Tag Archives: France

Dancing quantum entanglement (Ap. 20 – 22, 2017) and performing mathematics (Ap. 26 – 30, 2017) in Vancouver, Canada

I have listings for two art/science events in Vancouver (Canada).

Dance, poetry and quantum entanglement

From April 20, 2017 (tonight) – April 22, 2017, there will be 8 p.m. performances of Lesley Telford’s ‘Three Sets/Relating At A Distance; My tongue, your ear / If / Spooky Action at a Distance (phase 1)’ at the Scotiabank Dance Centre, 677 Davie St, Yes, that third title is a reference to Einstein’s famous phrase describing his response of the concept of quantum entanglement.

An April 19, 2017 article by Janet Smith for the Georgia Straight features the dancer’s description of the upcoming performances,

One of the clearest definitions of quantum entanglement—a phenomenon Albert Einstein dubbed “spooky action at a distance”—can be found in a vampire movie.

In Jim Jarmusch’s Only Lovers Left Alive Tom Hiddleston’s depressed rock-star bloodsucker explains it this way to Tilda Swinton’s Eve, his centuries-long partner: “When you separate an entwined particle and you move both parts away from the other, even at opposite ends of the universe, if you alter or affect one, the other will be identically altered or affected.”

In fact, it was by watching the dark love story that Vancouver dance artist Lesley Telford learned about quantum entanglement—in which particles are so closely connected that they cannot act independently of one another, no matter how much space lies between them. She became fascinated not just with the scientific possibilities of the concept but with the romantic ones. …

 “I thought, ‘What a great metaphor,’ ” the choreographer tells the Straight over sushi before heading into a Dance Centre studio. “It’s the idea of quantum entanglement and how that could relate to human entanglement.…It’s really a metaphor for human interactions.”

First, though, as is so often the case with Telford, she needed to form those ideas into words. So she approached poet Barbara Adler to talk about the phenomenon, and then to have her build poetry around it—text that the writer will perform live in Telford’s first full evening of work here.

“Barbara talked a lot about how you feel this resonance with people that have been in your life, and how it’s tied into romantic connections and love stories,” Telford explains. “As we dig into it, it’s become less about that and more of an underlying vibration in the work; it feels like we’ve gone beyond that starting point.…I feel like she has a way of making it so down-to-earth and it’s given us so much food to work with. Are we in control of the universe or is it in control of us?”

Spooky Action at a Distance, a work for seven dancers, ends up being a string of duets that weave—entangle—into other duets. …

There’s more information about the performance, which concerns itself with more than quantum entanglement in the Scotiabank Dance Centre’s event webpage,

Lesley Telford’s choreography brings together a technically rigorous vocabulary and a thought-provoking approach, refined by her years dancing with Nederlands Dans Theater and creating for companies at home and abroad, most recently Ballet BC. This triple bill features an excerpt of a new creation inspired by Einstein’s famous phrase “spooky action at a distance”, referring to particles that are so closely linked, they share the same existence: a collaboration with poet Barbara Adler, the piece seeks to extend the theory to human connections in our phenomenally interconnected world. The program also includes a new extended version of If, a trio based on Anne Carson’s poem, and the duet My tongue, your ear, with text by Wislawa Szymborska.

Here’s what appears to be an excerpt from a rehearsal for ‘Spooky Action …’,

I’m not super fond of the atonal music/sound they’re using. The voice you hear is Adler’s and here’s more about Barbara Adler from her Wikipedia entry (Note: Links have been removed),

Barbara Adler is a musician, poet, and storyteller based in Vancouver, British Columbia. She is a past Canadian Team Slam Champion, was a founding member of the Vancouver Youth Slam, and a past CBC Poetry Face Off winner.[1]

She was a founding member of the folk band The Fugitives with Brendan McLeod, C.R. Avery and Mark Berube[2][3] until she left the band in 2011 to pursue other artistic ventures. She was a member of the accordion shout-rock band Fang, later Proud Animal, and works under the pseudonym Ten Thousand Wolves.[4][5][6][7][8]

In 2004 she participated in the inaugural Canadian Festival of Spoken Word, winning the Spoken Wordlympics with her fellow team members Shane Koyczan, C.R. Avery, and Brendan McLeod.[9][10] In 2010 she started on The BC Memory Game, a traveling storytelling project based on the game of memory[11] and has also been involved with the B.C. Schizophrenia Society Reach Out Tour for several years.[12][13][14] She is of Czech-Jewish descent.[15][16]

Barbara Adler has her bachelor’s degree and MFA from Simon Fraser University, with a focus on songwriting, storytelling, and community engagement.[17][18] In 2015 she was a co-star in the film Amerika, directed by Jan Foukal,[19][20] which premiered at the Karlovy Vary International Film Festival.[21]

Finally, Telford is Artist in Residence at the Dance Centre and TRIUMF, Canada’s national laboratory for particle and nuclear physics and accelerator-based science.

To buy tickets ($32 or less with a discount), go here. Telford will be present on April 21, 2017 for a post-show talk.

Pi Theatre’s ‘Long Division’

This theatrical performance of concepts in mathematics runs from April 26 – 30, 2017 (check here for the times as they vary) at the Annex at 823 Seymour St.  From the Georgia Straight’s April 12, 2017 Arts notice,

Mathematics is an art form in itself, as proven by Pi Theatre’s number-charged Long Division. This is a “refreshed remount” of Peter Dickinson’s ambitious work, one that circles around seven seemingly unrelated characters (including a high-school math teacher, a soccer-loving imam, and a lesbian bar owner) bound together by a single traumatic incident. Directed by Richard Wolfe, with choreography by Lesley Telford and musical score by Owen Belton, it’s a multimedia, movement-driven piece that has a strong cast. …

Here’s more about the play from Pi Theatre’s Long Division page,

Long Division uses text, multimedia, and physical theatre to create a play about the mathematics of human connection.

Long Division focuses on seven characters linked – sometimes directly, sometimes more obliquely – by a sequence of tragic events. These characters offer lessons on number theory, geometry and logic, while revealing aspects of their inner lives, and collectively the nature of their relationships to one another.

