Tag Archives: France

X-raying fungus on paper to conserve memory

Civilization is based on memory. Our libraries and archives serve as memories of how things are made, why we use certain materials rather than others, how the human body is put together, what the weather patterns have been, etc. For centuries we have preserved our memories on paper. While this has many advantages, there are some drawbacks including fungus infestations.

A July 21, 2015 news item on ScienceDaily describes how a technique used to x-ray rocks has provided insights into paper and its fungal infestations,

Believe it or not: X-ray works a lot better on rocks than on paper. This has been a problem for conservators trying to save historical books and letters from the ravages of time and fungi. They frankly did not know what they were up against once the telltale signs of vandals such as Dothidales or Pleosporales started to spot the surface of their priceless documents

Now Diwaker Jha, an imaging specialist from Department of Chemistry, University of Copenhagen, has managed to adapt methods developed to investigate interiors of rocks to work on paper too, thus getting a first look at how fungus goes about infesting paper. …

A July 21, 2015 University of Copenhagen press release (also on EurekAlert), which originated the news item, expands on the theme,

This is good news for paper conservators and others who wish to study soft materials with X-ray tomography. “Rocks are easy because they are hard. The X-ray images show a very good contrast between the solid and the pores or channels, which are filled with low density materials such as air or fluids. In this case, however, paper and fungi, both are soft and carbon based, which makes them difficult to distinguish,” says Diwaker.

Diwaker Jha is a PhD student in the NanoGeoScience group, which is a part of the Nano-Science Center at Department of Chemistry. He investigates methods to improve imaging techniques used by chemists and physicists to investigate how fluids move in natural porous materials. At a recent conference, he was presenting an analysis method he developed for X-ray tomography data, for which he was awarded the Presidential Scholar Award by the Microscopy Society of America. And this sparked interest with a conservator in the audience.

Hanna Szczepanowska works as a research conservator with the Smithsonian Institution in the USA. She had been wondering how fungi interact with the paper. Does it sit on the surface, or does it burrow deeper? If they are surface dwellers, it should be easy to just brush them off, but no such luck, says Jha.

“As it turns out, microscopic fungi that infest paper grow very much the same way as mushrooms on a forest floor. However, unlike mushrooms, where the fruiting body emerges out of the soil to the surface, here the fruiting bodies can be embedded within the paper fibres, making it difficult to isolate them. This is not great news for conservators because the prevalent surface cleaning approaches are not adequate,” explains Diwaker Jha.

In working out a way to see into the paper, Jha investigated a 17th century letter on a handmade sheet and a 1920 engraving on machine-made paper. Compared with mushrooms, these fungi are thousands of times smaller, which required an advanced X-ray imaging technique available at the European Synchrotron Radiation Facility (ESRF), Grenoble, France. The technique is very similar to medical tomography (CT scanning) done at hospitals but in Grenoble the X-ray is produced by electrons accelerated to about the speed of light in an 844 meter long circular tube. A handy comparison: “If I were to use medical X-ray tomography to look at an Olympic village, I would be able to make out only the stadium. With the synchrotron based X-ray tomography, I would be able to distinguish individual blades of grass on the field..”

Diwaker hopes that conservators will be able to use the new insight to develop conservation strategies not just for paper artefacts but for combating biodegradation on a host of other types of cultural heritage materials. And that the developed methods can be extended to other studies related to soft matter.

Here’s a citation and a link for the paper,

Morphology and characterization of Dematiaceous fungi on a cellulose paper substrate using synchrotron X-ray microtomography, scanning electron microscopy and confocal laser scanning microscopy in the context of cultural heritage by H. M. Szczepanowska, D. Jha, and Th. G. Mathia. Anal. At. Spectrom. (Journal of Analystical Atomic Spetrometry), 2015,30, 651-657 DOI: 10.1039/C4JA00337C First published online 27 Nov 2014

This paper is behind a paywall. By the way, it is part of something the journal calls a themed collection:  Synchrotron radiation and neutrons in art and archaeology. Clicking on the ‘themed collection’ link will give you a view of the collection, i.e., titles, authors and brief abstracts.

Canada and some graphene scene tidbits

For a long time It seemed as if every country in the world, except Canada, had some some sort of graphene event. According to a July 16, 2015 news item on Nanotechnology Now, Canada has now stepped up, albeit, in a peculiarly Canadian fashion. First the news,

Mid October [Oct. 14 -16, 2015], the Graphene & 2D Materials Canada 2015 International Conference & Exhibition (www.graphenecanada2015.com) will take place in Montreal (Canada).

I found a July 16, 2015 news release (PDF) announcing the Canadian event on the lead organizer’s (Phantoms Foundation located in Spain) website,

On the second day of the event (15th October, 2015), an Industrial Forum will bring together top industry leaders to discuss recent advances in technology developments and business opportunities in graphene commercialization.
At this stage, the event unveils 38 keynote & invited speakers. On the Industrial Forum 19 of them will present the latest in terms of Energy, Applications, Production and Worldwide Initiatives & Priorities.

Plenary:
Gary Economo (Grafoid Inc., Canada)
Khasha Ghaffarzadeh (IDTechEx, UK)
Shu-Jen Han (IBM T.J. Watson Research Center, USA)
Bor Z. Jang (Angstron Materials, USA)
Seongjun Park (Samsung Advanced Institute of Technology (SAIT), Korea)
Chun-Yun Sung (Lockheed Martin, USA)

Parallel Sessions:
Gordon Chiu (Grafoid Inc., Canada)
Jesus de la Fuente (Graphenea, Spain)
Mark Gallerneault (ALCERECO Inc., Canada)
Ray Gibbs (Haydale Graphene Industries, UK)
Masataka Hasegawa (AIST, Japan)
Byung Hee Hong (SNU & Graphene Square, Korea)
Tony Ling (Jestico + Whiles, UK)
Carla Miner (SDTC, Canada)
Gregory Pognon (THALES Research & Technology, France)
Elena Polyakova (Graphene Laboratories Inc, USA)
Federico Rosei (INRS–EMT, Université du Québec, Canada)
Aiping Yu (University of Waterloo, Canada)
Hua Zhang (MSE-NTU, Singapore)

Apart from the industrial forum, several industry-related activities will be organized:
– Extensive thematic workshops in parallel (Standardization, Materials & Devices Characterization, Bio & Health and Electronic Devices)
– An exhibition carried out with the latest graphene trends (Grafoid, RAYMOR NanoIntegris, Nanomagnetics Instruments, ICEX and Xerox Research Centre of Canada (XRCC) already confirmed)
– B2B meetings to foster technical cooperation in the field of Graphene

It’s still possible to contribute to the event with an oral presentation. The call for abstracts is open until July, 20 [2015]. [emphasis mine]

Graphene Canada 2015 is already supported by Canada’s leading graphene applications developer, Grafoid Inc., Tourisme Montréal and Université de Montréal.

