Tag Archives: France

LiquiGlide, a nanotechnology-enabled coating for food packaging and oil and gas pipelines

Getting condiments out of their bottles should be a lot easier in several European countries in the near future. A June 30, 2015 news item on Nanowerk describes the technology and the business deal (Note: A link has been removed),

The days of wasting condiments — and other products — that stick stubbornly to the sides of their bottles may be gone, thanks to MIT [Massachusetts Institute of Technology] spinout LiquiGlide, which has licensed its nonstick coating to a major consumer-goods company.

Developed in 2009 by MIT’s Kripa Varanasi and David Smith, LiquiGlide is a liquid-impregnated coating that acts as a slippery barrier between a surface and a viscous liquid. Applied inside a condiment bottle, for instance, the coating clings permanently to its sides, while allowing the condiment to glide off completely, with no residue.

In 2012, amidst a flurry of media attention following LiquiGlide’s entry in MIT’s $100K Entrepreneurship Competition, Smith and Varanasi founded the startup — with help from the Institute — to commercialize the coating.

Today [June 30, 2015], Norwegian consumer-goods producer Orkla has signed a licensing agreement to use the LiquiGlide’s coating for mayonnaise products sold in Germany, Scandinavia, and several other European nations. This comes on the heels of another licensing deal, with Elmer’s [Elmer’s Glue & Adhesives], announced in March [2015].

A June 30, 2015 MIT news release, which originated the news item, provides more details about the researcher/entrepreneurs’ plans,

But this is only the beginning, says Varanasi, an associate professor of mechanical engineering who is now on LiquiGlide’s board of directors and chief science advisor. The startup, which just entered the consumer-goods market, is courting deals with numerous producers of foods, beauty supplies, and household products. “Our coatings can work with a whole range of products, because we can tailor each coating to meet the specific requirements of each application,” Varanasi says.

Apart from providing savings and convenience, LiquiGlide aims to reduce the surprising amount of wasted products — especially food — that stick to container sides and get tossed. For instance, in 2009 Consumer Reports found that up to 15 percent of bottled condiments are ultimately thrown away. Keeping bottles clean, Varanasi adds, could also drastically cut the use of water and energy, as well as the costs associated with rinsing bottles before recycling. “It has huge potential in terms of critical sustainability,” he says.

Varanasi says LiquiGlide aims next to tackle buildup in oil and gas pipelines, which can cause corrosion and clogs that reduce flow. [emphasis mine] Future uses, he adds, could include coatings for medical devices such as catheters, deicing roofs and airplane wings, and improving manufacturing and process efficiency. “Interfaces are ubiquitous,” he says. “We want to be everywhere.”

The news release goes on to describe the research process in more detail and offers a plug for MIT’s innovation efforts,

LiquiGlide was originally developed while Smith worked on his graduate research in Varanasi’s research group. Smith and Varanasi were interested in preventing ice buildup on airplane surfaces and methane hydrate buildup in oil and gas pipelines.

Some initial work was on superhydrophobic surfaces, which trap pockets of air and naturally repel water. But both researchers found that these surfaces don’t, in fact, shed every bit of liquid. During phase transitions — when vapor turns to liquid, for instance — water droplets condense within microscopic gaps on surfaces, and steadily accumulate. This leads to loss of anti-icing properties of the surface. “Something that is nonwetting to macroscopic drops does not remain nonwetting for microscopic drops,” Varanasi says.

Inspired by the work of researcher David Quéré, of ESPCI in Paris, on slippery “hemisolid-hemiliquid” surfaces, Varanasi and Smith invented permanently wet “liquid-impregnated surfaces” — coatings that don’t have such microscopic gaps. The coatings consist of textured solid material that traps a liquid lubricant through capillary and intermolecular forces. The coating wicks through the textured solid surface, clinging permanently under the product, allowing the product to slide off the surface easily; other materials can’t enter the gaps or displace the coating. “One can say that it’s a self-lubricating surface,” Varanasi says.

Mixing and matching the materials, however, is a complicated process, Varanasi says. Liquid components of the coating, for instance, must be compatible with the chemical and physical properties of the sticky product, and generally immiscible. The solid material must form a textured structure while adhering to the container. And the coating can’t spoil the contents: Foodstuffs, for instance, require safe, edible materials, such as plants and insoluble fibers.

To help choose ingredients, Smith and Varanasi developed the basic scientific principles and algorithms that calculate how the liquid and solid coating materials, and the product, as well as the geometry of the surface structures will all interact to find the optimal “recipe.”

Today, LiquiGlide develops coatings for clients and licenses the recipes to them. Included are instructions that detail the materials, equipment, and process required to create and apply the coating for their specific needs. “The state of the coating we end up with depends entirely on the properties of the product you want to slide over the surface,” says Smith, now LiquiGlide’s CEO.

Having researched materials for hundreds of different viscous liquids over the years — from peanut butter to crude oil to blood — LiquiGlide also has a database of optimal ingredients for its algorithms to pull from when customizing recipes. “Given any new product you want LiquiGlide for, we can zero in on a solution that meets all requirements necessary,” Varanasi says.

MIT: A lab for entrepreneurs

For years, Smith and Varanasi toyed around with commercial applications for LiquiGlide. But in 2012, with help from MIT’s entrepreneurial ecosystem, LiquiGlide went from lab to market in a matter of months.

Initially the idea was to bring coatings to the oil and gas industry. But one day, in early 2012, Varanasi saw his wife struggling to pour honey from its container. “And I thought, ‘We have a solution for that,’” Varanasi says.

The focus then became consumer packaging. Smith and Varanasi took the idea through several entrepreneurship classes — such as 6.933 (Entrepreneurship in Engineering: The Founder’s Journey) — and MIT’s Venture Mentoring Service and Innovation Teams, where student teams research the commercial potential of MIT technologies.

“I did pretty much every last thing you could do,” Smith says. “Because we have such a brilliant network here at MIT, I thought I should take advantage of it.”

That May [2012], Smith, Varanasi, and several MIT students entered LiquiGlide in the MIT $100K Entrepreneurship Competition, earning the Audience Choice Award — and the national spotlight. A video of ketchup sliding out of a LiquiGlide-coated bottle went viral. Numerous media outlets picked up the story, while hundreds of companies reached out to Varanasi to buy the coating. “My phone didn’t stop ringing, my website crashed for a month,” Varanasi says. “It just went crazy.”