Playwright: Peter Dickinson
Director: Richard Wolfe
Choreographer: Lesley Telford, Inverso Productions
Composer: Owen Belton
Assistant Director: Keltie Forsyth

Cast:  Anousha Alamian, Jay Clift, Nicco Lorenzo Garcia, Jennifer Lines, Melissa Oei, LInda Quibell & Kerry Sandomirsky

Costume Designer: Connie Hosie
Lighting Designer: Jergus Oprsal
Set Designer: Lauchlin Johnston
Projection Designer: Jamie Nesbitt
Production Manager: Jayson Mclean
Stage Manager: Jethelo E. Cabilete
Assistant Projection Designer: Cameron Fraser
Lighting Design Associate: Jeff Harrison

Dates/Times: April 26 – 29 at 8pm, April 29 and 30 at 2pm
Student performance on April 27 at 1pm

A Talk-Back will take place after the 2pm show on April 29th.

Shawn Conner engaged the playwright, Peter Dickinson in an April 20, 2017 Q&A (question and answer) for the Vancouver Sun,

Q: Had you been working on Long Division for a long time?

A: I’d been working on it for about five years. I wrote a previous play called The Objecthood of Chairs, which has a similar style in that I combine lecture performance with physical and dance theatre. There are movement scores in both pieces.

In that first play, I told the story of two men and their relationship through the history of chair design. It was a combination of mining my research about that and trying to craft a story that was human and where the audience could find a way in. When I was thinking about a subject for a new play, I took the profession of one of the characters in that first play, who was a math teacher, and said, “Let’s see what happens to his character, let’s see where he goes after the breakup of his relationship.”

At first, I wrote it (Long Division) in an attempt at completely real, kitchen-sink naturalism, and it was a complete disaster. So I went back into this lecture-style performance.

Q: Long Division is set in a bar. Is the setting left over from that attempt at realism?

A: I guess so. It’s kind of a meta-theatrical play in the sense that the characters address the audience, and they’re aware they’re in a theatrical setting. One of the characters is an actress, and she comments on the connection between mathematics and theatre.

Q: This is being called a “refreshed” remount. What’s changed since its first run 

A: It’s mostly been cuts, and some massaging of certain sections. And I think it’s a play that actually needs a little distance.

Like mathematics, the patterns only reveal themselves at a remove. I think I needed that distance to see where things were working and where they could be better. So it’s a gift for me to be given this opportunity, to make things pop a little more and to make the math, which isn’t meant to be difficult, more understandable and relatable.

You may have noticed that Lesley Telford from Spooky Action is also choreographer for this production. I gather she’s making a career of art/science pieces, at least for now.

In the category of ‘Vancouver being a small town’, Telford lists a review of one of her pieces,  ‘AUDC’s Season Finale at The Playhouse’, on her website. Intriguingly, the reviewer is Peter Dickinson who in addition to being the playwright with whom she has collaborated for Pi Theatre’s ‘Long Division’ is also the Director of SFU’s (Simon Fraser University’s) Institute for Performance Studies. I wonder how many more ways these two crisscross professionally? Personally and for what it’s worth, it might be a good idea for Telford (and Dickinson, if he hasn’t already done so) to make readers aware of their professional connections when there’s a review at stake.

Final comment: I’m not sure how quantum entanglement or mathematics with the pieces attributed to concepts from those fields but I’m sure anyone attempting to make the links will find themselves stimulated.

ETA April 21, 2017: I’m adding this event even though the tickets are completely subscribed. There will be a standby line the night of the event (from the Peter Wall Institute for Advanced Studies The Hidden Beauty of Mathematics event page,

02 May 2017

7:00 pm (doors open at 6:00 pm)

The Vogue Theatre

918 Granville St.

Vancouver, BC

Register

Good luck!

Ferroelectric roadmap to neuromorphic computing

Having written about memristors and neuromorphic engineering a number of times here, I’m  quite intrigued to see some research into another nanoscale device for mimicking the functions of a human brain.

The announcement about the latest research from the team at the US Department of Energy’s Argonne National Laboratory is in a Feb. 14, 2017 news item on Nanowerk (Note: A link has been removed),

Research published in Nature Scientific Reports (“Ferroelectric symmetry-protected multibit memory cell”) lays out a theoretical map to use ferroelectric material to process information using multivalued logic – a leap beyond the simple ones and zeroes that make up our current computing systems that could let us process information much more efficiently.

A Feb. 10, 2017 Argonne National Laboratory news release by Louise Lerner, which originated the news item, expands on the theme,

The language of computers is written in just two symbols – ones and zeroes, meaning yes or no. But a world of richer possibilities awaits us if we could expand to three or more values, so that the same physical switch could encode much more information.

“Most importantly, this novel logic unit will enable information processing using not only “yes” and “no”, but also “either yes or no” or “maybe” operations,” said Valerii Vinokur, a materials scientist and Distinguished Fellow at the U.S. Department of Energy’s Argonne National Laboratory and the corresponding author on the paper, along with Laurent Baudry with the Lille University of Science and Technology and Igor Lukyanchuk with the University of Picardie Jules Verne.

This is the way our brains operate, and they’re something on the order of a million times more efficient than the best computers we’ve ever managed to build – while consuming orders of magnitude less energy.

“Our brains process so much more information, but if our synapses were built like our current computers are, the brain would not just boil but evaporate from the energy they use,” Vinokur said.

While the advantages of this type of computing, called multivalued logic, have long been known, the problem is that we haven’t discovered a material system that could implement it. Right now, transistors can only operate as “on” or “off,” so this new system would have to find a new way to consistently maintain more states – as well as be easy to read and write and, ideally, to work at room temperature.

Hence Vinokur and the team’s interest in ferroelectrics, a class of materials whose polarization can be controlled with electric fields. As ferroelectrics physically change shape when the polarization changes, they’re very useful in sensors and other devices, such as medical ultrasound machines. Scientists are very interested in tapping these properties for computer memory and other applications; but the theory behind their behavior is very much still emerging.

The new paper lays out a recipe by which we could tap the properties of very thin films of a particular class of ferroelectric material called perovskites.

According to the calculations, perovskite films could hold two, three, or even four polarization positions that are energetically stable – “so they could ‘click’ into place, and thus provide a stable platform for encoding information,” Vinokur said.

The team calculated these stable configurations and how to manipulate the polarization to move it between stable positions using electric fields, Vinokur said.