This is what makes the event peculiarly Canadian: multiculturalism, anyone? From the news release,

Organisers: Phantoms Foundation www.phantomsnet.net & Grafoid Foundation (lead organizers)

CEMES/CNRS (France) | Grafoid (Canada) | Catalan Institute of Nanoscience and Nanotechnology – ICN2 (Spain) | IIT (Italy) | McGill University, Canada | Texas Instruments (USA) | Université Catholique de Louvain (Belgium) | Université de Montreal, Canada

It’s billed as a ‘Canada Graphene 2015′ and, as I recall, these types of events don’t usually have so many other countries listed as organizers. For example, UK Graphene 2015 would have mostly or all of its organizers (especially the leads) located in the UK.

Getting to the Canadian content, I wrote about Grafoid at length tracking some of its relationships to companies it owns, a business deal with Hydro Québec, and a partnership with the University of Waterloo, and a nonrepayable grant from the Canadian federal government (Sustainable Development Technology Canada [SDTC]) in a Feb. 23, 2015 posting. Do take a look at the post if you’re curious about the heavily interlinked nature of the Canadian graphene scene and take another look at the list of speakers and their agencies (Mark Gallerneault of ALCERECO [partially owned by Grafoid], Carla Miner of SDTC [Grafoid received monies from the Canadian federal department],  Federico Rosei of INRS–EMT, Université du Québec [another Quebec link], Aiping Yu, University of Waterloo [an academic partner to Grafoid]). The Canadian graphene community is a small one so it’s not surprising there are links between the Canadian speakers but it does seem odd that Lomiko Metals is not represented here. Still, new speakers have been announced since the news release (e.g., Frank Koppens of ICFO, Spain, and Vladimir Falko of Lancaster University, UK) so  time remains.

Meanwhile, Lomiko Metals has announced in a July 17, 2015 news item on Azonano that Graphene 3D labs has changed the percentage of its outstanding shares affecting the percentage that Lomiko owns, amid some production and distribution announcements. The bit about launching commercial sales of its graphene filament seems more interesting to me,

On March 16, 2015 Graphene 3D Lab (TSXV:GGG) (OTCQB:GPHBF) announced that it launched commercial sales of its Conductive Graphene Filament for 3D printing. The filament incorporates highly conductive proprietary nano-carbon materials to enhance the properties of PLA, a widely used thermoplastic material for 3D printing; therefore, the filament is compatible with most commercially available 3D printers. The conductive filament can be used to print conductive traces (similar to as used in circuit boards) within 3D printed parts for electronics.

So, that’s all I’ve got for Canada’s graphene scene.

Superposition in biological processes

Applying the concept of superposition to photosynthesis and olfaction is not the first thought that would have occurred to me on stumbling across the European Union’s PAPETS project (Phonon-Assisted Processes for Energy Transfer and Sensing). Thankfully, a July 9, 2015 news item on Nanowerk sets the record straight (Note: A link has been removed),

Quantum physics is helping researchers to better understand photosynthesis and olfaction.

Can something be for instance in two different places at the same time? According to quantum physics, it can. More precisely, in line with the principle of ‘superposition’, a particle can be described as being in two different states simultaneously.

While it may sound like voodoo to the non-expert, superposition is based on solid science. Researchers in the PAPETS project are exploring this and other phenomena on the frontier between biology and quantum physics. Their goal is to determine the role of vibrational dynamics in photosynthesis and olfaction.

A July 7, 2015 research news article on the CORDIS website, which originated the news item, further explains (Note: A link has been removed),

Quantum effects in a biological system, namely in a photosynthetic complex, were first observed by Greg Engel and collaborators in 2007, in the USA. These effects were reproduced in different laboratories at a temperature of around -193 degrees Celsius and subsequently at ambient temperature.

‘What’s surprising and exciting is that these quantum effects have been observed in biological complexes, which are large, wet and noisy systems,’ says PAPETS project coordinator, Dr. Yasser Omar, researcher at Instituto de Telecomunicações and professor at Universidade de Lisboa [Portugal]. ‘Superposition is fragile and we would expect it to be destroyed by the environment.’

Superposition contributes to more efficient energy transport. An exciton, a quantum quasi-particle carrying energy, can travel faster along the photosynthetic complex due to the fact that it can exist in two states simultaneously. When it comes to a bifurcation it need not choose left or right. It can proceed down both paths simultaneously.

‘It’s like a maze,’ says Dr. Omar. ‘Only one door leads to the exit but the exciton can probe both left and right at the same time. It’s more efficient.’

Dr. Omar and his colleagues believe that a confluence of factors help superposition to be effected and maintained, namely the dynamics of the vibrating environment, whose role is precisely what the PAPETS project aims to understand and exploit.

Theory and experimentation meet

The theories being explored by PAPETS are also tested in experiments to validate them and gain further insights. To study quantum transport in photosynthesis, for example, researchers shoot fast laser pulses into biological systems. They then observe interference along the transport network, a signature of wavelike phenomena.

‘It’s like dropping stones into a lake,’ explains Dr. Omar. ‘You can then see whether the waves that are generated grow bigger or cancel each other when they meet.’

Applications: more efficient solar cells and odour detection

While PAPETS is essentially an exploratory project, it is generating insights that could have practical applications. PAPETS’ researchers are getting a more fundamental understanding of how photosynthesis works and this could result in the design of much more efficient solar cells.

Olfaction, the capacity to recognise and distinguish different odours, is another promising area. Experiments focus on the behaviour of Drosophila flies. So far, researchers suspect that the tunnelling of electrons associated to the internal vibrations of a molecule may be a signature of odour. Dr. Omar likens this tunnelling to a ping-pong ball resting in a bowl that goes through the side of the bowl to appear outside it.

This work could have applications in the food, water, cosmetics or drugs industries. Better artificial odour sensing could be used to detect impurities or pollution, for example.

‘Unlike seeing, hearing or touching, the sense of smell is difficult to reproduce artificially with high efficacy,’ says Dr. Omar.

The PAPETS project, involving 7 partners, runs from September 2014 to August 2016 and has a budgeted EU contribution funding of EUR 1.8 million.

You can find out more about PAPETS here. In the meantime, I found the other partners in the project (in addition to Portugal), from the PAPETS Partners webpage (Note: Links have been removed),

– Controlled Quantum Dynamics Group, Universität Ulm (UULM), Germany. PI: Martin Plenio and Susana Huelga.
– Biophysics Research Group, Vrije Universiteit Amsterdam (VUA), Netherlands. PI: Rienk van Grondelle and Roberta Croce.
– Department of Chemical Sciences, Università degli Studi di Padova (UNIPD), Italy. PI: Elisabetta Collini.
– Biomedical Sciences Research Centre “Alexander Fleming” (FLEMING), Athens, Greece. PI: Luca Turin and Efthimios M. Skoulakis.
– Biological Physics and Complex Systems Group, Centre National de la Recherche Scientifique (CNRS), Orléans, France. PI: Francesco Piazza.
– Quantum Physics of Biomolecular Processes, University College London (UCL), UK. PI: Alexandra Olaya-Castro.

