Tag Archives: General Fusion

Limitless energy and the International Thermonuclear Experimental Reactor (ITER)

Over 30 years in the dreaming, the International Thermonuclear Experimental Reactor (ITER) is now said to be 1/2 way to completing construction. A December 6, 2017 ITER press release (received via email) makes the joyful announcement,

WORLD’S MOST COMPLEX MACHINE IS 50 PERCENT COMPLETED
ITER is proving that fusion is the future source of clean, abundant, safe and economic energy_

The International Thermonuclear Experimental Reactor (ITER), a project to prove that fusion power can be produced on a commercial scale and is sustainable, is now 50 percent built to initial operation. Fusion is the same energy source from the Sun that gives the Earth its light and warmth.

ITER will use hydrogen fusion, controlled by superconducting magnets, to produce massive heat energy. In the commercial machines that will follow, this heat will drive turbines to produce electricity with these positive benefits:

* Fusion energy is carbon-free and environmentally sustainable, yet much more powerful than fossil fuels. A pineapple-sized amount of hydrogen offers as much fusion energy as 10,000 tons of coal.

* ITER uses two forms of hydrogen fuel: deuterium, which is easily extracted from seawater; and tritium, which is bred from lithium inside the fusion reactor. The supply of fusion fuel for industry and megacities is abundant, enough for millions of years.

* When the fusion reaction is disrupted, the reactor simply shuts down-safely and without external assistance. Tiny amounts of fuel are used, about 2-3 grams at a time; so there is no physical possibility of a meltdown accident.

* Building and operating a fusion power plant is targeted to be comparable to the cost of a fossil fuel or nuclear fission plant. But unlike today’s nuclear plants, a fusion plant will not have the costs of high-level radioactive waste disposal. And unlike fossil fuel plants,
fusion will not have the environmental cost of releasing CO2 and other pollutants.

ITER is the most complex science project in human history. The hydrogen plasma will be heated to 150 million degrees Celsius, ten times hotter than the core of the Sun, to enable the fusion reaction. The process happens in a donut-shaped reactor, called a tokamak(*), which is surrounded by giant magnets that confine and circulate the superheated, ionized plasma, away from the metal walls. The superconducting magnets must be cooled to minus 269°C, as cold as interstellar space.

The ITER facility is being built in Southern France by a scientific partnership of 35 countries. ITER’s specialized components, roughly 10 million parts in total, are being manufactured in industrial facilities all over the world. They are subsequently shipped to the ITER worksite, where they must be assembled, piece-by-piece, into the final machine.

Each of the seven ITER members-the European Union, China, India, Japan, Korea, Russia, and the United States-is fabricating a significant portion of the machine. This adds to ITER’s complexity.

In a message dispatched on December 1 [2017] to top-level officials in ITER member governments, the ITER project reported that it had completed 50 percent of the “total construction work scope through First Plasma” (**). First Plasma, scheduled for December 2025, will be the first stage of operation for ITER as a functional machine.

“The stakes are very high for ITER,” writes Bernard Bigot, Ph.D., Director-General of ITER. “When we prove that fusion is a viable energy source, it will eventually replace burning fossil fuels, which are non-renewable and non-sustainable. Fusion will be complementary with wind, solar, and other renewable energies.

“ITER’s success has demanded extraordinary project management, systems engineering, and almost perfect integration of our work.

“Our design has taken advantage of the best expertise of every member’s scientific and industrial base. No country could do this alone. We are all learning from each other, for the world’s mutual benefit.”

The ITER 50 percent milestone is getting significant attention.

“We are fortunate that ITER and fusion has had the support of world leaders, historically and currently,” says Director-General Bigot. “The concept of the ITER project was conceived at the 1985 Geneva Summit between Ronald Reagan and Mikhail Gorbachev. When the ITER Agreement was signed in 2006, it was strongly supported by leaders such as French President Jacques Chirac, U.S. President George W. Bush, and Indian Prime Minister Manmohan Singh.

“More recently, President Macron and U.S. President Donald Trump exchanged letters about ITER after their meeting this past July. One month earlier, President Xi Jinping of China hosted Russian President Vladimir Putin and other world leaders in a showcase featuring ITER and fusion power at the World EXPO in Astana, Kazakhstan.