“When we realize this in a device, it will enormously increase the efficiency of memory units and processors,” Vinokur said. “This offers a significant step towards realization of so-called neuromorphic computing, which strives to model the human brain.”

Vinokur said the team is working with experimentalists to apply the principles to create a working system

Here’s a link to and a citation for the paper,

Ferroelectric symmetry-protected multibit memory cell by Laurent Baudry, Igor Lukyanchuk, & Valerii M. Vinokur. Scientific Reports 7, Article number: 42196 (2017) doi:10.1038/srep42196 Published online: 08 February 2017

This paper is open access.

Figuring out how stars are born by watching neutrons ‘quantum tunnelling’ on graphene

A Feb. 3, 2017 news item on Nanowerk announces research that could help us better understand how stars are ‘born’,

Graphene is known as the world’s thinnest material due to its 2D structure, where each sheet is only one carbon atom thick, allowing each atom to engage in a chemical reaction from two sides. Graphene flakes can have a very large proportion of edge atoms, all of which have a particular chemical reactivity.

In addition, chemically active voids created by missing atoms are a surface defect of graphene sheets. These structural defects and edges play a vital role in carbon chemistry and physics, as they alter the chemical reactivity of graphene. In fact, chemical reactions have repeatedly been shown to be favoured at these defect sites.

Interstellar molecular clouds are predominantly composed of hydrogen in molecular form (H2), but also contain a small percentage of dust particles mostly in the form of carbon nanostructures, called polyaromatic hydrocarbons (PAH). These clouds are often referred to as ‘star nurseries’ as their low temperature and high density allows gravity to locally condense matter in such a way that it initiates H fusion, the nuclear reaction at the heart of each star.

Graphene-based materials, prepared from the exfoliation of graphite oxide, are used as a model of interstellar carbon dust as they contain a relatively large amount of atomic defects, either at their edges or on their surface. These defects are thought to sustain the Eley-Rideal chemical reaction, which recombines two H atoms into one H2 molecule. The observation of interstellar clouds in inhospitable regions of space, including in the direct proximity of giant stars, poses the question of the origin of the stability of hydrogen in the molecular form (H2).

This question stands because the clouds are constantly being washed out by intense radiation, hence cracking the hydrogen molecules into atoms. Astrochemists suggest that the chemical mechanism responsible for the recombination of atomic H into molecular H2 is catalysed by carbon flakes in interstellar clouds.

A Feb. 2, 2017 Institut Laue-Langevin press release, which originated the news item, provides more insight into the research,

Their [astrochemists’s] theories are challenged by the need for a very efficient surface chemistry scenario to explain the observed equilibrium between dissociation and recombination. They had to introduce highly reactive sites into their models so that the capture of an atomic H nearby occurs without fail. These sites, in the form of atomic defects at the surface or edge of the carbon flakes, should be such that the C-H bond formed thereafter allows the H atom to be released easily to recombine with another H atom flying nearby.

A collaboration between the Institut Laue-Langevin (ILL), France, the University of Parma, Italy, and the ISIS Neutron and Muon Source, UK, combined neutron spectroscopy with density functional theory (DFT) molecular dynamics simulations in order to characterise the local environment and vibrations of hydrogen atoms chemically bonded at the surface of substantially defected graphene flakes. Additional analyses were carried out using muon spectroscopy (muSR) and nuclear magnetic resonance (NMR). As availability of the samples is very low, these highly specific techniques were necessary to study the samples; neutron spectroscopy is highly sensitive to hydrogen and allowed accurate data to be gathered at small concentrations.

For the first time ever, this study showed ‘quantum tunnelling’ in these systems, allowing the H atoms bound to C atoms to explore relatively long distances at temperatures as low as those in interstitial clouds. The process involves hydrogen ‘quantum hopping’ from one carbon atom to another in its direct vicinity, tunnelling through energy barriers which could not be overcome given the lack of heat in the interstellar cloud environment. This movement is sustained by the fluctuations of the graphene structure, which bring the H atom into unstable regions and catalyse the recombination process by allowing the release of the chemically bonded H atom. Therefore, it is believed that quantum tunnelling facilitates the reaction for the formation of molecular H2.

ILL scientist and carbon nanostructure specialist, Stéphane Rols says: “The question of how molecular hydrogen forms at the low temperatures in interstellar clouds has always been a driver in astrochemistry research. We’re proud to have combined spectroscopy expertise with the sensitivity of neutrons to identify the intriguing quantum tunnelling phenomenon as a possible mechanism behind the formation of H2; these observations are significant in furthering our understanding of the universe.”

Here’s a link to and a citation for the paper (which dates from Aug. 2016),

Hydrogen motions in defective graphene: the role of surface defects by Chiara Cavallari, Daniele Pontiroli, Mónica Jiménez-Ruiz, Mark Johnson, Matteo Aramini, Mattia Gaboardi, Stewart F. Parker, Mauro Riccó, and Stéphane Rols. Phys. Chem. Chem. Phys., 2016, Issue 36, 18, 24820-24824 DOI: 10.1039/C6CP04727K First published online 22 Aug 2016

This paper is behind a paywall.

Developing cortical implants for future speech neural prostheses

I’m guessing that graphene will feature in these proposed cortical implants since the project leader is a member of the Graphene Flagship’s Biomedical Technologies Work Package. (For those who don’t know, the Graphene Flagship is one of two major funding initiatives each receiving funding of 1B Euros over 10 years from the European Commission as part of their FET [Future and Emerging Technologies)] Initiative.)  A Jan. 12, 2017 news item on Nanowerk announces the new project (Note: A link has been removed),

BrainCom is a FET Proactive project, funded by the European Commission with 8.35M€ [8.3 million Euros] for the next 5 years, holding its Kick-off meeting on January 12-13 at ICN2 (Catalan Institute of Nanoscience and Nanotechnology) and the UAB [ Universitat Autònoma de Barcelona]. This project, coordinated by ICREA [Catalan Institution for Research and Advanced Studies] Research Prof. Jose A. Garrido from ICN2, will permit significant advances in understanding of cortical speech networks and the development of speech rehabilitation solutions using innovative brain-computer interfaces.