Nanotechnology research protocols for Environment, Health and Safety Studies in US and a nanomedicine characterization laboratory in the European Union

I have two items relating to nanotechnology and the development of protocols. The first item concerns the launch of a new web portal by the US National Institute of Standards and Technology.

US National Institute of Standards and Technology (NIST)

From a July 1, 2015 news item on Azonano,

As engineered nanomaterials increasingly find their way into commercial products, researchers who study the potential environmental or health impacts of those materials face a growing challenge to accurately measure and characterize them. These challenges affect measurements of basic chemical and physical properties as well as toxicology assessments.

To help nano-EHS (Environment, Health and Safety)researchers navigate the often complex measurement issues, the National Institute of Standards and Technology (NIST) has launched a new website devoted to NIST-developed (or co-developed) and validated laboratory protocols for nano-EHS studies.

A July 1, 2015 NIST news release on EurekAlert, which originated the news item, offers more details about the information available through the web portal,

In common lab parlance, a “protocol” is a specific step-by-step procedure used to carry out a measurement or related activity, including all the chemicals and equipment required. Any peer-reviewed journal article reporting an experimental result has a “methods” section where the authors document their measurement protocol, but those descriptions are necessarily brief and condensed, and may lack validation of any sort. By comparison, on NIST’s new Protocols for Nano-EHS website the protocols are extraordinarily detailed. For ease of citation, they’re published individually–each with its own unique digital object identifier (DOI).

The protocols detail not only what you should do, but why and what could go wrong. The specificity is important, according to program director Debra Kaiser, because of the inherent difficulty of making reliable measurements of such small materials. “Often, if you do something seemingly trivial–use a different size pipette, for example–you get a different result. Our goal is to help people get data they can reproduce, data they can trust.”

A typical caution, for example, notes that if you’re using an instrument that measures the size of nanoparticles in a solution by how they scatter light, it’s important also to measure the transmission spectrum of the particles if they’re colored, because if they happen to absorb light strongly at the same frequency as your instrument, the result may be biased.

“These measurements are difficult because of the small size involved,” explains Kaiser. “Very few new instruments have been developed for this. People are adapting existing instruments and methods for the job, but often those instruments are being operated close to their limits and the methods were developed for chemicals or bulk materials and not for nanomaterials.”

“For example, NIST offers a reference material for measuring the size of gold nanoparticles in solution, and we report six different sizes depending on the instrument you use. We do it that way because different instruments sense different aspects of a nanoparticle’s dimensions. An electron microscope is telling you something different than a dynamic light scattering instrument, and the researcher needs to understand that.”

The nano-EHS protocols offered by the NIST site, Kaiser says, could form the basis for consensus-based, formal test methods such as those published by ASTM and ISO.

NIST’s nano-EHS protocol site currently lists 12 different protocols in three categories: sample preparation, physico-chemical measurements and toxicological measurements. More protocols will be added as they are validated and documented. Suggestions for additional protocols are welcome at nanoprotocols@nist.gov.

The next item concerns European nanomedicine.

CEA-LETI and Europe’s first nanomedicine characterization laboratory

A July 1, 2015 news item on Nanotechnology Now describes the partnership which has led to launch of the new laboratory,

CEA-Leti today announced the launch of the European Nano-Characterisation Laboratory (EU-NCL) funded by the European Union’s Horizon 2020 research and innovation programm[1]e. Its main objective is to reach a level of international excellence in nanomedicine characterisation for medical indications like cancer, diabetes, inflammatory diseases or infections, and make it accessible to all organisations developing candidate nanomedicines prior to their submission to regulatory agencies to get the approval for clinical trials and, later, marketing authorization.

“As reported in the ETPN White Paper[2], there is a lack of infrastructure to support nanotechnology-based innovation in healthcare,” said Patrick Boisseau, head of business development in nanomedicine at CEA-Leti and chairman of the European Technology Platform Nanomedicine (ETPN). “Nanocharacterisation is the first bottleneck encountered by companies developing nanotherapeutics. The EU-NCL project is of most importance for the nanomedicine community, as it will contribute to the competiveness of nanomedicine products and tools and facilitate regulation in Europe.”

EU-NCL is partnered with the sole international reference facility, the Nanotechnology Characterization Lab of the National Cancer Institute in the U.S. (US-NCL)[3], to get faster international harmonization of analytical protocols.

“We are excited to be part of this cooperative arrangement between Europe and the U.S.,” said Scott E. McNeil, director of U.S. NCL. “We hope this collaboration will help standardize regulatory requirements for clinical evaluation and marketing of nanomedicines internationally. This venture holds great promise for using nanotechnologies to overcome cancer and other major diseases around the world.”

A July 2, 2015 EMPA (Swiss Federal Laboratories for Materials Science and Technology) news release on EurekAlert provides more detail about the laboratory and the partnerships,

The «European Nanomedicine Characterization Laboratory» (EU-NCL), which was launched on 1 June 2015, has a clear-cut goal: to help bring more nanomedicine candidates into the clinic and on the market, for the benefit of patients and the European pharmaceutical industry. To achieve this, EU-NCL is partnered with the sole international reference facility, the «Nanotechnology Characterization Laboratory» (US-NCL) of the US-National Cancer Institute, to get faster international harmonization of analytical protocols. EU-NCL is also closely connected to national medicine agencies and the European Medicines Agency to continuously adapt its analytical services to requests of regulators. EU-NCL is designed, organized and operated according to the highest EU regulatory and quality standards. «We are excited to be part of this cooperative project between Europe and the U.S.,» says Scott E. McNeil, director of US-NCL. «We hope this collaboration will help standardize regulatory requirements for clinical evaluation and marketing of nanomedicines internationally. This venture holds great promise for using nanotechnologies to overcome cancer and other major diseases around the world.»

