Tag Archives: food chain

Nanoparticles and the gut health of major living species of animals

A July 27, 2020 news item on Nanowerk announces research into gut health described as seminal (Note: A link has been removed),

An international team of scientists has completed the first ever study into the potential impact of naturally occurring and man-made nanoparticles on the health of all types of the major living species of animals.

Conceived by researchers at the University of Plymouth, as part of the EU [European Union] Nanofase project, the study assessed how the guts of species from honey bees to humans could protect against the bioaccumulation and toxicological effects of engineered nanomaterials (ENMs) found within the environment.

A July 27, 2020 University of Plymouth press release, which originated the news item, provides more detail,

It showed that the digestive systems of many species have evolved to act as a barrier guarding against the absorption of potentially damaging particles.

However, invertebrates such as earthworms also have roving cells within their guts, which can take up ENMs and transfer them to the gut wall.

This represents an additional risk for many invertebrate species where the particles can be absorbed via these roving cells, with consequent effects on internal organs having the potential to cause lasting damage.

Fortunately, this process is not replicated in humans and other vertebrate animals, however there is still the potential for nanomaterials to have a negative impact through the food chain.

The study, published in the July [2020] edition of Environmental Science: Nano, involved scientists from the UK, the Netherlands, Slovenia and Portugal and focused on particles measuring up to 100 nanometres (around 1/10 millionth of a metre).

It combined existing and new research into species including insects and other invertebrates, fish, birds, and mammals, as well as identifying knowledge gaps on reptiles and amphibians. The study provides the first comprehensive overview of how differences in gut structure can affect the impact of ENMs across the animal kingdom.

Richard Handy, Professor of Environmental Toxicology at the University of Plymouth and the study’s senior author, said:

“This is a seminal piece work that combines nearly 100 years of zoology research with our current understanding of nanotechnology.

“The threats posed by engineered nanomaterials are becoming better known, but this study provides the first comprehensive and species-level assessment of how they might pose current and future threats. It should set the foundations for understanding the dietary hazard in the animal kingdom.”

Nanomaterials come in three forms – naturally occurring, incidentally occurring from human activities, and deliberately manufactured – and their use has increased exponentially in the last decade.

They have consistently found new applications in a wide variety of industrial sectors, including electrical appliances, medicines, cleaning products and textiles.

Professor Handy, who has advised organisations including the Organisation for Economic Co-operation and Development and the United States National Nanotechnology Initiative, added:

“Nanoparticles are far too small for the human eye to see but that doesn’t mean they cannot cause harm to living species. The review element of this study has shown they have actually been written about for many decades, but it is only recently that we have begun to understand the various ways they occur and now the extent to which they can be taken up. Our new EU project, NanoHarmony, looks to build on that knowledge and we are currently working with Public Health England and others to expand our method for detecting nanomaterials in tissues for food safety and other public health matters.”

Here’s a link to and a citation for the paper,

The gut barrier and the fate of engineered nanomaterials: a view from comparative physiology by Meike van der Zande, Anita Jemec Kokalj, David J. Spurgeon, Susana Loureiro, Patrícia V. Silva, Zahra Khodaparast, Damjana Drobne, Nathaniel J. Clark, Nico W. van den Brink, Marta Baccaro, Cornelis A. M. van Gestel, Hans Bouwmeester and Richard D. Handy. Environmental Science: Nano, Issue 7 (July 2020) DOI: 10.1039/D0EN00174K First published 27 Apr 2020

This article is open access.

If you’re curious about Nanofase (Nanomaterial FAte and Speciation in the Environment), there’s more here and there’s more about NanoHarmony here.

Implications of nanoplastic in the aquatic food chain

As plastic breaks down in the oceans into plastic nanoparticles, they enter the food chain when they are ingested by plankton. Researchers in Sweden have published a study about the process. From a May 23, 2016 news item on ScienceDaily,

Plastic accounts for nearly eighty per cent of all waste found in our oceans, gradually breaking down into smaller and smaller particles. New research from Lund University in Sweden investigates how nanosized plastic particles affect aquatic animals in different parts of the food chain.

“Not very many studies have been done on this topic before. Plastic particles of such a small size are difficult to study,” says Karin Mattsson.

A May 23, 2016 Lund University press release, which originated the news item, provides more detail,

“We tested how polystyrene plastic particles of different sizes, charge and surface affect the zooplankton Daphnia. It turned out that the size of the nanoparticles that were most toxic to the Daphnia in our study was 50 nanometers”, says Karin Mattsson.

Because zooplankton like Daphnia are also food for many other aquatic animals, the researchers wanted to study the effect of plastic particles higher up in the food chain. They found that fish that ate Daphnia containing nanoplastics experienced a change in their predatory behaviour and poor appetite. In several studies, researchers also discovered that the nanoparticles had the ability to cross biological barriers, such as the intestinal wall and brain.

“Although in our study we used much larger amounts of nanoplastic than those present in oceans today, we suspect that plastic particles may be accumulated inside the fish. This means that even low doses could ultimately have a negative effect”, says Karin Mattsson.

Plastic breaks down very slowly in nature, and once the microscopically small plastic particles reach lakes and oceans they are difficult to remove. Plastic particles also bind environmental toxins that can become part of the food chain when consumed accidentally.

“Our research indicates the need for more studies and increased caution in the use of nanoplastics”, she says.

Karin Mattsson is a physicist and her research project was produced in collaboration between the Centre for Environmental and Climate Research, the Division Biochemistry and Structural Biology and the Division of Aquatic Biology at Lund University. Karin Mattsson is also affiliated with NanoLund, where several studies are currently conducted to evaluate the safety of nanoparticles.

Here’s a link to and a citation for a paper published online in 2014 and in print in 2015,

Altered Behavior, Physiology, and Metabolism in Fish Exposed to Polystyrene Nanoparticles by Karin Mattsson, Mikael T. Ekvall, Lars-Anders Hansson, Sara Linse, Anders Malmendal, and Tommy Cedervall. Environ. Sci. Technol., 2015, 49 (1), pp 553–561 DOI: 10.1021/es5053655
Publication Date (Web): November 07, 2014

Copyright © 2014 American Chemical Society

More recently, Karin Mattson has published her PhD thesis on the topic (I believe it is written in Swedish).