A Jan. 12, 2017 ICN2 press release, which originated the news item expands on the theme (it is a bit repetitive),

More than 5 million people worldwide suffer annually from aphasia, an extremely invalidating condition in which patients lose the ability to comprehend and formulate language after brain damage or in the course of neurodegenerative disorders. Brain-computer interfaces (BCIs), enabled by forefront technologies and materials, are a promising approach to treat patients with aphasia. The principle of BCIs is to collect neural activity at its source and decode it by means of electrodes implanted directly in the brain. However, neurorehabilitation of higher cognitive functions such as language raises serious issues. The current challenge is to design neural implants that cover sufficiently large areas of the brain to allow for reliable decoding of detailed neuronal activity distributed in various brain regions that are key for language processing.

BrainCom is a FET Proactive project funded by the European Commission with 8.35M€ for the next 5 years. This interdisciplinary initiative involves 10 partners including technologists, engineers, biologists, clinicians, and ethics experts. They aim to develop a new generation of neuroprosthetic cortical devices enabling large-scale recordings and stimulation of cortical activity to study high level cognitive functions. Ultimately, the BraimCom project will seed a novel line of knowledge and technologies aimed at developing the future generation of speech neural prostheses. It will cover different levels of the value chain: from technology and engineering to basic and language neuroscience, and from preclinical research in animals to clinical studies in humans.

This recently funded project is coordinated by ICREA Prof. Jose A. Garrido, Group Leader of the Advanced Electronic Materials and Devices Group at the Institut Català de Nanociència i Nanotecnologia (Catalan Institute of Nanoscience and Nanotechnology – ICN2) and deputy leader of the Biomedical Technologies Work Package presented last year in Barcelona by the Graphene Flagship. The BrainCom Kick-Off meeting is held on January 12-13 at ICN2 and the Universitat Autònoma de Barcelona (UAB).

Recent developments show that it is possible to record cortical signals from a small region of the motor cortex and decode them to allow tetraplegic [also known as, quadriplegic] people to activate a robotic arm to perform everyday life actions. Brain-computer interfaces have also been successfully used to help tetraplegic patients unable to speak to communicate their thoughts by selecting letters on a computer screen using non-invasive electroencephalographic (EEG) recordings. The performance of such technologies can be dramatically increased using more detailed cortical neural information.

BrainCom project proposes a radically new electrocorticography technology taking advantage of unique mechanical and electrical properties of novel nanomaterials such as graphene, 2D materials and organic semiconductors.  The consortium members will fabricate ultra-flexible cortical and intracortical implants, which will be placed right on the surface of the brain, enabling high density recording and stimulation sites over a large area. This approach will allow the parallel stimulation and decoding of cortical activity with unprecedented spatial and temporal resolution.

These technologies will help to advance the basic understanding of cortical speech networks and to develop rehabilitation solutions to restore speech using innovative brain-computer paradigms. The technology innovations developed in the project will also find applications in the study of other high cognitive functions of the brain such as learning and memory, as well as other clinical applications such as epilepsy monitoring.

The BrainCom project Consortium members are:

  • Catalan Institute of Nanoscience and Nanotechnology (ICN2) – Spain (Coordinator)
  • Institute of Microelectronics of Barcelona (CNM-IMB-CSIC) – Spain
  • University Grenoble Alpes – France
  • ARMINES/ Ecole des Mines de St. Etienne – France
  • Centre Hospitalier Universitaire de Grenoble – France
  • Multichannel Systems – Germany
  • University of Geneva – Switzerland
  • University of Oxford – United Kingdom
  • Ludwig-Maximilians-Universität München – Germany
  • Wavestone – Luxembourg

There doesn’t seem to be a website for the project but there is a BrainCom webpage on the European Commission’s CORDIS (Community Research and Development Information Service) website.

Nanotech business news from Turkey and from Northern Ireland

I have two nanotech business news bits, one from Turkey and one from Northern Ireland.

Turkey

A Turkish company has sold one of its microscopes to the US National Aeronautics and Space Administration (NASA), according to a Jan. 20, 2017 news item on dailysabah.com,

Turkish nanotechnology company Nanomanyetik has begun selling a powerful microscope to the U.S. space agency NASA, the company’s general director told Anadolu Agency on Thursday [Jan. 19, 2017].

Dr. Ahmet Oral, who also teaches physics at Middle East Technical University, said Nanomanyetik developed a microscope that is able to map surfaces on the nanometric and atomic levels, or extremely small particles.

Nanomanyetik’s foreign customers are drawn to the microscope because of its higher quality yet cheaper price compared to its competitors.

“There are almost 30 firms doing this work,” according to Oral. “Ten of them are active and we are among these active firms. Our aim is to be in the top three,” he said, adding that Nanomanyetik jumps to the head of the line because of its after-sell service.

In addition to sales to NASA, the Ankara-based firm exports the microscope to Brazil, Chile, France, Iran, Israel, Italy, Japan, Poland, South Korea and Spain.

Electronics giant Samsung is also a customer.

“Where does Samsung use this product? There are pixels in the smartphones’ displays. These pixels are getting smaller each year. Now the smallest pixel is 15X10 microns,” he said. Human hair is between 10 and 100 microns in diameter.

“They are figuring inner sides of pixels so that these pixels can operate much better. These patterns are on the nanometer level. They are using these microscopes to see the results of their works,” Oral said.

Nanomanyetik’s microscopes produces good quality, high resolution images and can even display an object’s atoms and individual DNA fibers, according to Oral.

You can find the English language version of the Nanomanyetik (NanoMagnetics Instruments) website here . For those with the language skills there is the Turkish language version, here.

Northern Ireland

A Jan. 22, 2017 news article by Dominic Coyle for The Irish Times (Note: Links have been removed) shares this business news and mention of a world first,

MOF Technologies has raised £1.5 million (€1.73 million) from London-based venture capital group Excelsa Ventures and Queen’s University Belfast’s Qubis research commercialisation group.

MOF Technologies chief executive Paschal McCloskey welcomed the Excelsa investment.

Established in part by Qubis in 2012 in partnership with inventor Prof Stuart James, MOF Technologies began life in a lab at the School of Chemistry and Chemical Engineering at Queen’s.