Nine partners from eight countries

EU-NCL, which is funded by the EU for a four-year period with nearly 5 million Euros, brings together nine partners from eight countries: CEA-Tech in Leti and Liten, France, the coordinator of the project; the Joint Research Centre of the European Commission in Ispra, Italy; European Research Services GmbH in Münster Germany; Leidos Biomedical Research, Inc. in Frederick, USA; Trinity College in Dublin, Ireland; SINTEF in Oslo, Norway; the University of Liverpool in the UK; Empa, the Swiss Federal Laboratories for Materials Science and Technology in St. Gallen, Switzerland; Westfälische Wilhelms-Universität (WWU) and Gesellschaft für Bioanalytik, both in Münster, Germany. Together, the partnering institutions will provide a trans-disciplinary testing infrastructure covering a comprehensive set of preclinical characterization assays (physical, chemical, in vitro and in vivo biological testing), which will allow researchers to fully comprehend the biodistribution, metabolism, pharmacokinetics, safety profiles and immunological effects of their medicinal nano-products. The project will also foster the use and deployment of standard operating procedures (SOPs), benchmark materials and quality management for the preclinical characterization of medicinal nano-products. Yet another objective is to promote intersectoral and interdisciplinary communication among key drivers of innovation, especially between developers and regulatory agencies.

The goal: to bring safe and efficient nano-therapeutics faster to the patient

Within EU-NCL, six analytical facilities will offer transnational access to their existing analytical services for public and private developers, and will also develop new or improved analytical assays to keep EU-NCL at the cutting edge of nanomedicine characterization. A complementary set of networking activities will enable EU-NCL to deliver to European academic or industrial scientists the high-quality analytical services they require for accelerating the industrial development of their candidate nanomedicines. The Empa team of Peter Wick at the «Particles-Biology Interactions» lab will be in charge of the quality management of all analytical methods, a key task to guarantee the best possible reproducibility and comparability of the data between the various analytical labs within the consortium. «EU-NCL supports our research activities in developing innovative and safe nanomaterials for healthcare within an international network, which will actively shape future standards in nanomedicine and strengthen Empa as an enabler to facilitate the transfer of novel nanomedicines from bench to bedside», says Wick.

You can find more information about the laboratory on the Horizon 2020 (a European Union science funding programme) project page for the EU-NCL laboratory. For anyone curious about CEA-Leti, it’s a double-layered organization. CEA is France’s Commission on Atomic Energy and Alternative Energy (Commissariat à l’énergie atomique et aux énergies alternatives); you can go here to their French language site (there is an English language clickable option on the page). Leti is one of the CEA’s institutes and is known as either Leti or CEA-Leti. I have no idea what Leti stands for. Here’s the Leti website (this is the English language version).

LiquiGlide, a nanotechnology-enabled coating for food packaging and oil and gas pipelines

Getting condiments out of their bottles should be a lot easier in several European countries in the near future. A June 30, 2015 news item on Nanowerk describes the technology and the business deal (Note: A link has been removed),

The days of wasting condiments — and other products — that stick stubbornly to the sides of their bottles may be gone, thanks to MIT [Massachusetts Institute of Technology] spinout LiquiGlide, which has licensed its nonstick coating to a major consumer-goods company.

Developed in 2009 by MIT’s Kripa Varanasi and David Smith, LiquiGlide is a liquid-impregnated coating that acts as a slippery barrier between a surface and a viscous liquid. Applied inside a condiment bottle, for instance, the coating clings permanently to its sides, while allowing the condiment to glide off completely, with no residue.

In 2012, amidst a flurry of media attention following LiquiGlide’s entry in MIT’s $100K Entrepreneurship Competition, Smith and Varanasi founded the startup — with help from the Institute — to commercialize the coating.

Today [June 30, 2015], Norwegian consumer-goods producer Orkla has signed a licensing agreement to use the LiquiGlide’s coating for mayonnaise products sold in Germany, Scandinavia, and several other European nations. This comes on the heels of another licensing deal, with Elmer’s [Elmer’s Glue & Adhesives], announced in March [2015].

A June 30, 2015 MIT news release, which originated the news item, provides more details about the researcher/entrepreneurs’ plans,

But this is only the beginning, says Varanasi, an associate professor of mechanical engineering who is now on LiquiGlide’s board of directors and chief science advisor. The startup, which just entered the consumer-goods market, is courting deals with numerous producers of foods, beauty supplies, and household products. “Our coatings can work with a whole range of products, because we can tailor each coating to meet the specific requirements of each application,” Varanasi says.

Apart from providing savings and convenience, LiquiGlide aims to reduce the surprising amount of wasted products — especially food — that stick to container sides and get tossed. For instance, in 2009 Consumer Reports found that up to 15 percent of bottled condiments are ultimately thrown away. Keeping bottles clean, Varanasi adds, could also drastically cut the use of water and energy, as well as the costs associated with rinsing bottles before recycling. “It has huge potential in terms of critical sustainability,” he says.

Varanasi says LiquiGlide aims next to tackle buildup in oil and gas pipelines, which can cause corrosion and clogs that reduce flow. [emphasis mine] Future uses, he adds, could include coatings for medical devices such as catheters, deicing roofs and airplane wings, and improving manufacturing and process efficiency. “Interfaces are ubiquitous,” he says. “We want to be everywhere.”

The news release goes on to describe the research process in more detail and offers a plug for MIT’s innovation efforts,

LiquiGlide was originally developed while Smith worked on his graduate research in Varanasi’s research group. Smith and Varanasi were interested in preventing ice buildup on airplane surfaces and methane hydrate buildup in oil and gas pipelines.

Some initial work was on superhydrophobic surfaces, which trap pockets of air and naturally repel water. But both researchers found that these surfaces don’t, in fact, shed every bit of liquid. During phase transitions — when vapor turns to liquid, for instance — water droplets condense within microscopic gaps on surfaces, and steadily accumulate. This leads to loss of anti-icing properties of the surface. “Something that is nonwetting to macroscopic drops does not remain nonwetting for microscopic drops,” Varanasi says.

Inspired by the work of researcher David Quéré, of ESPCI in Paris, on slippery “hemisolid-hemiliquid” surfaces, Varanasi and Smith invented permanently wet “liquid-impregnated surfaces” — coatings that don’t have such microscopic gaps. The coatings consist of textured solid material that traps a liquid lubricant through capillary and intermolecular forces. The coating wicks through the textured solid surface, clinging permanently under the product, allowing the product to slide off the surface easily; other materials can’t enter the gaps or displace the coating. “One can say that it’s a self-lubricating surface,” Varanasi says.

Mixing and matching the materials, however, is a complicated process, Varanasi says. Liquid components of the coating, for instance, must be compatible with the chemical and physical properties of the sticky product, and generally immiscible. The solid material must form a textured structure while adhering to the container. And the coating can’t spoil the contents: Foodstuffs, for instance, require safe, edible materials, such as plants and insoluble fibers.

To help choose ingredients, Smith and Varanasi developed the basic scientific principles and algorithms that calculate how the liquid and solid coating materials, and the product, as well as the geometry of the surface structures will all interact to find the optimal “recipe.”

Today, LiquiGlide develops coatings for clients and licenses the recipes to them. Included are instructions that detail the materials, equipment, and process required to create and apply the coating for their specific needs. “The state of the coating we end up with depends entirely on the properties of the product you want to slide over the surface,” says Smith, now LiquiGlide’s CEO.