That summer [2012], Smith and Varanasi took their startup idea to MIT’s Global Founders’ Skills Accelerator program, which introduced them to a robust network of local investors and helped them build a solid business plan. Soon after, they raised money from family and friends, and won $100,000 at the MassChallenge Entrepreneurship Competition.

When LiquiGlide Inc. launched in August 2012, clients were already knocking down the door. The startup chose a select number to pay for the development and testing of the coating for its products. Within a year, LiquiGlide was cash-flow positive, and had grown from three to 18 employees in its current Cambridge headquarters.

Looking back, Varanasi attributes much of LiquiGlide’s success to MIT’s innovation-based ecosystem, which promotes rapid prototyping for the marketplace through experimentation and collaboration. This ecosystem includes the Deshpande Center for Technological Innovation, the Martin Trust Center for MIT Entrepreneurship, the Venture Mentoring Service, and the Technology Licensing Office, among other initiatives. “Having a lab where we could think about … translating the technology to real-world applications, and having this ability to meet people, and bounce ideas … that whole MIT ecosystem was key,” Varanasi says.

Here’s the latest LiquiGlide video,


Credits:

Video: Melanie Gonick/MIT
Additional footage courtesy of LiquiGlide™
Music sampled from “Candlepower” by Chris Zabriskie
https://freemusicarchive.org/music/Ch…
http://creativecommons.org/licenses/b…

I had thought the EU (European Union) offered more roadblocks to marketing nanotechnology-enabled products used in food packaging than the US. If anyone knows why a US company would market its products in Europe first I would love to find out.

Discovering why your teeth aren’t perfectly crack-resistant

This helps make your teeth crack-resistant?

Caption: Illustration shows complex biostructure of dentin: the dental tubuli (yellow hollow cylinders, diameters appr. 1 micrometer) are surrounded by layers of mineralized collagen fibers (brown rods). The tiny mineral nanoparticles are embedded in the mesh of collagen fibers and not visible here. Credit: JB Forien @Charité

Caption: Illustration shows complex biostructure of dentin: the dental tubuli (yellow hollow cylinders, diameters appr. 1 micrometer) are surrounded by layers of mineralized collagen fibers (brown rods). The tiny mineral nanoparticles are embedded in the mesh of collagen fibers and not visible here. Credit: JB Forien @Charité

A June 10, 2015 Helmholtz Zentrum Berlin (HZB) press release (also on EurekAlert) explains how the illustration above relates to the research,

Human teeth have to serve for a lifetime, despite being subjected to huge forces. But the high failure resistance of dentin in teeth is not fully understood. An interdisciplinary team led by scientists of Charite Universitaetsmedizin Berlin has now analyzed the complex structure of dentin. At the synchrotron sources BESSY II at HZB, Berlin, Germany, and the European Synchrotron Radiation Facility ESRF, Grenoble, France, they could reveal that the mineral particles are precompressed.

The internal stress works against crack propagation and increases resistance of the biostructure.

Engineers use internal stresses to strengthen materials for specific technical purposes. Now it seems that evolution has long ‘known’ about this trick, and has put it to use in our natural teeth. Unlike bones, which are made partly of living cells, human teeth are not able to repair damage. Their bulk is made of dentin, a bonelike material consisting of mineral nanoparticles. These mineral nanoparticles are embedded in collagen protein fibres, with which they are tightly connected. In every tooth, such fibers can be found, and they lie in layers, making teeth tough and damage resistant. Still, it was not well understood, how crack propagation in teeth can be stopped.

The press release goes on to describe the new research and the teams which investigated the role of the mineral nanoparticles with regard to compression and cracking,

Now researchers from Charite Julius-Wolff-Institute, Berlin have been working with partners from Materials Engineering Department of Technische Universitaets Berlin, MPI of Colloids and Interfaces, Potsdam and Technion – Israel Institute of Technology, Haifa, to examine these biostructures more closely. They performed Micro-beam in-situ stress experiments in the mySpot BESSY facility of HZB, Berlin, Germany and analyzed the local orientation of the mineral nanoparticles using the nano-imaging facility of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France.

When the tiny collagen fibers shrink, the attached mineral particles become increasingly compressed, the science team found out. “Our group was able to use changes in humidity to demonstrate how stress appears in the mineral in the collagen fibers, Dr. Paul Zaslansky from Julius Wolff-Institute of Charite Berlin explains. “The compressed state helps to prevents cracks from developing and we found that compression takes place in such a way that cracks cannot easily reach the tooth inner parts, which could damage the sensitive pulp. In this manner, compression stress helps to prevent cracks from rushing through the tooth.

The scientists also examined what happens if the tight mineral-protein link is destroyed by heating: In that case, dentin in teeth becomes much weaker. We therefore believe that the balance of stresses between the particles and the protein is important for the extended survival of teeth in the mouth, Charite scientist Jean-Baptiste Forien says. Their results may explain why artificial tooth replacements usually do not work as well as healthy teeth do: they are simply too passive, lacking the mechanisms found in the natural tooth structures, and consequently fillings cannot sustain the stresses in the mouth as well as teeth do. “Our results might inspire the development of tougher ceramic structures for tooth repair or replacement, Zaslansky hopes.

Experiments took place as part of the DFG project “Biomimetic Materials Research: Functionality by Hierarchical Structuring of Materials (SPP1420).

Here’s a link to and a citation for the paper,

Compressive Residual Strains in Mineral Nanoparticles as a Possible Origin of Enhanced Crack Resistance in Human Tooth Dentin by Jean-Baptiste Forien, Claudia Fleck, Peter Cloetens, Georg Duda, Peter Fratzl, Emil Zolotoyabko, and Paul Zaslansky. Nano Lett., 2015, 15 (6), pp 3729–3734 DOI: 10.1021/acs.nanolett.5b00143 Publication Date (Web): May 26, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

ASCENT: access to European Nanoelectronics Infrastructure

ASCENT is an Irish-French-Belgian-led collaborative project designed to open up state of the state-of-the-art facilities to researchers across Europe. From a June 10, 2015 news item on Nanowerk,

ASCENT opens the doors to the world’s most advanced nanoelectronics infrastructures in Europe. Tyndall National Institute in Ireland, CEA-Leti in France and imec in Belgium, leading European nanoelectronics institutes, have entered into a collaborative open-access project called ASCENT (Access to European Nanoelectronics Network), to mobilise European research capabilities like never before.