Its metal organic framework (MOF) technology is seen as having significant potential in areas including gas storage, carbon capture, transport, drug delivery and heat transformation. Though still in its infancy, the market is forecast to grow to £2.2 billion by 2022, the company says.

MOF Technologies last year became the first company worldwide to successfully commercialise MOFs when it agreed a deal with US fruit and vegetable storage provider Decco Worldwide to commercialise MOFs for use in a food application.

TruPick, designed by Decco and using MOF Technologies’ environmentally friendly technology, enables nanomaterials control the effects of ethylene on fruit produce so it maintains freshness in storage or transport.

MOFs are crystalline, sponge-like materials composed of two components – metal ions and organic molecules known as linkers.

“We very quickly recognised the market potential of MOFs in terms of their unmatched ability for gas storage,” said Moritz Bolle from Excelsa Ventures. “This technology will revolutionise traditional applications and open countless new opportunities for industry. We are confident MOF Technologies is the company that will lead this seismic shift in materials science.

You can find MOF Technologies here.

Drip dry housing

This piece on new construction materials does have a nanotechnology aspect although it’s not made clear exactly how nanotechnology plays a role.

From a Dec. 28, 2016 news item on phys.org (Note: A link has been removed),

The construction industry is preparing to use textiles from the clothing and footwear industries. Gore-Tex-like membranes, which are usually found in weather-proof jackets and trekking shoes, are now being studied to build breathable, water-resistant walls. Tyvek is one such synthetic textile being used as a “raincoat” for homes.

You can find out more about Tyvek here.on the Dupont website.

A Dec. 21, 2016 press release by Chiara Cecchi for Youris ((European Research Media Center), which originated the news item, proceeds with more about textile-type construction materials,

Camping tents, which have been used for ages to protect against wind, ultra-violet rays and rain, have also inspired the modern construction industry, or “buildtech sector”. This new field of research focuses on the different fibres (animal-based such as wool or silk, plant-based such as linen and cotton and synthetic such as polyester and rayon) in order to develop technical or high-performance materials, thus improving the quality of construction, especially for buildings, dams, bridges, tunnels and roads. This is due to the fibres’ mechanical properties, such as lightness, strength, and also resistance to many factors like creep, deterioration by chemicals and pollutants in the air or rain.

“Textiles play an important role in the modernisation of infrastructure and in sustainable buildings”, explains Andrea Bassi, professor at the Department of Civil and Environmental Engineering (DICA), Politecnico of Milan, “Nylon and fiberglass are mixed with traditional fibres to control thermal and acoustic insulation in walls, façades and roofs. Technological innovation in materials, which includes nanotechnologies [emphasis mine] combined with traditional textiles used in clothes, enables buildings and other constructions to be designed using textiles containing steel polyvinyl chloride (PVC) or ethylene tetrafluoroethylene (ETFE). This gives the materials new antibacterial, antifungal and antimycotic properties in addition to being antistatic, sound-absorbing and water-resistant”.

Rooflys is another example. In this case, coated black woven textiles are placed under the roof to protect roof insulation from mould. These building textiles have also been tested for fire resistance, nail sealability, water and vapour impermeability, wind and UV resistance.

Photo: Production line at the co-operative enterprise CAVAC Biomatériaux, France. Natural fibres processed into a continuous mat (biofib) – Martin Ansell, BRE CICM, University of Bath, UK

In Spain three researchers from the Technical University of Madrid (UPM) have developed a new panel made with textile waste. They claim that it can significantly enhance both the thermal and acoustic conditions of buildings, while reducing greenhouse gas emissions and the energy impact associated with the development of construction materials.

Besides textiles, innovative natural fibre composite materials are a parallel field of the research on insulators that can preserve indoor air quality. These bio-based materials, such as straw and hemp, can reduce the incidence of mould growth because they breathe. The breathability of materials refers to their ability to absorb and desorb moisture naturally”, says expert Finlay White from Modcell, who contributed to the construction of what they claim are the world’s first commercially available straw houses, “For example, highly insulated buildings with poor ventilation can build-up high levels of moisture in the air. If the moisture meets a cool surface it will condensate and producing mould, unless it is managed. Bio-based materials have the means to absorb moisture so that the risk of condensation is reduced, preventing the potential for mould growth”.

The Bristol-based green technology firm [Modcell] is collaborating with the European Isobio project, which is testing bio-based insulators which perform 20% better than conventional materials. “This would lead to a 5% total energy reduction over the lifecycle of a building”, explains Martin Ansell, from BRE Centre for Innovative Construction Materials (BRE CICM), University of Bath, UK, another partner of the project.

“Costs would also be reduced. We are evaluating the thermal and hygroscopic properties of a range of plant-derived by-products including hemp, jute, rape and straw fibres plus corn cob residues. Advanced sol-gel coatings are being deposited on these fibres to optimise these properties in order to produce highly insulating and breathable construction materials”, Ansell concludes.

You can find Modcell here.

Here’s another image, which I believe is a closeup of the processed fibre shown in the above,

Production line at the co-operative enterprise CAVAC Biomatériaux, France. Natural fibres processed into a continuous mat (biofib) – Martin Ansell, BRE CICM, University of Bath, UK [Note: This caption appears to be a copy of the caption for the previous image]

Sniffing out disease (Na-Nose)

The ‘artificial nose’ is not a newcomer to this blog. The most recent post prior to this is a March 15, 2016 piece about Disney using an artificial nose for art conservation. Today’s (Jan. 9, 2016) piece concerns itself with work from Israel and ‘sniffing out’ disease, according to a Dec. 30, 2016 news item in Sputnik News,

A team from the Israel Institute of Technology has developed a device that from a single breath can identify diseases such as multiple forms of cancer, Parkinson’s disease, and multiple sclerosis. While the machine is still in the experimental stages, it has a high degree of promise for use in non-invasive diagnoses of serious illnesses.

The international team demonstrated that a medical theory first proposed by the Greek physician Hippocrates some 2400 years ago is true, certain diseases leave a “breathprint” on the exhalations of those afflicted. The researchers created a prototype for a machine that can pick up on those diseases using the outgoing breath of a patient. The machine, called the Na-Nose, tests breath samples for the presence of trace amounts of chemicals that are indicative of 17 different illnesses.