Having researched materials for hundreds of different viscous liquids over the years — from peanut butter to crude oil to blood — LiquiGlide also has a database of optimal ingredients for its algorithms to pull from when customizing recipes. “Given any new product you want LiquiGlide for, we can zero in on a solution that meets all requirements necessary,” Varanasi says.

MIT: A lab for entrepreneurs

For years, Smith and Varanasi toyed around with commercial applications for LiquiGlide. But in 2012, with help from MIT’s entrepreneurial ecosystem, LiquiGlide went from lab to market in a matter of months.

Initially the idea was to bring coatings to the oil and gas industry. But one day, in early 2012, Varanasi saw his wife struggling to pour honey from its container. “And I thought, ‘We have a solution for that,’” Varanasi says.

The focus then became consumer packaging. Smith and Varanasi took the idea through several entrepreneurship classes — such as 6.933 (Entrepreneurship in Engineering: The Founder’s Journey) — and MIT’s Venture Mentoring Service and Innovation Teams, where student teams research the commercial potential of MIT technologies.

“I did pretty much every last thing you could do,” Smith says. “Because we have such a brilliant network here at MIT, I thought I should take advantage of it.”

That May [2012], Smith, Varanasi, and several MIT students entered LiquiGlide in the MIT $100K Entrepreneurship Competition, earning the Audience Choice Award — and the national spotlight. A video of ketchup sliding out of a LiquiGlide-coated bottle went viral. Numerous media outlets picked up the story, while hundreds of companies reached out to Varanasi to buy the coating. “My phone didn’t stop ringing, my website crashed for a month,” Varanasi says. “It just went crazy.”

That summer [2012], Smith and Varanasi took their startup idea to MIT’s Global Founders’ Skills Accelerator program, which introduced them to a robust network of local investors and helped them build a solid business plan. Soon after, they raised money from family and friends, and won $100,000 at the MassChallenge Entrepreneurship Competition.

When LiquiGlide Inc. launched in August 2012, clients were already knocking down the door. The startup chose a select number to pay for the development and testing of the coating for its products. Within a year, LiquiGlide was cash-flow positive, and had grown from three to 18 employees in its current Cambridge headquarters.

Looking back, Varanasi attributes much of LiquiGlide’s success to MIT’s innovation-based ecosystem, which promotes rapid prototyping for the marketplace through experimentation and collaboration. This ecosystem includes the Deshpande Center for Technological Innovation, the Martin Trust Center for MIT Entrepreneurship, the Venture Mentoring Service, and the Technology Licensing Office, among other initiatives. “Having a lab where we could think about … translating the technology to real-world applications, and having this ability to meet people, and bounce ideas … that whole MIT ecosystem was key,” Varanasi says.

Here’s the latest LiquiGlide video,


Credits:

Video: Melanie Gonick/MIT
Additional footage courtesy of LiquiGlide™
Music sampled from “Candlepower” by Chris Zabriskie
https://freemusicarchive.org/music/Ch…
http://creativecommons.org/licenses/b…

I had thought the EU (European Union) offered more roadblocks to marketing nanotechnology-enabled products used in food packaging than the US. If anyone knows why a US company would market its products in Europe first I would love to find out.

Discovering why your teeth aren’t perfectly crack-resistant

This helps make your teeth crack-resistant?

Caption: Illustration shows complex biostructure of dentin: the dental tubuli (yellow hollow cylinders, diameters appr. 1 micrometer) are surrounded by layers of mineralized collagen fibers (brown rods). The tiny mineral nanoparticles are embedded in the mesh of collagen fibers and not visible here. Credit: JB Forien @Charité

Caption: Illustration shows complex biostructure of dentin: the dental tubuli (yellow hollow cylinders, diameters appr. 1 micrometer) are surrounded by layers of mineralized collagen fibers (brown rods). The tiny mineral nanoparticles are embedded in the mesh of collagen fibers and not visible here. Credit: JB Forien @Charité

A June 10, 2015 Helmholtz Zentrum Berlin (HZB) press release (also on EurekAlert) explains how the illustration above relates to the research,

Human teeth have to serve for a lifetime, despite being subjected to huge forces. But the high failure resistance of dentin in teeth is not fully understood. An interdisciplinary team led by scientists of Charite Universitaetsmedizin Berlin has now analyzed the complex structure of dentin. At the synchrotron sources BESSY II at HZB, Berlin, Germany, and the European Synchrotron Radiation Facility ESRF, Grenoble, France, they could reveal that the mineral particles are precompressed.

The internal stress works against crack propagation and increases resistance of the biostructure.

Engineers use internal stresses to strengthen materials for specific technical purposes. Now it seems that evolution has long ‘known’ about this trick, and has put it to use in our natural teeth. Unlike bones, which are made partly of living cells, human teeth are not able to repair damage. Their bulk is made of dentin, a bonelike material consisting of mineral nanoparticles. These mineral nanoparticles are embedded in collagen protein fibres, with which they are tightly connected. In every tooth, such fibers can be found, and they lie in layers, making teeth tough and damage resistant. Still, it was not well understood, how crack propagation in teeth can be stopped.

The press release goes on to describe the new research and the teams which investigated the role of the mineral nanoparticles with regard to compression and cracking,

Now researchers from Charite Julius-Wolff-Institute, Berlin have been working with partners from Materials Engineering Department of Technische Universitaets Berlin, MPI of Colloids and Interfaces, Potsdam and Technion – Israel Institute of Technology, Haifa, to examine these biostructures more closely. They performed Micro-beam in-situ stress experiments in the mySpot BESSY facility of HZB, Berlin, Germany and analyzed the local orientation of the mineral nanoparticles using the nano-imaging facility of the European Synchrotron Radiation Facility (ESRF) in Grenoble, France.

When the tiny collagen fibers shrink, the attached mineral particles become increasingly compressed, the science team found out. “Our group was able to use changes in humidity to demonstrate how stress appears in the mineral in the collagen fibers, Dr. Paul Zaslansky from Julius Wolff-Institute of Charite Berlin explains. “The compressed state helps to prevents cracks from developing and we found that compression takes place in such a way that cracks cannot easily reach the tooth inner parts, which could damage the sensitive pulp. In this manner, compression stress helps to prevent cracks from rushing through the tooth.

The scientists also examined what happens if the tight mineral-protein link is destroyed by heating: In that case, dentin in teeth becomes much weaker. We therefore believe that the balance of stresses between the particles and the protein is important for the extended survival of teeth in the mouth, Charite scientist Jean-Baptiste Forien says. Their results may explain why artificial tooth replacements usually do not work as well as healthy teeth do: they are simply too passive, lacking the mechanisms found in the natural tooth structures, and consequently fillings cannot sustain the stresses in the mouth as well as teeth do. “Our results might inspire the development of tougher ceramic structures for tooth repair or replacement, Zaslansky hopes.

