord region of northeastern Québec. The Lac Knife project hosts a NI 43-101 compliant Measured and Indicated mineral resource of 4.972 Mt grading 15.7% carbon as crystalline graphite with an additional Inferred mineral resource of 3.000 Mt grading 15.6% crystalline graphite  Focus’ goal is to assume an industry leadership position by becoming a low-cost producer of technology-grade graphite. On October 29th, 2012 the Company released the results of a Preliminary Economic Analysis (“PEA”) of the Lac Knife project which demonstrates that the project has robust economics and excellent potential to become a profitable producer of graphite.  As a technology-oriented enterprise with a view to building long-term, sustainable shareholder value, Focus Graphite is also investing in the development of graphene applications and patents through Grafoid Inc.

About Grafoid Inc.

Grafoid, Inc. is a privately held Canadian corporation investing in graphene applications and economically scalable production processes for graphene and graphene derivatives from raw, unprocessed, graphite ore. Focus Graphite Inc., (TSX-V: FMS; OTCQX: FCSMF; FSE: FKC) holds a 40% interest in Grafoid Inc. [emphasis mine]

About IREQ

Hydro-Québec’s research institute, IREQ, is a global leader in the development of advanced materials for battery manufacturing and creates leading edge processes from its state of the art facilities. IREQ holds more than 100 patent rights and has issued over 40 licenses for battery materials to some of the world’s most successful battery manufacturers and materials suppliers. Its areas of expertise include energy storage and IREQ is a lead partner with private sector companies in Québec to build EV and HEV charging stations in support of its technology developments. Its material development contributions are helping to develop safe, high-performance lithium ion batteries that can be charged more quickly and a greater number of times. IREQ promotes open innovation and partners with private firms, universities, government agencies and research centers in Québec and abroad. Its partnerships allow IREQ to develop, industrialize and market technologies resulting from those innovation projects.

About Hydro-Québec

Hydro-Québec is Canada’s largest electricity producer among the world’s largest hydroelectric power producers and a public utility that generates, transmits and distributes electricity. Its sole shareholder is the Québec government. It primarily exploits renewable generating options, in particular hydropower, and supports the development of wind energy through purchases from independent power producers. Its research institute, IREQ, conducts R&D in energy efficiency, energy storage and other energy-related fields. Hydro-Québec invests more than $100 million per year in research.

Here’s one last bit I want to highlight from the Focus Graphite news release,

“Commercially, and ultimately, our technology development partnership with Hydro-Québec aims to produce high capacity, LFP-graphene batteries with ultra short charging times and longer recyclable lifetimes,” Mr. Economo said [Gary Economo, President and Chief Executive Officer of both Grafoid Inc. and Focus Graphite].

He said the parties chose to focus their collaboration on LFP-graphene batteries and materials because of their short-term-to-market potential.

In light of Dexter’s very informative posting about Li-ion batteries and the investigation into why the storage capatcity degrades, I find this Hydro-Québec/Grafoid Inc. development provides insight into the relationship between scientific research and business and insight into the risks as the various groups compete to bring products to market or to improve those products such that they come to dominate the market.

One last comment, graphite flakes are also mined in Ontario as per both my July 25, 2011 posting and my Feb. 6, 2012 posting about Northern Graphite Corporation and its Bissett Creek mine.