A Dec. 22, 2016 Technion Israel Institute of Technology press release offers more detail about the work,

An international team of 56 researchers in five countries has confirmed a hypothesis first proposed by the ancient Greeks – that different diseases are characterized by different “chemical signatures” identifiable in breath samples. …

Diagnostic techniques based on breath samples have been demonstrated in the past, but until now, there has not been scientific proof of the hypothesis that different and unrelated diseases are characterized by distinct chemical breath signatures. And technologies developed to date for this type of diagnosis have been limited to detecting a small number of clinical disorders, without differentiation between unrelated diseases.

The study of more than 1,400 patients included 17 different and unrelated diseases: lung cancer, colorectal cancer, head and neck cancer, ovarian cancer, bladder cancer, prostate cancer, kidney cancer, stomach cancer, Crohn’s disease, ulcerative colitis, irritable bowel syndrome, Parkinson’s disease (two types), multiple sclerosis, pulmonary hypertension, preeclampsia and chronic kidney disease. Samples were collected between January 2011 and June 2014 from in 14 departments at 9 medical centers in 5 countries: Israel, France, the USA, Latvia and China.

The researchers tested the chemical composition of the breath samples using an accepted analytical method (mass spectrometry), which enabled accurate quantitative detection of the chemical compounds they contained. 13 chemical components were identified, in different compositions, in all 17 of the diseases.

According to Prof. Haick, “each of these diseases is characterized by a unique fingerprint, meaning a different composition of these 13 chemical components.  Just as each of us has a unique fingerprint that distinguishes us from others, each disease has a chemical signature that distinguishes it from other diseases and from a normal state of health. These odor signatures are what enables us to identify the diseases using the technology that we developed.”

With a new technology called “artificially intelligent nanoarray,” developed by Prof. Haick, the researchers were able to corroborate the clinical efficacy of the diagnostic technology. The array enables fast and inexpensive diagnosis and classification of diseases, based on “smelling” the patient’s breath, and using artificial intelligence to analyze the data obtained from the sensors. Some of the sensors are based on layers of gold nanoscale particles and others contain a random network of carbon nanotubes coated with an organic layer for sensing and identification purposes.

The study also assessed the efficiency of the artificially intelligent nanoarray in detecting and classifying various diseases using breath signatures. To verify the reliability of the system, the team also examined the effect of various factors (such as gender, age, smoking habits and geographic location) on the sample composition, and found their effect to be negligible, and without impairment on the array’s sensitivity.

“Each of the sensors responds to a wide range of exhalation components,” explain Prof. Haick and his previous Ph.D student, Dr. Morad Nakhleh, “and integration of the information provides detailed data about the unique breath signatures characteristic of the various diseases. Our system has detected and classified various diseases with an average accuracy of 86%.

This is a new and promising direction for diagnosis and classification of diseases, which is characterized not only by considerable accuracy but also by low cost, low electricity consumption, miniaturization, comfort and the possibility of repeating the test easily.”

“Breath is an excellent raw material for diagnosis,” said Prof. Haick. “It is available without the need for invasive and unpleasant procedures, it’s not dangerous, and you can sample it again and again if necessary.”

Here’s a schematic of the study, which the researchers have made available,

Diagram: A schematic view of the study. Two breath samples were taken from each subject, one was sent for chemical mapping using mass spectrometry, and the other was analyzed in the new system, which produced a clinical diagnosis based on the chemical fingerprint of the breath sample. Courtesy: Tech;nion

There is also a video, which covers much of the same ground as the press release but also includes information about the possible use of the Na-Nose technology in the European Union’s SniffPhone project,

Here’s a link to and a citation for the paper,

Diagnosis and Classification of 17 Diseases from 1404 Subjects via Pattern Analysis of Exhaled Molecules by Morad K. Nakhleh, Haitham Amal, Raneen Jeries, Yoav Y. Broza, Manal Aboud, Alaa Gharra, Hodaya Ivgi, Salam Khatib, Shifaa Badarneh, Lior Har-Shai, Lea Glass-Marmor, Izabella Lejbkowicz, Ariel Miller, Samih Badarny, Raz Winer, John Finberg, Sylvia Cohen-Kaminsky, Frédéric Perros, David Montani, Barbara Girerd, Gilles Garcia, Gérald Simonneau, Farid Nakhoul, Shira Baram, Raed Salim, Marwan Hakim, Maayan Gruber, Ohad Ronen, Tal Marshak, Ilana Doweck, Ofer Nativ, Zaher Bahouth, Da-you Shi, Wei Zhang, Qing-ling Hua, Yue-yin Pan, Li Tao, Hu Liu, Amir Karban, Eduard Koifman, Tova Rainis, Roberts Skapars, Armands Sivins, Guntis Ancans, Inta Liepniece-Karele, Ilze Kikuste, Ieva Lasina, Ivars Tolmanis, Douglas Johnson, Stuart Z. Millstone, Jennifer Fulton, John W. Wells, Larry H. Wilf, Marc Humbert, Marcis Leja, Nir Peled, and Hossam Haick. ACS Nano, Article ASAP DOI: 10.1021/acsnano.6b04930 Publication Date (Web): December 21, 2016

Copyright © 2017 American Chemical Society

This paper appears to be open access.

As for SniffPhone, they’re hoping that Na-Nose or something like it will allow them to modify smartphones in a way that will allow diseases to be detected.

I can’t help wondering who will own the data if your smartphone detects a disease. If you think that’s an idle question, here’s an excerpt from Sue Halpern’s Dec. 22, 2016 review of two books (“Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy” by Cathy O’Neil and “Virtual Competition: The Promise and Perils of the Algorithm-Driven Economy” by Ariel Ezrachi and Maurice E. Stucke) for the New York Times Review of Books,

We give our data away. We give it away in drips and drops, not thinking that data brokers will collect it and sell it, let alone that it will be used against us. There are now private, unregulated DNA databases culled, in part, from DNA samples people supply to genealogical websites in pursuit of their ancestry. These samples are available online to be compared with crime scene DNA without a warrant or court order. (Police are also amassing their own DNA databases by swabbing cheeks during routine stops.) In the estimation of the Electronic Frontier Foundation, this will make it more likely that people will be implicated in crimes they did not commit.