“We know that other leaders have been similarly involved behind the scenes. It is clear that each ITER member understands the value and importance of this project.”

Why use this complex manufacturing arrangement?

More than 80 percent of the cost of ITER, about $22 billion or EUR18 billion, is contributed in the form of components manufactured by the partners. Many of these massive components of the ITER machine must be precisely fitted-for example, 17-meter-high magnets with less than a millimeter of tolerance. Each component must be ready on time to fit into the Master Schedule for machine assembly.

Members asked for this deal for three reasons. First, it means that most of the ITER costs paid by any member are actually paid to that member’s companies; the funding stays in-country. Second, the companies working on ITER build new industrial expertise in major fields-such as electromagnetics, cryogenics, robotics, and materials science. Third, this new expertise leads to innovation and spin-offs in other fields.

For example, expertise gained working on ITER’s superconducting magnets is now being used to map the human brain more precisely than ever before.

The European Union is paying 45 percent of the cost; China, India, Japan, Korea, Russia, and the United States each contribute 9 percent equally. All members share in ITER’s technology; they receive equal access to the intellectual property and innovation that comes from building ITER.

When will commercial fusion plants be ready?

ITER scientists predict that fusion plants will start to come on line as soon as 2040. The exact timing, according to fusion experts, will depend on the level of public urgency and political will that translates to financial investment.

How much power will they provide?

The ITER tokamak will produce 500 megawatts of thermal power. This size is suitable for studying a “burning” or largely self-heating plasma, a state of matter that has never been produced in a controlled environment on Earth. In a burning plasma, most of the plasma heating comes from the fusion reaction itself. Studying the fusion science and technology at ITER’s scale will enable optimization of the plants that follow.

A commercial fusion plant will be designed with a slightly larger plasma chamber, for 10-15 times more electrical power. A 2,000-megawatt fusion electricity plant, for example, would supply 2 million homes.

How much would a fusion plant cost and how many will be needed?

The initial capital cost of a 2,000-megawatt fusion plant will be in the range of $10 billion. These capital costs will be offset by extremely low operating costs, negligible fuel costs, and infrequent component replacement costs over the 60-year-plus life of the plant. Capital costs will decrease with large-scale deployment of fusion plants.

At current electricity usage rates, one fusion plant would be more than enough to power a city the size of Washington, D.C. The entire D.C. metropolitan area could be powered with four fusion plants, with zero carbon emissions.

“If fusion power becomes universal, the use of electricity could be expanded greatly, to reduce the greenhouse gas emissions from transportation, buildings and industry,” predicts Dr. Bigot. “Providing clean, abundant, safe, economic energy will be a miracle for our planet.”

*     *     *

FOOTNOTES:

* “Tokamak” is a word of Russian origin meaning a toroidal or donut-shaped magnetic chamber. Tokamaks have been built and operated for the past six decades. They are today’s most advanced fusion device design.

** “Total construction work scope,” as used in ITER’s project performance metrics, includes design, component manufacturing, building construction, shipping and delivery, assembly, and installation.

It is an extraordinary project on many levels as Henry Fountain notes in a March 27, 2017 article for the New York Times (Note: Links have been removed),

At a dusty construction site here amid the limestone ridges of Provence, workers scurry around immense slabs of concrete arranged in a ring like a modern-day Stonehenge.

It looks like the beginnings of a large commercial power plant, but it is not. The project, called ITER, is an enormous, and enormously complex and costly, physics experiment. But if it succeeds, it could determine the power plants of the future and make an invaluable contribution to reducing planet-warming emissions.

ITER, short for International Thermonuclear Experimental Reactor (and pronounced EAT-er), is being built to test a long-held dream: that nuclear fusion, the atomic reaction that takes place in the sun and in hydrogen bombs, can be controlled to generate power.

ITER will produce heat, not electricity. But if it works — if it produces more energy than it consumes, which smaller fusion experiments so far have not been able to do — it could lead to plants that generate electricity without the climate-affecting carbon emissions of fossil-fuel plants or most of the hazards of existing nuclear reactors that split atoms rather than join them.