Experiments took place as part of the DFG project “Biomimetic Materials Research: Functionality by Hierarchical Structuring of Materials (SPP1420).

Here’s a link to and a citation for the paper,

Compressive Residual Strains in Mineral Nanoparticles as a Possible Origin of Enhanced Crack Resistance in Human Tooth Dentin by Jean-Baptiste Forien, Claudia Fleck, Peter Cloetens, Georg Duda, Peter Fratzl, Emil Zolotoyabko, and Paul Zaslansky. Nano Lett., 2015, 15 (6), pp 3729–3734 DOI: 10.1021/acs.nanolett.5b00143 Publication Date (Web): May 26, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

ASCENT: access to European Nanoelectronics Infrastructure

ASCENT is an Irish-French-Belgian-led collaborative project designed to open up state of the state-of-the-art facilities to researchers across Europe. From a June 10, 2015 news item on Nanowerk,

ASCENT opens the doors to the world’s most advanced nanoelectronics infrastructures in Europe. Tyndall National Institute in Ireland, CEA-Leti in France and imec in Belgium, leading European nanoelectronics institutes, have entered into a collaborative open-access project called ASCENT (Access to European Nanoelectronics Network), to mobilise European research capabilities like never before.

The €4.7 million project will make the unique research infrastructure of three of Europe’s premier research centres available to the nanoelectronics modelling-and-characterisation research community.

A June 10, 2015 Imec press release, which originated the news item, expands on the theme,

The three partners will provide researchers access to advanced device data, test chips and characterisation equipment. This access programme will enable the research community to explore exciting new developments in industry and meet the challenges created in an ever-evolving and demanding digital world.

The partners’ respective facilities are truly world-class, representing over €2 billion of combined research infrastructure with unique credentials in advanced semiconductor processing, nanofabrication, heterogeneous and 3D integration, electrical characterisation and atomistic and TCAD modelling. This is the first time that access to these state-of-the-art devices and test structures will become available anywhere in the world.

The project will engage industry directly through an ‘Industry Innovation Committee’ and will feed back the results of the open research to device manufacturers, giving them crucial information to improve the next generation of electronic devices.

Speaking on behalf of project coordinator, Tyndall National Institute, CEO Dr. Kieran Drain said: “We are delighted to coordinate the ASCENT programme and to be partners with world-leading institutes CEA-Leti and imec. Tyndall has a great track record in running successful collaborative open-access programmes, delivering real economic and societal impact. ASCENT has the capacity to change the paradigm of European research through unprecedented access to cutting-edge technologies. We are confident that ASCENT will ensure that Europe remains at the forefront of global nanoelectronics development.”

“The ASCENT project is an efficient, strategic way to open the complementary infrastructure and expertise of Tyndall, Leti and imec to a broad range of researchers from Europe’s nanoelectronics modelling-and-characterisation sectors,” said Leti CEO Marie-Noëlle Semeria. “Collaborative projects like this, that bring together diverse, dedicated and talented people, have synergistic affects that benefit everyone involved, while addressing pressing technological challenges.”

“In the frame of the ASCENT project, three of Europe’s leading research institutes – Tyndall, imec and Leti – join forces in supporting the EU research and academic community, SMEs and industry by providing access to test structures and electrical data of state-of-the-art semiconductor technologies,” stated Luc Van den hove, CEO of imec. “This will enable them to explore exciting new opportunities in the ‘More Moore’ [probably a Moore’s law reference] as well as the ‘More than Moore’ domains, and will allow them to participate and compete effectively on the global stage for the development of advanced nano-electronics.”

I’m curious as to how they plan to balance industry requests with academic requests. Will organizations that can afford to pay more get preference?

A race to find substitutes for graphene?

I have two items concerning research which seeks to replace graphene in one application or other.

Black phosporus and the École Polytechniqe de Montréal

A June 2, 2015 news item on Nanotechnology Now features work on developing a two-dimensional black phosphorus material, 2D phosphane,

A team of researchers from Universite de Montreal, Polytechnique Montreal and the Centre national de la recherche scientifique (CNRS) in France is the first to succeed in preventing two-dimensional layers of black phosphorus from oxidating. In so doing, they have opened the doors to exploiting their striking properties in a number of electronic and optoelectronic devices. …

Black phosphorus, a stable allotrope of phosphorus that presents a lamellar structure similar to that of graphite, has recently begun to capture the attention of physicists and materials researchers. It is possible to obtain single atomic layers from it, which researchers call 2D phosphane. A cousin of the widely publicized graphene, 2D phosphane brings together two very sought-after properties for device design.

A June 2, 2015 École Polytechniqe de Montréal news release, which originated the news item, expands on why 2D phosphane is an appealing material,

First, 2D phosphane is a semiconductor material that provides the necessary characteristics for making transistors and processors. With its high-mobility, it is estimated that 2D phosphane could form the basis for electronics that is both high-performance and low-cost.

Furthermore, this new material features a second, even more distinctive, characteristic: its interaction with light depends on the number of atomic layers used. One monolayer will emit red light, whereas a thicker sample will emit into the infrared. This variation makes it possible to manufacture a wide range of optoelectronic devices, such as lasers or detectors, in a strategic fraction of the electromagnetic spectrum.

The news release goes on to describe an important issue with phosphane and how the scientists addressed it,

Until now, the study of 2D phosphane’s properties was slowed by a major problem: in ambient  conditions, very thin layers of the material would degrade, to the point of compromising its future in the industry despite its promising potential.

As such, the research team has made a major step forward by succeeding in determining the physical mechanisms at play in this degradation, and in identifying the key elements that lead to the layers’ oxidation.

“We have demonstrated that 2D phosphane undergoes oxidation under ambient conditions, caused jointly by the presence of oxygen, water and light. We have also characterized the phenomenon’s evolution over time by using electron beam spectroscopy and Raman spectroscopy,” reports Professor Richard Martel of Université de Montréal’s Department of Chemistry.

Next, the researchers developed an efficient procedure for producing these very fragile single-atom layers and keeping them intact.

“We were able to study the vibration modes of the atoms in this new material. Since earlier studies had been carried out on heavily degraded materials, we revealed the as-yet-unsuspected effects of quantum confinement on atoms’ vibration modes,” notes Professor Sébastien Francoeur of Polytechnique’s Department of Engineering Physics.

The study’s results will help the world scientific community develop 2D phosphane’s very special properties with the aim of developing new nanotechnologies that could give rise to high-performance microprocessors, lasers, solar cells and more.