Or consider the data from fitness trackers, like Fitbit. As reported in The Intercept:

During a 2013 FTC panel on “Connected Health and Fitness,” University of Colorado law professor Scott Peppet said, “I can paint an incredibly detailed and rich picture of who you are based on your Fitbit data,” adding, “That data is so high quality that I can do things like price insurance premiums or I could probably evaluate your credit score incredibly accurately.”

Halpern’s piece is well worth reading in its entirety.

Testing ‘smart’ antibacterial surfaces and eating haute cuisine in space

Housekeeping in space, eh? This seems to be a French initiative. From a Nov. 15, 2016 news item on Nanowerk,

Leti [Laboratoire d’électronique des technologies de l’information (LETI)], an institute of CEA [French Alternative Energies and Atomic Energy Commission or Commissariat a l’Energie Atomique (CEA)] Tech, and three French partners are collaborating in a “house-cleaning” project aboard the International Space Station that will investigate antibacterial properties of new materials in a zero-gravity environment to see if they can improve and simplify cleaning inside spacecraft.

The Matiss experiment, as part of the Proxima Mission sponsored by France’s CNES space agency [Centre national d’études spatiales (CNES); National Centre for Space Studies (CNES)], is based on four identical plaques that European Space Agency (ESA) astronaut Thomas Pesquet, the 10th French citizen to go into space, will take with him and install when he joins the space station in November for a six-month mission. The plaques will be in the European Columbus laboratory in the space station for at least three months, and Pesquet will bring them back to earth for analysis at the conclusion of his mission.

A November 15, 2016 CEA-LETI press release on Business Wire (you may also download it from here), which originated the news item, describes the proposed experiments in more detail,

Leti, in collaboration with the ENS de Lyon, CNRS, the French company Saint Gobain and CNES, selected five advanced materials that could stop bacteria from settling and growing on “smart” surfaces. A sixth material, made of glass, will be used as control material.

The experiment will test the new smart surfaces in a gravity-free, enclosed environment. These surfaces are called “smart” because of their ability to provide an appropriate response to a given stimulus. For example, they may repel bacteria, prevent them from growing on the surface, or create their own biofilms that protect them from the bacteria.

The materials are a mix of advanced technology – from self-assembly monolayers and green polymers to ceramic polymers and water-repellent hybrid silica. By responding protectively to air-borne bacteria they become easier to clean and more hygienic. The experiment will determine which one is most effective and could lead to antibacterial surfaces on elevator buttons and bars in mass-transit cars, for example.

“Leveraging its unique chemistry platform, Leti has been developing gas, liquid and supercritical-phase-collective processes of surface functionalization for more than 10 years,” said Guillaume Nonglaton, Leti’s project manager for surface chemistry for biology and health-care applications. “Three Leti-developed surfaces will be part of the space-station experiment: a fluorinated thin layer, an organic silica and a biocompatible polymer. They were chosen for their hydrophobicity, or lack of attraction properties, their level of reproducibility and their rapid integration within Pesquet’s six-month mission.”

Now, for Haute Cusine

Pesquet is bringing meals from top French chefs Alain Ducasse and Thierry Marx for delectation. The menu includes beef tongue with truffled foie gras and duck breast confit. Here’s more from a Nov. 17, 2016 article by Thibault Marchand (Agence France Presse) ong phys.org,

“We will have food prepared by a Michelin-starred chef at the station. We have food for the big feasts: for Christmas, New Year’s and birthdays. We’ll have two birthdays, mine and Peggy’s,” said the Frenchman, who is also taking a saxophone up with him.

French space rookie Thomas Pesquet, 38, will lift off from the Baikonur cosmodrome in Kazakhstan with veteran US and Russian colleagues Peggy Whitson and Oleg Novitsky, for a six-month mission to the ISS.

Bon appétit! By the way, this is not the first time astronauts have been treated to haute cuisine (see a Dec. 2, 2006 article on the BBC [British Broadcasting Corporation] website.)

The launch

Mark Garcia’s Nov. 17, 2016 posting on one of the NASA (US National Aeronautics and Space Administration) blogs describes this latest launch into space,

The Soyuz MS-03 launched from the Baikonur Cosmodrome in Kazakhstan to the International Space Station at 3:20 p.m. EST Thursday, Nov. 17 (2:20 a.m. Baikonur time, Nov. 18). At the time of launch, the space station was flying about 250 miles over the south Atlantic east of Argentina. NASA astronaut Peggy Whitson, Oleg Novitskiy of Roscosmos and Thomas Pesquet of ESA (European Space Agency) are now safely in orbit.

Over the next two days, the trio will orbit the Earth for approximately two days before docking to the space station’s Rassvet module, at 5:01 p.m. on Saturday, Nov. 19. NASA TV coverage of the docking will begin at 4:15 p.m. Saturday.

Garcia’s post gives you details about how to access more information about the mission. The European Space Agency also offers more information as does Thomas Pesquet on his website.

A computer that intuitively predicts a molecule’s chemical properties

First, we have emotional artificial intelligence from MIT (Massachusetts Institute of Technology) with their Kismet [emotive AI] project and now we have intuitive computers according to an Oct. 14, 2016 news item on Nanowerk,

Scientists from Moscow Institute of Physics and Technology (MIPT)’s Research Center for Molecular Mechanisms of Aging and Age-Related Diseases together with Inria research center, Grenoble, France have developed a software package called Knodle to determine an atom’s hybridization, bond orders and functional groups’ annotation in molecules. The program streamlines one of the stages of developing new drugs.

An Oct. 14, 2016 Moscow Institute of Physics and Technology press release (also on EurekAlert), which originated the news item, expands on the theme,

Imagine that you were to develop a new drug. Designing a drug with predetermined properties is called drug-design. Once a drug has entered the human body, it needs to take effect on the cause of a disease. On a molecular level this is a malfunction of some proteins and their encoding genes. In drug-design these are called targets. If a drug is antiviral, it must somehow prevent the incorporation of viral DNA into human DNA. In this case the target is viral protein. The structure of the incorporating protein is known, and we also even know which area is the most important – the active site. If we insert a molecular “plug” then the viral protein will not be able to incorporate itself into the human genome and the virus will die. It boils down to this: you find the “plug” – you have your drug.