Success, however, has always seemed just a few decades away for ITER. The project has progressed in fits and starts for years, plagued by design and management problems that have led to long delays and ballooning costs.

ITER is moving ahead now, with a director-general, Bernard Bigot, who took over two years ago after an independent analysis that was highly critical of the project. Dr. Bigot, who previously ran France’s atomic energy agency, has earned high marks for resolving management problems and developing a realistic schedule based more on physics and engineering and less on politics.

The site here is now studded with tower cranes as crews work on the concrete structures that will support and surround the heart of the experiment, a doughnut-shaped chamber called a tokamak. This is where the fusion reactions will take place, within a plasma, a roiling cloud of ionized atoms so hot that it can be contained only by extremely strong magnetic fields.

Here’s a rendering of the proposed reactor,

Source: ITER Organization

It seems the folks at the New York Times decided to remove the notes which help make sense of this image. However, it does get the idea across.

If I read the article rightly, the official cost in March 2017 was around 22 B Euros and more will likely be needed. You can read Fountain’s article for more information about fusion and ITER or go to the ITER website.

I could have sworn a local (Vancouver area) company called General Fusion was involved in the ITER project but I can’t track down any sources for confirmation. The sole connection I could find is in a documentary about fusion technology,

Here’s a little context for the film from a July 4, 2017 General Fusion news release (Note: A link has been removed),

A new documentary featuring General Fusion has captured the exciting progress in fusion across the public and private sectors.

Let There Be Light made its international premiere at the South By Southwest (SXSW) music and film festival in March [2017] to critical acclaim. The film was quickly purchased by Amazon Video, where it will be available for more than 70 million users to stream.

Let There Be Light follows scientists at General Fusion, ITER and Lawrenceville Plasma Physics in their pursuit of a clean, safe and abundant source of energy to power the world.

The feature length documentary has screened internationally across Europe and North America. Most recently it was shown at the Hot Docs film festival in Toronto, where General Fusion founder and Chief Scientist Dr. Michel Laberge joined fellow fusion physicist Dr. Mark Henderson from ITER at a series of Q&A panels with the filmmakers.

Laberge and Henderson were also interviewed by the popular CBC radio science show Quirks and Quarks, discussing different approaches to fusion, its potential benefits, and the challenges it faces.

It is yet to be confirmed when the film will be release for streaming, check Amazon Video for details.

You can find out more about General Fusion here.

Brief final comment

ITER is a breathtaking effort but if you’ve read about other large scale projects such as building a railway across the Canadian Rocky Mountains, establishing telecommunications in an  astonishing number of countries around the world, getting someone to the moon, eliminating small pox, building the pyramids, etc., it seems standard operating procedure both for the successes I’ve described and for the failures we’ve forgotten. Where ITER will finally rest on the continuum between success and failure is yet to be determined but the problems experienced so far are not necessarily a predictor.

I wish the engineers, scientists, visionaries, and others great success with finding better ways to produce energy.

#BCTECH: preview of Summit 2017

The 2017 (2nd annual) version of the BC (British Columvai) Tech Summit will take place March 14 -15, 2017 in Vancouver, BC,  Canada. A Nov. 25, 2016 BC Innovation Council (BCIC), one of the producing partners, news release made the announcement,

Technology is transforming key industries in B.C. and around the globe at an unprecedented pace.

 From natural resources and agriculture to health and digital media, the second #BCTECH Summit returns with Microsoft as title sponsor, and will explore how tech is impacting every part of B.C.’s economy and changing lives.

Presented by the Province and the BC Innovation Council, B.C.͛s largest tech event will arm attendees with the tools to propel their companies to the next level, establish valuable business connections and inspire students to pursue careers in technology. From innovations in precision health, autonomous vehicles and customer experience, to emerging ideas in cleantech, agritech and aerospace, the #BCTECH Summit will showcase high-tech solutions to important local and global challenges.

New to the summit this year is the Future Realities Room, presented by Microsoft. It will be a dedicated space for B.C. companies to showcase their innovative augmented reality, virtual reality and mixed reality applications. From artificial intelligence to the internet-of-things, emerging technologies are disrupting industries and reshaping the path for future generations.