Here’s a link to and a citation for the paper,

Photooxidation and quantum confinement effects in exfoliated black phosphorus by Alexandre Favron, Etienne Gaufrès, Frédéric Fossard, Anne-Laurence Phaneuf-L’Heureux, Nathalie Y-W. Tang, Pierre L. Lévesque, Annick Loiseau, Richard Leonelli, Sébastien Francoeur, & Richard Martel. Nature Materials (2015)  doi:10.1038/nmat4299 Published online 25 May 2015

This paper is behind a paywall.

Now. for the second item about replacing graphene.

China’s new aerogel, a rival to graphene aerogels?

A June 2, 2015 American Institute of Physics news release (also on EurekAlert) describes research into an alternative to expensive graphene aerogels,

The electromagnetic radiation discharged by electronic equipment and devices is known to hinder their smooth operation. Conventional materials used today to shield from incoming electromagnetic waves tend to be sheets of metal or composites, which rely on reflection as a shielding mechanism.

But now, materials such as graphene aerogels are gaining traction as more desirable alternatives because they act as electromagnetic absorbers. They’re widely expected to improve energy storage, sensors, nanoelectronics, catalysis and separations, but graphene aerogels are prohibitively expensive and difficult to produce for large-scale applications because of the complicated purification and functionalization steps involved in their fabrication.

So a team of researchers in China set out to design a cheaper material with properties similar to a graphene aerogel–in terms of its conductivity, as well as a lightweight, anticorrosive, porous structure. In the journal Applied Physics Letters, from AIP Publishing, the researchers describe the new material they created and its performance.

Aming Xie, an expert in organic chemistry, and Fan Wu, both affiliated with PLA University of Science and Technology, worked with colleagues at Nanjing University of Science and Technology to tap into organic chemistry and conducting polymers to fabricate a three-dimensional (3-D) polypyrrole (PPy) aerogel-based electromagnetic absorber.

They chose to concentrate on this method because it enables them to “regulate the density and dielectric property of conducting polymers through the formation of pores during the oxidation polymerization of the pyrrole monomer,” explained Wu.

And the fabrication process is a simple one. “It requires only four common chemical reagents: pyrrole, ferric chloride (FeCl3), ethanol and water — which makes it cheap enough and enables large-scale fabrication,” Wu said. “We’re also able to pour the FeCl3 solution directly into the pyrrole solution — not drop by drop — to force the pyrrole to polymerize into a 3-D aerogel rather than PPy particles.”

In short, the team’s 3-D PPy aerogel is designed to exhibit “desirable properties such as a porous structure and low density,” Wu noted.

Beyond that, its electromagnetic absorption performance — with low loss — shows great promise. “We believe a ‘wide’ absorption range is more useful than high absorption within one frequency,” Wu said. Compared with previous works, the team’s new aerogel has the lowest adjunction and widest effective bandwidth — with a reflection loss below -10 decibels.

In terms of applications, based on the combination of low adjunction and a “wide” effective bandwidth, the researchers expect to see their 3-D PPy aerogel used in surface coatings for aircraft.

Another potential application is as coatings within the realm of corrosion prevention and control. “Common anticorrosion coatings contain a large amount of zinc (70 to 80 percent by weight), and these particles not only serve as a cathode by corroding to protect the iron structure but also to maintain a suitable conductivity for the electrochemistry process,” Wu pointed out. “If our 3-D PPy aerogel could build a conductivity network in this type of coating, the loss of zinc particles could be rapidly reduced.”

The team is now taking their work a step further by pursuing a 3-D PPy/PEDOT-based (poly(3,4-ethylenedioxythiophene) electromagnetic absorber. “Our goal is to grow solid-state polymerized PEDOT particles in the holes of the 3-D PPy aerogel formed by PPy chains,” Wu added.

Here’s a link to and a citation for the paper,

Self-assembled ultralight three-dimensional polypyrrole aerogel for effective electromagnetic absorption by Aming Xie, Fan Wu, Mengxiao Sun, Xiaoqing Dai, Zhuanghu Xu, Yanyu Qiu, Yuan Wang, and Mingyang Wang. Appl. Phys. Lett. 106, 222902 (2015); http://dx.doi.org/10.1063/1.4921180

This paper is open access.

The Russians diagnose graphene’s quality and spatial imaging reactivity

Most of the marvelous things scientists talk about with regard to graphene require a relatively defect-free (perfect) material, from a May 8, 2015 news item on ScienceDaily,

Graphene and related 2D materials are anticipated to become the compounds of the century. It is not surprising — graphene is extremely thin and strong, as well as possesses outstanding electrical and thermal characteristics. The impact of material with such unique properties may be really impressive. Scientists [foresee] the imminent appearance of novel biomedical applications, new generation of smart materials, highly efficient light conversion and photocatalysis reinforced by graphene. However, the stumbling block is that many unique properties and capabilities are related to only perfect graphene with controlled number of defects. [emphasis mine] However, in reality ideal defect-free graphene surface is difficult to prepare and defects may have various sizes and shapes. In addition, dynamic behaviour and fluctuations make the defects difficult to locate. The process of scanning of large areas of graphene sheets in order to find out defect locations and to estimate the quality of the material is a time-consuming task. Let alone a lack of simple direct methods to capture and visualize defects on the carbon surface.

A May 8, 2014 Institute of Organic Chemisty (Russian Academy of Sciences) news release on EurekAlert, which originated the news item, offers more detail about the new technique for determining graphene quality and imaging carbon reactivity centres,

[A] [j]oint research project carried out by Ananikov and co-workers revealed [a] specific contrast agent — soluble palladium complex — that selectively attaches to defect areas on the surface of carbon materials. Pd attachment leads to formation of nanoparti[cl]es, which can be easily detected using a routine electron microscope. The more reactive the carbon center is, the stronger is the binding of contrast agent in the imaging procedure. Thus, reactivity centers and defect sites on a carbon surface were mapped in three-dimensional space with high resolution and excellent contrast using a handy nanoscale imaging procedure. The developed procedure distinguished carbon defects not only due to difference in their morphology, but also due to varying chemical reactivity. Therefore, this imaging approach enables the chemical reactivity to be visualized with spatial resolution.

Mapping carbon reactivity centers with “Pd markers” gave unique insight into the reactivity of the graphene layers. As revealed in the study, more than 2000 reactive centers can be located per 1 μm2 of the surface area of regular carbon material. The study pointed out the spatial complexity of the carbon material at the nanoscale. Mapping of surface defect density showed substantial gradients and variations across the surface area, which can possess a kind of organized structures of defects.

Medical application of imaging (tomography) for diagnostics, including the usage of contrast agents for more accuracy and easier observation, has proven its utility for many years. The present study highlights a new possibility in tomography applications to run diagnostics of materials at atomic scale.