The €4.7 million project will make the unique research infrastructure of three of Europe’s premier research centres available to the nanoelectronics modelling-and-characterisation research community.

A June 10, 2015 Imec press release, which originated the news item, expands on the theme,

The three partners will provide researchers access to advanced device data, test chips and characterisation equipment. This access programme will enable the research community to explore exciting new developments in industry and meet the challenges created in an ever-evolving and demanding digital world.

The partners’ respective facilities are truly world-class, representing over €2 billion of combined research infrastructure with unique credentials in advanced semiconductor processing, nanofabrication, heterogeneous and 3D integration, electrical characterisation and atomistic and TCAD modelling. This is the first time that access to these state-of-the-art devices and test structures will become available anywhere in the world.

The project will engage industry directly through an ‘Industry Innovation Committee’ and will feed back the results of the open research to device manufacturers, giving them crucial information to improve the next generation of electronic devices.

Speaking on behalf of project coordinator, Tyndall National Institute, CEO Dr. Kieran Drain said: “We are delighted to coordinate the ASCENT programme and to be partners with world-leading institutes CEA-Leti and imec. Tyndall has a great track record in running successful collaborative open-access programmes, delivering real economic and societal impact. ASCENT has the capacity to change the paradigm of European research through unprecedented access to cutting-edge technologies. We are confident that ASCENT will ensure that Europe remains at the forefront of global nanoelectronics development.”

“The ASCENT project is an efficient, strategic way to open the complementary infrastructure and expertise of Tyndall, Leti and imec to a broad range of researchers from Europe’s nanoelectronics modelling-and-characterisation sectors,” said Leti CEO Marie-Noëlle Semeria. “Collaborative projects like this, that bring together diverse, dedicated and talented people, have synergistic affects that benefit everyone involved, while addressing pressing technological challenges.”

“In the frame of the ASCENT project, three of Europe’s leading research institutes – Tyndall, imec and Leti – join forces in supporting the EU research and academic community, SMEs and industry by providing access to test structures and electrical data of state-of-the-art semiconductor technologies,” stated Luc Van den hove, CEO of imec. “This will enable them to explore exciting new opportunities in the ‘More Moore’ [probably a Moore’s law reference] as well as the ‘More than Moore’ domains, and will allow them to participate and compete effectively on the global stage for the development of advanced nano-electronics.”

I’m curious as to how they plan to balance industry requests with academic requests. Will organizations that can afford to pay more get preference?

A race to find substitutes for graphene?

I have two items concerning research which seeks to replace graphene in one application or other.

Black phosporus and the École Polytechniqe de Montréal

A June 2, 2015 news item on Nanotechnology Now features work on developing a two-dimensional black phosphorus material, 2D phosphane,

A team of researchers from Universite de Montreal, Polytechnique Montreal and the Centre national de la recherche scientifique (CNRS) in France is the first to succeed in preventing two-dimensional layers of black phosphorus from oxidating. In so doing, they have opened the doors to exploiting their striking properties in a number of electronic and optoelectronic devices. …

Black phosphorus, a stable allotrope of phosphorus that presents a lamellar structure similar to that of graphite, has recently begun to capture the attention of physicists and materials researchers. It is possible to obtain single atomic layers from it, which researchers call 2D phosphane. A cousin of the widely publicized graphene, 2D phosphane brings together two very sought-after properties for device design.

A June 2, 2015 École Polytechniqe de Montréal news release, which originated the news item, expands on why 2D phosphane is an appealing material,

First, 2D phosphane is a semiconductor material that provides the necessary characteristics for making transistors and processors. With its high-mobility, it is estimated that 2D phosphane could form the basis for electronics that is both high-performance and low-cost.

Furthermore, this new material features a second, even more distinctive, characteristic: its interaction with light depends on the number of atomic layers used. One monolayer will emit red light, whereas a thicker sample will emit into the infrared. This variation makes it possible to manufacture a wide range of optoelectronic devices, such as lasers or detectors, in a strategic fraction of the electromagnetic spectrum.

The news release goes on to describe an important issue with phosphane and how the scientists addressed it,

Until now, the study of 2D phosphane’s properties was slowed by a major problem: in ambient  conditions, very thin layers of the material would degrade, to the point of compromising its future in the industry despite its promising potential.

As such, the research team has made a major step forward by succeeding in determining the physical mechanisms at play in this degradation, and in identifying the key elements that lead to the layers’ oxidation.

“We have demonstrated that 2D phosphane undergoes oxidation under ambient conditions, caused jointly by the presence of oxygen, water and light. We have also characterized the phenomenon’s evolution over time by using electron beam spectroscopy and Raman spectroscopy,” reports Professor Richard Martel of Université de Montréal’s Department of Chemistry.

Next, the researchers developed an efficient procedure for producing these very fragile single-atom layers and keeping them intact.

“We were able to study the vibration modes of the atoms in this new material. Since earlier studies had been carried out on heavily degraded materials, we revealed the as-yet-unsuspected effects of quantum confinement on atoms’ vibration modes,” notes Professor Sébastien Francoeur of Polytechnique’s Department of Engineering Physics.

The study’s results will help the world scientific community develop 2D phosphane’s very special properties with the aim of developing new nanotechnologies that could give rise to high-performance microprocessors, lasers, solar cells and more.

Here’s a link to and a citation for the paper,

Photooxidation and quantum confinement effects in exfoliated black phosphorus by Alexandre Favron, Etienne Gaufrès, Frédéric Fossard, Anne-Laurence Phaneuf-L’Heureux, Nathalie Y-W. Tang, Pierre L. Lévesque, Annick Loiseau, Richard Leonelli, Sébastien Francoeur, & Richard Martel. Nature Materials (2015)  doi:10.1038/nmat4299 Published online 25 May 2015

This paper is behind a paywall.

Now. for the second item about replacing graphene.

China’s new aerogel, a rival to graphene aerogels?

A June 2, 2015 American Institute of Physics news release (also on EurekAlert) describes research into an alternative to expensive graphene aerogels,

The electromagnetic radiation discharged by electronic equipment and devices is known to hinder their smooth operation. Conventional materials used today to shield from incoming electromagnetic waves tend to be sheets of metal or composites, which rely on reflection as a shielding mechanism.