But how can we find the molecules required? Researchers use an enormous database of substances for this. There are special programs capable of finding a needle in a haystack; they use quantum chemistry approximations to predict the place and force of attraction between a molecular “plug” and a protein. However, databases only store the shape of a substance; information about atom and bond states is also needed for an accurate prediction. Determining these states is what Knodle does. With the help of the new technology, the search area can be reduced from hundreds of thousands to just a hundred. These one hundred can then be tested to find drugs such as Reltagravir – which has actively been used for HIV prevention since 2011.

From science lessons at school everyone is used to seeing organic substances as letters with sticks (substance structure), knowing that in actual fact there are no sticks. Every stick is a bond between electrons which obeys the laws of quantum chemistry. In the case of one simple molecule, like the one in the diagram [diagram follows], the experienced chemist intuitively knows the hybridizations of every atom (the number of neighboring atoms which it is connected to) and after a few hours looking at reference books, he or she can reestablish all the bonds. They can do this because they have seen hundreds and hundreds of similar substances and know that if oxygen is “sticking out like this”, it almost certainly has a double bond. In their research, Maria Kadukova, a MIPT student, and Sergei Grudinin, a researcher from Inria research center located in Grenoble, France, decided to pass on this intuition to a computer by using machine learning.

Compare “A solid hollow object with a handle, opening at the top and an elongation at the side, at the end of which there is another opening” and “A vessel for the preparation of tea”. Both of them describe a teapot rather well, but the latter is simpler and more believable. The same is true for machine learning, the best algorithm for learning is the simplest. This is why the researchers chose to use a nonlinear support vector machines (SVM), a method which has proven itself in recognizing handwritten text and images. On the input it was given the positions of neighboring atoms and on the output collected hybridization.

Good learning needs a lot of examples and the scientists did this using 7605 substances with known structures and atom states. “This is the key advantage of the program we have developed, learning from a larger database gives better predictions. Knodle is now one step ahead of similar programs: it has a margin of error of 3.9%, while for the closest competitor this figure is 4.7%”, explains Maria Kadukova. And that is not the only benefit. The software package can easily be modified for a specific problem. For example, Knodle does not currently work with substances containing metals, because those kind of substances are rather rare. But if it turns out that a drug for Alzheimer’s is much more effective if it has metal, the only thing needed to adapt the program is a database with metallic substances. We are now left to wonder what new drug will be found to treat a previously incurable disease.

Scientists from MIPT's Research Center for Molecular Mechanisms of Aging and Age-Related Diseases together with Inria research center, Grenoble, France have developed a software package called Knodle to determine an atom's hybridization, bond orders and functional groups' annotation in molecules. The program streamlines one of the stages of developing new drugs. Credit: MIPT Press Office

Scientists from MIPT’s Research Center for Molecular Mechanisms of Aging and Age-Related Diseases together with Inria research center, Grenoble, France have developed a software package called Knodle to determine an atom’s hybridization, bond orders and functional groups’ annotation in molecules. The program streamlines one of the stages of developing new drugs. Credit: MIPT Press Office

Here’s a link to and a citation for the paper,

Knodle: A Support Vector Machines-Based Automatic Perception of Organic Molecules from 3D Coordinates by Maria Kadukova and Sergei Grudinin. J. Chem. Inf. Model., 2016, 56 (8), pp 1410–1419 DOI: 10.1021/acs.jcim.5b00512 Publication Date (Web): July 13, 2016

Copyright © 2016 American Chemical Society

This paper is behind a paywall.

Phenomen: a future and emerging information technology project

A Sept. 19, 2016 news item on Nanowerk describes a new research project incorporating photonics, phononics, and radio frequency signal processing,

HENOMEN is a ground breaking project designed to harness the potential of combined phononics, photonics and radio-frequency (RF) electronic signals to lay the foundations of a new information technology. This new Project, funded though the highly competitive H2020 [the European Union’s Horizon 2020 science funding programme] FET [Future and Emerging Technologies]-Open call, joins the efforts of three leading research institutes, three internationally recognised universities and a high-tech SME. The Consortium members kick-offed the project with a meeting on Friday September 16, 2016, at the Catalan Institute of Nanoscience and Nanotechnology (ICN2), coordinated by ICREA Research Prof Dr Clivia M. Sotomayor-Torres, of the ICN2’ Phononic and Photonic Nanostructures (P2N) Group.

A Sept. 16, 2016 ICN2 press release, which originated the news item, provides more detail,

Most information is currently transported by electrical charge (electrons) and by light (photons). Phonons are the quanta of lattice vibrations with frequencies covering a wide range up to tens of THz and provide coupling to the surrounding environment. In PHENOMEN the core of the research will be focused on phonon-based signal processing to enable on-chip synchronisation and transfer information carried between optical channels by phonons.

This ambitious prospect could serve as a future scalable platform for, e.g., hybrid information processing with phonons. To achieve it, PHENOMEN proposes to build the first practical optically-driven phonon sources and detectors including the engineering of phonon lasers to deliver coherent phonons to the rest of the chip pumped by a continuous wave optical source. It brings together interdisciplinary scientific and technology oriented partners in an early-stage research towards the development of a radically new technology.

The experimental implementation of phonons as information carriers in a chip is completely novel and of a clear foundational character. It deals with interaction and manipulation of fundamental particles and their intrinsic dual wave-particle character. Thus, it can only be possible with the participation of an interdisciplinary consortium which will create knowledge in a synergetic fashion and add value in the form of new theoretical tools,  develop novel methods to manipulate coherent phonons with light and build all-optical phononic circuits enabled by optomechanics.

The H2020 FET-Open call “Novel ideas for radically new technologies” aims to support the early stages of joint science and technology research for radically new future technological possibilities. The call is entirely non-prescriptive with regards to the nature or purpose of the technologies that are envisaged and thus targets mainly the unexpected. PHENOMEN is one of the 13 funded Research & Innovation Actions and went through a selection process with a success rate (1.4%) ten times smaller than that for an ERC grant. The retained proposals are expected to foster international collaboration in a multitude of disciplines such as robotics, nanotechnology, neuroscience, information science, biology, artificial intelligence or chemistry.

The Consortium

The PHENOMEN Consortium is made up by:

  • 3 leading research institutes:
  • 3 universities with an internationally recognised track-record in their respective areas of expertise:
  • 1 industrial partner: