Tag Archives: food production

NanoFARM: food, agriculture, and nanoparticles

The research focus for the NanoFARM consortium is on pesticides according to an October 19, 2017 news item on Nanowerk,

The answer to the growing, worldwide food production problem may have a tiny solution—nanoparticles, which are being explored as both fertilizers and fungicides for crops.

NanoFARM – research consortium formed between Carnegie Mellon University [US], the University of Kentucky [US], the University of Vienna [Austria], and Aveiro University in Prague [Czech Republic] – is studying the effects of nanoparticles on agriculture. The four universities received grants from their countries’ respective National Science Foundations to discover how these tiny particles – some just 4 nanometers in diameter – can revolutionize how farmers grow their food.

An October ??, 2017 Carnegie Mellon University news release by Adam Dove, which originated the news item, fills in a few more details,

“What we’re doing is getting a fundamental understanding of nanoparticle-to-plant interactions to enable future applications,” says Civil and Environmental Engineering (CEE) Professor Greg Lowry, the principal investigator for the nanoFARM project. “With pesticides, less than 5% goes into the crop—the rest just goes into the environment and does harmful things. What we’re trying to do is minimize that waste and corresponding environmental damage by doing a better job of targeting the delivery.”

The teams are looking at related questions: How much nanomaterial is needed to help crops when it comes to driving away pests and delivering nutrients, and how much could potentially hurt plants or surrounding ecosystems?

Applied pesticides and fertilizers are vulnerable to washing away—especially if there’s a rainstorm soon after application. But nanoparticles are not so easily washed off, making them extremely efficient for delivering micronutrients like zinc or copper to crops.

“If you put in zinc oxide nanoparticles instead, it might take days or weeks to dissolve, providing a slow, long-term delivery system.”

Gao researches the rate at which nanoparticles dissolve. His most recent finding is that nanoparticles of copper oxide take up to 20-30 days to dissolve in soil, meaning that they can deliver nutrients to plants at a steady rate over that time period.

“In many developing countries, a huge number of people are starving,” says Gao. “This kind of technology can help provide food and save energy.”

But Gao’s research is only one piece of the NanoFARM puzzle. Lowry recently traveled to Australia with Ph.D. student Eleanor Spielman-Sun to explore how differently charged nanoparticles were absorbed into wheat plants.

They learned that negatively charged particles were able to move into the veins of a plant—making them a good fit for a farmer who wanted to apply a fungicide. Neutrally charged particles went into the tissue of the leaves, which would be beneficial for growers who wanted to fortify a food with nutritional value.

Lowry said they are still a long way from signing off on a finished product for all crops—right now they are concentrating on tomato and wheat plants. But with the help of their university partners, they are slowly creating new nano-enabled agrochemicals for more efficient and environmentally friendly agriculture.

For more information, you can find the NanoFARM website here.

Nanoparticles for sustainable ways to grow crops

An April 29, 2016 news item on Nanowerk celebrates research into food production,

Scientists are working diligently to prepare for the expected increase in global population — and therefore an increased need for food production— in the coming decades. A team of engineers at Washington University in St. Louis has found a sustainable way to boost the growth of a protein-rich bean by improving the way it absorbs much-needed nutrients.

Ramesh Raliya, a research scientist, and Pratim Biswas, the Lucy & Stanley Lopata Professor and chair of the Department of Energy, Environmental & Chemical Engineering, both in the School of Engineering & Applied Science, discovered a way to reduce the use of fertilizer made from rock phosphorus and still see improvements in the growth of food crops by using zinc oxide nanoparticles.

The food under investigation is the mung bean,

Researchers at Washington University in St. Louis hope that nanoparticle technology can help reduce the need for fertilizer, creating a more sustainable way to grow crops such as mung beans. Courtesy: Washington University in St. Louis

Researchers at Washington University in St. Louis hope that nanoparticle technology can help reduce the need for fertilizer, creating a more sustainable way to grow crops such as mung beans. Courtesy: Washington University in St. Louis

An April 28, 2016 Washington University in St. Louis  news release (also on EurekAlert) by Beth Miller, which originated the news item, provides more detail,

The research was published April 7 [2016] in the Journal of Agricultural and Food Chemistry. Raliya said this is the first study to show how to mobilize native phosphorus in the soil using zinc oxide nanoparticles over the life cycle of the plant, from seed to harvest.

Food crops need phosphorus to grow, and farmers are using more and more phosphorus-based fertilizer as they increase crops to feed a growing world population. However, the plants can only use about 42 percent of the phosphorus applied to the soil, so the rest runs off into the water streams, where it grows algae that pollutes our water sources. In addition, nearly 82 percent of the world’s phosphorus is used as fertilizer, but it is a limited supply, Raliya says.

“If farmers use the same amount of phosphorus as they’re using now, the world’s supply will be depleted in about 80 years,” Raliya said. “Now is the time for the world to learn how to use phosphorus in a more sustainable manner.”

Raliya and his collaborators, including Jagadish Chandra Tarafdar at the Central Arid Zone Research Institute in Jodhpur, India, created zinc oxide nanoparticles from a fungus around the plant’s root that helps the plant mobilize and take up the nutrients in the soil. Zinc also is an essential nutrient for plants because it interacts with three enzymes that mobilize the complex form of phosphorus in the soil into a form that plants can absorb.

“Due to climate change, the daily temperature and rainfall amounts have changed,” Raliya said. “When they changed, the microflora in the soil are also changed, and once those are depleted, the soil phosphorus can’t mobilize the phosphorus, so the farmer applies more. Our goal is to increase the activity of the enzymes by several-fold, so we can mobilize the native phosphorus several-fold.”

When Raliya and the team applied the zinc nanoparticles to the leaves of the mung bean plant, it increased the uptake of the phosphorus by nearly 11 percent and the activity of the three enzymes by 84 percent to 108 percent. That leads to a lesser need to add phosphorus on the soil, Raliya said.

“When the enzyme activity increases, you don’t need to apply the external phosphorus, because it’s already in the soil, but not in an available form for the plant to uptake,” he said. “When we apply these nanoparticles, it mobilizes the complex form of phosphorus to an available form.”

The mung bean is a legume grown mainly in China, southeast Asia and India, where 60 percent of the population is vegetarian and relies on plant-based protein sources. The bean is adaptable to a variety of climate conditions and is very affordable for people to grow.

Raliya said 45 percent of the worldwide phosphorus use for agriculture takes place in India and China. Much of the phosphorus supply in developing countries is imported from the United States and Morocco-based rock phosphate mines.

“We hope that this method of using zinc oxide nanoparticles can be deployed in developing countries where farmers are using a lot of phosphorus,” Raliya said.

“These countries are dependent on the U.S. to export phosphorus to them, but in the future, the U.S. may have to help supply food, as well. If this crop can grow in a more sustainable manner, it will be helpful for everyone.”

“This is a broader effort under way at the nexus of food, energy and water,” Biswas said. “Nanoparticle technology enabled by aerosol science helps develop innovative solutions to address this global challenge problem that we face today.”

Here’s a link to and a citation for the paper,

Enhancing the Mobilization of Native Phosphorus in the Mung Bean Rhizosphere Using ZnO Nanoparticles Synthesized by Soil Fungi by Ramesh Raliya, Jagadish Chandra Tarafdar, and Pratim Biswas. J. Agric. Food Chem., 2016, 64 (16), pp 3111–3118 DOI: 10.1021/acs.jafc.5b05224 Publication Date (Web): April 07, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.