But now, materials such as graphene aerogels are gaining traction as more desirable alternatives because they act as electromagnetic absorbers. They’re widely expected to improve energy storage, sensors, nanoelectronics, catalysis and separations, but graphene aerogels are prohibitively expensive and difficult to produce for large-scale applications because of the complicated purification and functionalization steps involved in their fabrication.

So a team of researchers in China set out to design a cheaper material with properties similar to a graphene aerogel–in terms of its conductivity, as well as a lightweight, anticorrosive, porous structure. In the journal Applied Physics Letters, from AIP Publishing, the researchers describe the new material they created and its performance.

Aming Xie, an expert in organic chemistry, and Fan Wu, both affiliated with PLA University of Science and Technology, worked with colleagues at Nanjing University of Science and Technology to tap into organic chemistry and conducting polymers to fabricate a three-dimensional (3-D) polypyrrole (PPy) aerogel-based electromagnetic absorber.

They chose to concentrate on this method because it enables them to “regulate the density and dielectric property of conducting polymers through the formation of pores during the oxidation polymerization of the pyrrole monomer,” explained Wu.

And the fabrication process is a simple one. “It requires only four common chemical reagents: pyrrole, ferric chloride (FeCl3), ethanol and water — which makes it cheap enough and enables large-scale fabrication,” Wu said. “We’re also able to pour the FeCl3 solution directly into the pyrrole solution — not drop by drop — to force the pyrrole to polymerize into a 3-D aerogel rather than PPy particles.”

In short, the team’s 3-D PPy aerogel is designed to exhibit “desirable properties such as a porous structure and low density,” Wu noted.

Beyond that, its electromagnetic absorption performance — with low loss — shows great promise. “We believe a ‘wide’ absorption range is more useful than high absorption within one frequency,” Wu said. Compared with previous works, the team’s new aerogel has the lowest adjunction and widest effective bandwidth — with a reflection loss below -10 decibels.

In terms of applications, based on the combination of low adjunction and a “wide” effective bandwidth, the researchers expect to see their 3-D PPy aerogel used in surface coatings for aircraft.

Another potential application is as coatings within the realm of corrosion prevention and control. “Common anticorrosion coatings contain a large amount of zinc (70 to 80 percent by weight), and these particles not only serve as a cathode by corroding to protect the iron structure but also to maintain a suitable conductivity for the electrochemistry process,” Wu pointed out. “If our 3-D PPy aerogel could build a conductivity network in this type of coating, the loss of zinc particles could be rapidly reduced.”

The team is now taking their work a step further by pursuing a 3-D PPy/PEDOT-based (poly(3,4-ethylenedioxythiophene) electromagnetic absorber. “Our goal is to grow solid-state polymerized PEDOT particles in the holes of the 3-D PPy aerogel formed by PPy chains,” Wu added.

Here’s a link to and a citation for the paper,

Self-assembled ultralight three-dimensional polypyrrole aerogel for effective electromagnetic absorption by Aming Xie, Fan Wu, Mengxiao Sun, Xiaoqing Dai, Zhuanghu Xu, Yanyu Qiu, Yuan Wang, and Mingyang Wang. Appl. Phys. Lett. 106, 222902 (2015); http://dx.doi.org/10.1063/1.4921180

This paper is open access.

The Russians diagnose graphene’s quality and spatial imaging reactivity

Most of the marvelous things scientists talk about with regard to graphene require a relatively defect-free (perfect) material, from a May 8, 2015 news item on ScienceDaily,

Graphene and related 2D materials are anticipated to become the compounds of the century. It is not surprising — graphene is extremely thin and strong, as well as possesses outstanding electrical and thermal characteristics. The impact of material with such unique properties may be really impressive. Scientists [foresee] the imminent appearance of novel biomedical applications, new generation of smart materials, highly efficient light conversion and photocatalysis reinforced by graphene. However, the stumbling block is that many unique properties and capabilities are related to only perfect graphene with controlled number of defects. [emphasis mine] However, in reality ideal defect-free graphene surface is difficult to prepare and defects may have various sizes and shapes. In addition, dynamic behaviour and fluctuations make the defects difficult to locate. The process of scanning of large areas of graphene sheets in order to find out defect locations and to estimate the quality of the material is a time-consuming task. Let alone a lack of simple direct methods to capture and visualize defects on the carbon surface.

A May 8, 2014 Institute of Organic Chemisty (Russian Academy of Sciences) news release on EurekAlert, which originated the news item, offers more detail about the new technique for determining graphene quality and imaging carbon reactivity centres,

[A] [j]oint research project carried out by Ananikov and co-workers revealed [a] specific contrast agent — soluble palladium complex — that selectively attaches to defect areas on the surface of carbon materials. Pd attachment leads to formation of nanoparti[cl]es, which can be easily detected using a routine electron microscope. The more reactive the carbon center is, the stronger is the binding of contrast agent in the imaging procedure. Thus, reactivity centers and defect sites on a carbon surface were mapped in three-dimensional space with high resolution and excellent contrast using a handy nanoscale imaging procedure. The developed procedure distinguished carbon defects not only due to difference in their morphology, but also due to varying chemical reactivity. Therefore, this imaging approach enables the chemical reactivity to be visualized with spatial resolution.

Mapping carbon reactivity centers with “Pd markers” gave unique insight into the reactivity of the graphene layers. As revealed in the study, more than 2000 reactive centers can be located per 1 μm2 of the surface area of regular carbon material. The study pointed out the spatial complexity of the carbon material at the nanoscale. Mapping of surface defect density showed substantial gradients and variations across the surface area, which can possess a kind of organized structures of defects.

Medical application of imaging (tomography) for diagnostics, including the usage of contrast agents for more accuracy and easier observation, has proven its utility for many years. The present study highlights a new possibility in tomography applications to run diagnostics of materials at atomic scale.

Here’s a link to and a citation for the paper,

Spatial imaging of carbon reactivity centers in Pd/C catalytic systems by E. O. Pentsak, A. S. Kashin, M. V. Polynski, K. O. Kvashnina, P. Glatzel, and V. P. Ananikov.  Chem. Sci., 2015, Advance Article DOI: 10.1039/C5SC00802F
First published online 08 May 2015

This paper is open access.