Here’s a link to and a citation for the paper,

Spatial imaging of carbon reactivity centers in Pd/C catalytic systems by E. O. Pentsak, A. S. Kashin, M. V. Polynski, K. O. Kvashnina, P. Glatzel, and V. P. Ananikov.  Chem. Sci., 2015, Advance Article DOI: 10.1039/C5SC00802F
First published online 08 May 2015

This paper is open access.

2015 Science & You, a science communication conference in France

Science communicators can choose to celebrate June 2015 in Nancy, France and acquaint themselves with the latest and greatest in communication at the Science & You conference being held from June 1 – 6, 2015. Here’s the conference teaser being offered by the organizers,

The 2015 conference home page (ETA May 5, 2015 1045 hours PDT: the home page features change) offers this sampling of the workshops on offer,

No less than 180 communicators will be lined up to hold workshop sessions, from the 2nd to the 5th June in Nancy’s Centre Prouvé. In the meantime, here is an exclusive peek at some of the main themes which will be covered:

– Science communication and journalism. Abdellatif Bensfia will focus on the state of science communication in a country where major social changes are playing out, Morocco, while Olivier Monod will be speaking about “Chercheurs d’actu” (News Researchers), a system linking science with the news. Finally, Matthieu Ravaud and Fabrice Impériali from the CNRS (Centre National de Recherche Scientifique) will be presenting “CNRS Le journal”, the new on-line media for the general public.

– Using animals in biomedical research. This round-table, chaired by Victor Demaria-Pesce, from the Groupement Interprofessionnel de Réflexion et de Communication sur la Recherche (Gircor) will provide an opportunity to spotlight one of society’s great debates: the use of animals in research. Different actors working in biomedical research will present their point of view on the subject, and the results of an analysis of public perception of animal experimentation will be presented. What are the norms in this field? What are the living conditions of the animals in laboratories? How is this research to be made legitimate? This session will centre on all these questions.

– Science communication and the arts. This session will cover questions such as the relational interfaces between art and science, with in particular the presentation of “Pulse Project” with Michelle Lewis-King, and the Semaine du Cerveau (Brain Week) in Grenoble (Isabelle Le Brun).
Music will also be there with the talk by Milla Karvonen from the University of Oulu, who will be speaking about the interaction between science and music, while Philippe Berthelot will talk about the art of telling the story of science as a communication tool.

– Science on television. This workshop will also be in the form of a round table, with representatives from TVV (Vigyan Prasar, Inde), and Irene Lapuente (La Mandarina de Newton), Mico Tatalovic and Elizabeth Vidal (University of Cordoba), discussing how the world of science is represented on a mass media like television. Many questions will be debated, as for example the changing image of science on television, its historical context, or again, the impact these programmes have on audiences’ perceptions of science.

To learn more, you will find the detailed list of all the workshops and plenaries in the provisional programme on-line.

Science & You seems to be an ‘umbrella brand’ for the “Journées Hubert Curien” conference with plenaries and workshops and the “Science and Culture” forum, which may explain the variety of dates (June 1 – 6, June 2 – 5, and June 2 – 6) on the Science & You home page.

Here’s information about the Science & You organizers and more conference dates (from the Patrons page),

At the invitation of the President of the Université de Lorraine, the professors Etienne Klein, Cédric Villani and Brigitte Kieffer accepted to endorse Science & You. It is an honour to be able to associate them with this major event in science communication, in which they are particularly involved.

Cédric Villani, Fields Medal 2010

Cédric Villani is a French mathematician, the Director of the Institut Henri Poincaré and a professor at the Université Claude Bernard Lyon 1.
His main research interests are in kinetic theory (Boltzmann and Vlasov equations and their variants), and optimal transport and its applications (Monge equation).
He has received several national and international awards for his research, in particular the Fields Medal, which he received from the hands of the President of India at the 2010 International Congress of Mathematicians in Hyderabad (India). Since then he has played the role of spokesperson for the French mathematical community in media and political circles.
Cédric Villani regularly invests in science communication aiming at various audiences: conferences in schools, public conferences in France and abroad, regular participation in broadcasts and current affairs programmes and in science festivals.


Etienne Klein, physicist and philosopher

Etienne Klein is a French physicist, Director of Research at the CEA (Commissariat à l’énergie atomique et aux énergies alternatives – Alternative Energies and Atomic Energy Commission) and has a Ph.D. in philosophy of science. He teaches at the Ecole Centrale in Paris and is head of the Laboratoire de Recherche sur les Sciences de la Matière (LARSIM) at the CEA.

He has taken part in several major projects, such as developing a method of isotope separation involving the use of lasers, and the study of a particle accelerator with superconducting cavities. He was involved in the design of the Large Hadron Collider (LHC) at CERN.
He taught quantum physics and particle physics at Ecole Centrale in Paris for several years and currently teaches philosophy of science. He is a specialist on time in physics and is the author of a number of essays.
He is also a member of the OPECST (Conseil de l’Office parlementaire d’évaluation des choix scientifiques et technologiques – Parliamentary Office for the Evaluation of Scientific and Technological Choices), of the French Academy of Technologies, and of the Conseil d’Orientation (Advisory Board) of the Institut Diderot.
Until June 2014, he presented a weekly radio chronicle, Le Monde selon Etienne Klein, on the French national radio France Culture.

Photo by Philippe Matsas © Flammarion


Brigitte Kieffer, Campaigner for women in science

B. L. Kieffer is Professor at McGill University and at the Université de Strasbourg France. She is also Visiting Professor at UCLA (Los Angeles, USA). She develops her research activity at IGBMC, one of the leading European centres of biomedical research. She is recipient of the Jules Martin (French Academy of Science, 2001) and the Lounsbery (French and US Academies of Science, 2004) Awards, and has become an EMBO Member in 2009.
In 2012 she received the Lamonica Award of Neurology (French Academy of Science) and was nominated Chevalier de la Légion d’honneur. In December 2013 she was elected as a member of the French Academy of Sciences.
In March 2014, she received the International L’OREAL-UNESCO Award for Women in Science (European Laureate). She started as the Scientific Director of the Douglas Hospital Research Centre, affiliated to McGill University in January 2014, and remains Professor at the University of Strasbourg, France.

Photo by Julian Dufort

Here’s more about the conference at the heart of Science & You (from The Journées Hubert Curien International Conference webpage),

Following on the 2012 conference, this project will bring together all those interested in science communication: researchers, PhD students, science communicators, journalists, professionals from associations and museums, business leaders, politicians… A high-level scientific committee has been set up for this international conference, chaired by Professor Joëlle Le Marec, University of Paris 7, and counting among its members leading figures in science communication such as Bernard Schiele (Canada) or Hester du Plessis (South Africa).

The JHC Conference will take place from June 2nd to 6th at the Centre Prouvé, Nancy. These four days will be dedicated to a various programme of plenary conferences and workshops on the theme of science communication today and tomorrow.

You can find the Registration webpage here where you can get more information about the process and access the registration form.