2015 Science & You, a science communication conference in France

Science communicators can choose to celebrate June 2015 in Nancy, France and acquaint themselves with the latest and greatest in communication at the Science & You conference being held from June 1 – 6, 2015. Here’s the conference teaser being offered by the organizers,

The 2015 conference home page (ETA May 5, 2015 1045 hours PDT: the home page features change) offers this sampling of the workshops on offer,

No less than 180 communicators will be lined up to hold workshop sessions, from the 2nd to the 5th June in Nancy’s Centre Prouvé. In the meantime, here is an exclusive peek at some of the main themes which will be covered:

– Science communication and journalism. Abdellatif Bensfia will focus on the state of science communication in a country where major social changes are playing out, Morocco, while Olivier Monod will be speaking about “Chercheurs d’actu” (News Researchers), a system linking science with the news. Finally, Matthieu Ravaud and Fabrice Impériali from the CNRS (Centre National de Recherche Scientifique) will be presenting “CNRS Le journal”, the new on-line media for the general public.

– Using animals in biomedical research. This round-table, chaired by Victor Demaria-Pesce, from the Groupement Interprofessionnel de Réflexion et de Communication sur la Recherche (Gircor) will provide an opportunity to spotlight one of society’s great debates: the use of animals in research. Different actors working in biomedical research will present their point of view on the subject, and the results of an analysis of public perception of animal experimentation will be presented. What are the norms in this field? What are the living conditions of the animals in laboratories? How is this research to be made legitimate? This session will centre on all these questions.

– Science communication and the arts. This session will cover questions such as the relational interfaces between art and science, with in particular the presentation of “Pulse Project” with Michelle Lewis-King, and the Semaine du Cerveau (Brain Week) in Grenoble (Isabelle Le Brun).
Music will also be there with the talk by Milla Karvonen from the University of Oulu, who will be speaking about the interaction between science and music, while Philippe Berthelot will talk about the art of telling the story of science as a communication tool.

– Science on television. This workshop will also be in the form of a round table, with representatives from TVV (Vigyan Prasar, Inde), and Irene Lapuente (La Mandarina de Newton), Mico Tatalovic and Elizabeth Vidal (University of Cordoba), discussing how the world of science is represented on a mass media like television. Many questions will be debated, as for example the changing image of science on television, its historical context, or again, the impact these programmes have on audiences’ perceptions of science.

To learn more, you will find the detailed list of all the workshops and plenaries in the provisional programme on-line.

Science & You seems to be an ‘umbrella brand’ for the “Journées Hubert Curien” conference with plenaries and workshops and the “Science and Culture” forum, which may explain the variety of dates (June 1 – 6, June 2 – 5, and June 2 – 6) on the Science & You home page.

Here’s information about the Science & You organizers and more conference dates (from the Patrons page),

At the invitation of the President of the Université de Lorraine, the professors Etienne Klein, Cédric Villani and Brigitte Kieffer accepted to endorse Science & You. It is an honour to be able to associate them with this major event in science communication, in which they are particularly involved.

Cédric Villani, Fields Medal 2010

Cédric Villani is a French mathematician, the Director of the Institut Henri Poincaré and a professor at the Université Claude Bernard Lyon 1.
His main research interests are in kinetic theory (Boltzmann and Vlasov equations and their variants), and optimal transport and its applications (Monge equation).
He has received several national and international awards for his research, in particular the Fields Medal, which he received from the hands of the President of India at the 2010 International Congress of Mathematicians in Hyderabad (India). Since then he has played the role of spokesperson for the French mathematical community in media and political circles.
Cédric Villani regularly invests in science communication aiming at various audiences: conferences in schools, public conferences in France and abroad, regular participation in broadcasts and current affairs programmes and in science festivals.


Etienne Klein, physicist and philosopher

Etienne Klein is a French physicist, Director of Research at the CEA (Commissariat à l’énergie atomique et aux énergies alternatives – Alternative Energies and Atomic Energy Commission) and has a Ph.D. in philosophy of science. He teaches at the Ecole Centrale in Paris and is head of the Laboratoire de Recherche sur les Sciences de la Matière (LARSIM) at the CEA.

He has taken part in several major projects, such as developing a method of isotope separation involving the use of lasers, and the study of a particle accelerator with superconducting cavities. He was involved in the design of the Large Hadron Collider (LHC) at CERN.
He taught quantum physics and particle physics at Ecole Centrale in Paris for several years and currently teaches philosophy of science. He is a specialist on time in physics and is the author of a number of essays.
He is also a member of the OPECST (Conseil de l’Office parlementaire d’évaluation des choix scientifiques et technologiques – Parliamentary Office for the Evaluation of Scientific and Technological Choices), of the French Academy of Technologies, and of the Conseil d’Orientation (Advisory Board) of the Institut Diderot.
Until June 2014, he presented a weekly radio chronicle, Le Monde selon Etienne Klein, on the French national radio France Culture.

Photo by Philippe Matsas © Flammarion


Brigitte Kieffer, Campaigner for women in science

B. L. Kieffer is Professor at McGill University and at the Université de Strasbourg France. She is also Visiting Professor at UCLA (Los Angeles, USA). She develops her research activity at IGBMC, one of the leading European centres of biomedical research. She is recipient of the Jules Martin (French Academy of Science, 2001) and the Lounsbery (French and US Academies of Science, 2004) Awards, and has become an EMBO Member in 2009.
In 2012 she received the Lamonica Award of Neurology (French Academy of Science) and was nominated Chevalier de la Légion d’honneur. In December 2013 she was elected as a member of the French Academy of Sciences.
In March 2014, she received the International L’OREAL-UNESCO Award for Women in Science (European Laureate). She started as the Scientific Director of the Douglas Hospital Research Centre, affiliated to McGill University in January 2014, and remains Professor at the University of Strasbourg, France.

Photo by Julian Dufort

Here’s more about the conference at the heart of Science & You (from The Journées Hubert Curien International Conference webpage),

Following on the 2012 conference, this project will bring together all those interested in science communication: researchers, PhD students, science communicators, journalists, professionals from associations and museums, business leaders, politicians… A high-level scientific committee has been set up for this international conference, chaired by Professor Joëlle Le Marec, University of Paris 7, and counting among its members leading figures in science communication such as Bernard Schiele (Canada) or Hester du Plessis (South Africa).

The JHC Conference will take place from June 2nd to 6th at the Centre Prouvé, Nancy. These four days will be dedicated to a various programme of plenary conferences and workshops on the theme of science communication today and tomorrow.

You can find the Registration webpage here where you can get more information about the process and access the registration form.

Electronic organic micropump for direct drug delivery to the brain

I can understand the appeal but have some questions about this micropump in the brain concept. First, here’s more about the research from an April 16, 2015 news item on Nanowerk,

Many potentially efficient drugs have been created to treat neurological disorders, but they cannot be used in practice. Typically, for a condition such as epilepsy, it is essential to act at exactly the right time and place in the brain. For this reason, the team of researchers led by Christophe Bernard at Inserm Unit 1106, “Institute of Systems Neuroscience” (INS), with the help of scientists at the École des Mines de Saint-Étienne and Linköping University (Sweden) have developed an organic electronic micropump which, when combined with an anticonvulsant drug, enables localised inhibition of epileptic seizure in brain tissue in vitro.

An April 16, 2015 INSERM (Institut national de la santé et de la recherche médicale) press release on EurekAlert, which originated the news item, goes on to describe the problem the researchers are attempting to solve and their solution to it,

Drugs constitute the most widely used approach for treating brain disorders. However, many promising drugs failed during clinical testing for several reasons:

  • they are diluted in potentially toxic solutions,
  • they may themselves be toxic when they reach organs to which they were not initially directed,
  • the blood-brain barrier, which separates the brain from the blood circulation, prevents most drugs from reaching their targets in the brain,
  • drugs that succeed in penetrating the brain will act in a non-specific manner, i.e. on healthy regions of the brain, altering their functions.

Epilepsy is a typical example of a condition for which many drugs could not be commercialised because of their harmful effects, when they might have been effective for treating patients resistant to conventional treatments [1].

During an epileptic seizure, the nerve cells in a specific area of the brain are suddenly activated in an excessive manner. How can this phenomenon be controlled without affecting healthy brain regions? To answer this question, Christophe Bernard’s team, in collaboration with a team led by George Malliaras at the Georges Charpak-Provence Campus of the École des Mines of Saint-Étienne and Swedish scientists led by Magnus Berggren from Linköping University, have developed a biocompatible micropump that makes it possible to deliver therapeutic substances directly to the relevant areas of the brain.

The micropump (20 times thinner than a hair) is composed of a membrane known as “cation exchange,” i.e., it has negative ions attached to its surface. It thus attracts small positively charged molecules, whether these are ions or drugs. When an electrical current is applied to it, the flow of electrons generated projects the molecules of interest toward the target area.

To enable validation of this new technique, the researchers reproduced the hyperexcitability of epileptic neurons in mouse brains in vitro. They then injected GABA, a compound naturally produced in the brain and that inhibits neurons, into this hyperactive region using the micropump. The scientists then observed that the compound not only stopped this abnormal activity in the target region, but, most importantly, did not interfere with the functioning of the neighbouring regions.

This technology may thus resolve all the above-mentioned problems, by allowing very localised action, directly in the brain and without peripheral toxicity.

“By combining electrodes, such as those used to treat Parkinson’s disease, with this micropump, it may be possible to use this technology to treat patients with epilepsy who are resistant to conventional treatments, and those for whom the side-effects are too great,” explains Christophe Bernard, Inserm Research Director.

Based on these initial results, the researchers are now working to move on to an in vivo animal model and the possibility of combining this high-technology system with the microchip they previously developed in 2013. The device could be embedded and autonomous. The chip would be used to detect the imminent occurrence of a seizure, in order to activate the pump to inject the drug at just the right moment. It may therefore be possible to control brain activity where and when it is needed.

In addition to epilepsy, this state-of-the-art technology, combined with existing drugs, offers new opportunities for many brain diseases that remain difficult to treat at this time.

###

[1] Epilepsy in brief

This disease, which affects nearly 50 million people in the world, is the most common neurological disorder after migraine.

The neuronal dysfunctions associated with epilepsy lead to attacks with variable symptoms, from loss of consciousness to disorders of movement, sensation or mood.

Despite advances in medicine, 30% of those affected are resistant to all treatments.

Here’s a link to and a citation for the paper,

Controlling Epileptiform Activity with Organic Electronic Ion Pumps by Adam Williamson, Jonathan Rivnay, Loïg Kergoat, Amanda Jonsson, Sahika Inal, Ilke Uguz, Marc Ferro, Anton Ivanov, Theresia Arbring-Sjöström, Daniel T. Simon, Magnus Berggren, George G. Malliaras, and Christophe Bernardi. Advanced Materials First published: 11 April 2015Full publication history DOI: 10.1002/adma.201500482

This paper is behind a paywall.

Finally, my questions. How does the pump get refilled once the drugs are used up? Do you get a warning when the drug supply is almost nil? How does that warning work? Does implanting the pump require brain surgery or is there a less intrusive fashion of placing this pump exactly where you want it to be? Once it’s been implanted, how do you find a pump  20 times thinner than a human hair?

For some reason this micropump brought back memories of working in high tech environments where developers would come up with all kinds of nifty ideas but put absolutely no thought into how these ideas might actually work once human human beings got their hands on the product. In any event, the micropump seems exciting and I hope researchers work out the kinks, implementationwise, before they’re implanted.

Interactive haiku from Canada’s National Film Board

This comes from an April 2, 2015 posting on Canada’s National Film Board blog,

Designed to surprise, move, and inspire thought, Interactive Haiku will be released throughout the month of April, with 4 stories launching today. The project will also be featured at this year’s Tribeca Film Festival, as part of Tribeca Film Institute Interactive’s “Interactive Playground.”

Recently, the NFB and ARTE [France, interactive platform] asked creators to experiment a new kind of short interactive work: the very short form, or digital equivalent of the haiku. The 12 winning proposals come from 6 different countries and were selected out of 162 submissions from 20 nations.

The projects are accessible online or via tablets.

All of the interactive haiku follow 10 creative rules. These include: a 60-second time limit; being accessible to an international audience, and creating an experience that nudges us to see the world differently.

Discover the first 4 of these bite-sized, mind-jolting experiences below, along with some creative footnoting, courtesy of their vanguard creators.

Don’t want to miss a haiku? Subscribe to receive an e-mail notification (top left corner)! A new haiku will be released every Monday and Thursday of April (except for Easter Monday.)

Here’s a description of the four haiku pieces released in the first batch (from the April 2, 2015 NFB posting),

Cat’s Cradle

by Thibaut Duverneix, David Drury, Jean-Maxime Couillard, Gentilhomme (Canada)

HAIKUS_03-CATS-CRADDLE_550px

A game of strings, frequencies, stars, and distances. Elegantly explore the theory of everything! (Experience Cat’s Cradle)

Who knew theoretical physics’ Superstring theory was such child’s play?!

“What is fascinating about [Superstring] theory is that it is extremely hard to prove – it forces mathematics and physics to work in an imaginary and deeply complex sandbox. The theory and its implications give rise to a wealth of poetic, even romantic, imagery, which is where our treatment begins.

In our interactive haiku, we propose a novel conception of this topic, treating it metaphorically with one of the most playful, simple and naive of childhood games: cat’s cradle.”

*

Speech Success

by Roc Albalat, Pau Artigas, Jorge Caballero and Marcel Pié (Spain)

HAIKUS_01-SPEECH-SUCCESS_550px

The crowd is huge, tightly packed, and merciless. All eyes are on you. Will you be cheered… or will you flame out? (Experience Speech Success)

“If the haiku is based on the poet’s amazement at the sight of nature, here we look at certain attitudes toward technology – our present environment.

[Our haiku] gives a parodic representation of online social relationships. The Internet works as a public screen through which we try to break our isolation and be recognized. Often, our public shows of vanity don’t find targets: that’s why we have created a virtual public. We’ve programmed this audience to react to mood: the spectators’ reaction varies according to the speaker’s emotional intensity. The aim is to be ironic about our attempts to be heard on the network: finally you find somebody on the other side of the screen that listens and understands you –  for 60 full seconds.”

*

Life is Short

by Florian Veltman and Baptiste Portefaix (France)

HAIKUS_11-LIFE-IS-SHORT_550px

From first to last words, everything goes by too fast. Relive the key moments of your life in a few seconds. (Experience Life is Short)

“As time goes by, our lives begin to appear shorter and shorter. And yet, we rarely take the time to stop and contemplate everything we’ve lived through and are still experiencing in the moment. Our haiku offers a quick opportunity to stop and reflect on time, memory, and our own inexorable demise. But pay attention! Life is Short can be only be enjoyed once – like life itself.”

*

Music is the Key of Life

by Theodor Twetman and Viktor Lanneld (Sweden)

HAIKUS_07-MUSIC-IN-THE-KEY-OF-LIFE_550px

Everyday objects possess an innate melody. Scan the barcodes of the objects around you and let the music play! (Experience Music is the Key of Life)

“Our haiku takes something ever-present but seldom noticed – the barcode – and makes it the star of the show. Relying on the camera, a tool seldom used in web applications, it brings interactivity beyond what’s on the screen, forcing the user to interact with physical objects that aren’t usually perceived as valuable or interesting.

In normal life, the barcode announces its presence with a simple beep noise when scanned at the supermarket. With our haiku, each code is given the opportunity to be noticed for its uniqueness, perhaps helping people notice and appreciate their beauty and the hard work they do.”

Enjoy!

PlasCarb: producing graphene and renewable hydrogen from food waster

I have two tidbits about PlasCarb the first being an announcement of its existence and the second an announcement of its recently published research. A Jan. 13, 2015 news item on Nanowerk describes the PlasCarb project (Note: A link has been removed),

The Centre for Process Innovation (CPI) is leading a European collaborative project that aims to transform food waste into a sustainable source of significant economic added value, namely graphene and renewable hydrogen.

The project titled PlasCarb will transform biogas generated by the anaerobic digestion of food waste using an innovative low energy microwave plasma process to split biogas (methane and carbon dioxide) into high value graphitic carbon and renewable hydrogen.

A Jan. 13, 2015 CPI press release, which originated the news item, describes the project and its organization in greater detail,

CPI  as the coordinator of the project is responsible for the technical aspects in the separation of biogas into methane and carbon dioxide, and separating of the graphitic carbon produced from the renewable hydrogen. The infrastructure at CPI allows for the microwave plasma process to be trialled and optimised at pilot production scale, with a future technology roadmap devised for commercial scale manufacturing.

Graphene is one of the most interesting inventions of modern times. Stronger than steel, yet light, the material conducts electricity and heat. It has been used for a wide variety of applications, from strengthening tennis rackets, spray on radiators, to building semiconductors, electric circuits and solar cells.

The sustainable creation of graphene and renewable hydrogen from food waste in provides a sustainable method towards dealing with food waste problem that the European Union faces. It is estimated that 90 million tonnes of food is wasted each year, a figure which could rise to approximately 126 million tonnes by 2020. In the UK alone, food waste equates to a financial loss to business of at least £5 billion per year.

Dr Keith Robson, Director of Formulation and Flexible Manufacturing at CPI said, “PlasCarb will provide an innovative solution to the problems associated with food waste, which is one of the biggest challenges that the European Union faces in the strive towards a low carbon economy.  The project will not only seek to reduce food waste but also use new technological methods to turn it into renewable energy resources which themselves are of economic value, and all within a sustainable manner.”

PlasCarb will utilise quality research and specialist industrial process engineering to optimise the quality and economic value of the Graphene and hydrogen, further enhancing the sustainability of the process life cycle.

Graphitic carbon has been identified as one of Europe’s economically critical raw materials and of strategic performance in the development of future emerging technologies. The global market for graphite, either mined or synthetic is worth over €10 billion per annum. Hydrogen is already used in significant quantities by industry and recognised with great potential as a future transport fuel for a low carbon economy. The ability to produce renewable hydrogen also has added benefits as currently 95% of hydrogen is produced from fossil fuels. Moreover, it is currently projected that increasing demand of raw materials from fossil sources will lead to price volatility, accelerated environmental degradation and rising political tensions over resource access.

Therefore, the latter stages of the project will be dedicated to the market uptake of the PlasCarb process and the output products, through the development of an economically sustainable business strategy, a financial risk assessment of the project results and a flexible financial model that is able to act as a primary screen of economic viability. Based on this, an economic analysis of the process will be determined. Through the development of a decentralised business model for widespread trans-European implementation, the valorisation of food waste will have the potential to be undertaken for the benefit of local economies and employment. More specifically, three interrelated post project exploitation markets have been defined: food waste management, high value graphite and RH2 sales.

PlasCarb is a 3-year collaborative project, co-funded under the European Union’s Seventh Framework Programme (FP7) and will further reinforce Europe’s leading position in environmental technologies and innovation in high value Carbon. The consortium is composed of eight partners led by CPI from five European countries, whose complimentary research and industrial expertise will enable the required results to be successfully delivered. The project partners are; The Centre for Process Innovation (UK), GasPlas AS (NO), CNRS (FR), Fraunhofer IBP (DE), Uvasol Ltd (UK), GAP Waste Management (UK), Geonardo Ltd. (HU), Abalonyx AS (NO).

You can find PlasCarb here.

The second announcement can be found in a PlasCarb Jan. 14, 2015 press release announcing the publication of research on heterostructures of graphene ribbons,

Few materials have received as much attention from the scientific world or have raised so many hopes with a view to their potential deployment in new applications as graphene has. This is largely due to its superlative properties: it is the thinnest material in existence, almost transparent, the strongest, the stiffest and at the same time the most strechable, the best thermal conductor, the one with the highest intrinsic charge carrier mobility, plus many more fascinating features. Specifically, its electronic properties can vary enormously through its confinement inside nanostructured systems, for example. That is why ribbons or rows of graphene with nanometric widths are emerging as tremendously interesting electronic components. On the other hand, due to the great variability of electronic properties upon minimal changes in the structure of these nanoribbons, exact control on an atomic level is an indispensable requirement to make the most of all their potential.

The lithographic techniques used in conventional nanotechnology do not yet have such resolution and precision. In the year 2010, however, a way was found to synthesise nanoribbons with atomic precision by means of the so-called molecular self-assembly. Molecules designed for this purpose are deposited onto a surface in such a way that they react with each other and give rise to perfectly specified graphene nanoribbons by means of a highly reproducible process and without any other external mediation than heating to the required temperature. In 2013 a team of scientists from the University of Berkeley and the Centre for Materials Physics (CFM), a mixed CSIC (Spanish National Research Council) and UPV/EHU (University of the Basque Country) centre, extended this very concept to new molecules that were forming wider graphene nanoribbons and therefore with new electronic properties. This same group has now managed to go a step further by creating, through this self-assembly, heterostructures that blend segments of graphene nanoribbons of two different widths.

The forming of heterostructures with different materials has been a concept widely used in electronic engineering and has enabled huge advances to be made in conventional electronics. “We have now managed for the first time to form heterostructures of graphene nanoribbons modulating their width on a molecular level with atomic precision. What is more, their subsequent characterisation by means of scanning tunnelling microscopy and spectroscopy, complemented with first principles theoretical calculations, has shown that it gives rise to a system with very interesting electronic properties which include, for example, the creation of what are known as quantum wells,” pointed out the scientist Dimas de Oteyza, who has participated in this project. This work, the results of which are being published this very week in the journal Nature Nanotechnology, therefore constitutes a significant success towards the desired deployment of graphene in commercial electronic applications.

Here’s a link to and a citation for the paper,

Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions by Yen-Chia Chen, Ting Cao, Chen Chen, Zahra Pedramrazi, Danny Haberer, Dimas G. de Oteyza, Felix R. Fischer, Steven G. Louie, & Michael F. Crommie. Nature Nanotechnology (2015) doi:10.1038/nnano.2014.307 Published online 12 January 2015

This article is behind a paywall but there is a free preview available via ReadCube access.

Do Tenebrionind beetles collect dew or condensation—a water issue at the nanoscale

Up until now, the research I’ve stumbled across about Tenebrionind beetles and their water-collecting ways has been from the US but this latest work comes from a France/Spain,/UK collaboration which focused on a specific question, exactly where do these beetles harvest their water from? A Dec. 8, 2014 news item on Nanotechnology Now describes this latest research,

Understanding how a desert beetle harvests water from dew could improve drinking water collection in dew condensers

Insects are full of marvels – and this is certainly the case with a beetle from the Tenebrionind family, found in the extreme conditions of the Namib desert. Now, a team of scientists has demonstrated that such insects can collect dew on their backs – and not just fog as previously thought. This is made possible by the wax nanostructure on the surface of the beetle’s elytra. … They bring us a step closer to harvesting dew to make drinking water from the humidity in the air. This, the team hopes, can be done by improving the water yield of man-made dew condensers that mimick the nanostructure on the beetle’s back.

A Dec. 8, 2014  Springer press release (also on EurekAlert), which originated the news item, describes how this research adds to the body of knowledge about the ability to harvest water from the air,

It was not clear from previous studies whether water harvested by such beetles came from dew droplets, in addition to fog. Whereas fog is made of ready-made microdroplets floating in the air, dew appears following the cooling of a substrate below air temperature. This then turns the humidity of air into tiny droplets of water because more energy – as can be measured through infrared emissions – is sent to the atmosphere than received by it. The cooling capability is ideal, they demonstrated, because the insect’s back demonstrates near-perfect infrared emissivity.

Guadarrama-Cetina [José Guadarrama-Cetina] and colleagues also performed an image analysis of dew drops forming on the insect’s back on the surface of the elytra, which appears as a series of bumps and valleys. Dew primarily forms in the valleys endowed with a hexagonal microstructure, they found, unlike the smooth surface of the bumps. This explains how drops can slide to the insect’s mouth when they reach a critical size.

Here’s a link to and a citation for the paper,

Dew condensation on desert beetle skin by J.M. Guadarrama-Cetina, A. Mongruel, M.-G. Medici, E. Baquero, A.R. Parker, I. Milimouk-Melnytchuk, W. González-Viñas, and D. Beysens. Eur. Phys. J. E (European Physics Journal E 2014) 37: 109, DOI 10.1140/epje/i2014-14109-y

This paper is currently (Dec. 8, 2014) open access. I do not know if this will be permanent or if access rights will change over time.

My previous postings on the topic of water and beetles have focused on US research of the Stenocara beetle (aka Namib desert beetle) which appears to be a member of the Tenebrionind family of beetles mentioned in this latest research.

The European researchers have provided an image of the beetle they were examining,

A preserved specimen of the Tenebrionind beetle (Physasterna cribripes) was used for this study, displaying the insect’s mechanisms of dew harvesting. © J.M. Guadarrama-Cetina et al.

A preserved specimen of the Tenebrionind beetle (Physasterna cribripes) was used for this study, displaying the insect’s mechanisms of dew harvesting. © J.M. Guadarrama-Cetina et al.

As for my other pieces on this topic, there’s a July 29, 2014 post, a June 18, 2014 post, and a Nov. 26, 2012 post.