What attendees can expect at #BCTECH Summit 2017:

  •  Keynotes from thought leaders including Shahrzad Rafati of BroadbandTV, Ben Parr, author of Captivology, Microsoft and IBM.
  • Sector-specific deep dives from experts exploring the innovations transforming their industries and every part of B.C’s economy.
  • Opportunities to connect with tech buyers, scouts and investors through B2B meetings and the Investment Showcase.
  • Expanded Marketplace, Technology Showcase including Startup Square and Research Runway, and the Future Realities Room presented by Microsoft.
  • Youth Innovation Day to expose grades 10-12 students to diverse career paths in the technology sector.
  • Evening networking receptions and Techfest by Techvibes, a recruiting event that connects hiring companies with tech talent.

The two-day event is attracting regional, national and international attendees seeking solutions for their business, investment opportunities and talent in the province. The summit builds on the success of the inaugural summit this past January, which attracted global attention and exceeded its goal of 1,000 attendees with more than 3,500 people in attendance.

There is a special deal at the moment where you can save $300 off your $899 registration.  According to the site, the deal expires on Feb. 14, 2017. For the undecided, here’s a listing of a few of the speakers (from the #BCTECH Summit speakers page),

Thomas Tannert
BC Leadership Chair in Tall Wood Construction
University of Northern British Columbia

Thomas joined the University of Northern British Columbia in 2016 as BC Leadership Chair in Tall Wood Construction. He received his PhD from the University of British Columbia in Vancouver, a Master’s degree in Wood Science and Technology from the University of Bio-Bio in Chile, and a Civil Engineering degree from the Bauhaus-University Weimar in Germany.

Before coming to UNBC, Thomas worked on multi-disciplinary teams in Germany, Chile, and Switzerland and was Associate Chair in Wood Building Design and Construction at UBC. He is an expert in the development of design methods for timber joints and structures and the assessment and monitoring of timber structures.

Thomas is actively involved in fostering collaboration among timber design experts in industry and academia, and is a member on multiple international committees as well as the Canadian Standard Association technical committee CSA-O86 “Engineering design in wood”.

Sarah Applebaum
Director, Pangea Spark
Pangea Ventures

Sarah Applebaum is the Director of Pangaea Spark at Pangaea Ventures. Sarah is a member of the Young Private Capitalist Committee of the CVCA, advisory board member for the CIX Cleantech Conference, start up showcase review board for SXSW Eco and mentor to the Singularity University Labs Accelerator. She is the co-founder of TNT Events, a Vancouver-based organization that strives to create a more interconnected and multi-disciplinary innovation ecosystem.

Sarah holds an MBA from the Schulich School of Business and a BSc. from Dalhousie University.

Natalie Cartwright
Co-founder
Finn.ai

Nat is a co-founder of Finn.ai, a white-label virtual banking assistance, powered by artificial intelligence. Nat holds a Master of Public Health from Lund University and a Masters of Business Administration from IE Business School.

Before founding Finn.ai in 2014, Nat worked at the Global Fund, the largest global financing institution for HIV, tuberculosis and malaria programs, where she managed $250 million USD in investment to countries like Djibouti, South Sudan and Tajikistan.

Whether working in international development or in financial technology, Nat likes to act on the potential she sees for improvement and innovation.

Martin Monkman
Provincial Statistician & Director, BC Stats
Province of British Columbia

Since first joining BC Stats (British Columbia’s statistics bureau) in 1993, Martin has built a wide range of experience using data science to support evidence-based policy and business management decisions. Now the Provincial Statistician & Director at BC Stats, Martin leads a dynamic and innovative team of professional researchers in analyzing statistical information about the economic and social conditions of British Columbia and measuring public sector organizational performance.

Martin holds Bachelor of Science and Master of Arts degrees in Geography from the University of Victoria. He is a member of the Statistical Analysis Committee of the Society for American Baseball Research (SABR), and blogs about baseball statistics and data science using the statistical software R at bayesball.blogspot.com.

Loc Dao
Chief Digital Officer
National Film Board of Canada

Loc is a Canadian digital media creator and co-founder of the groundbreaking NFB Digital and CBC Radio 3 studios and their industry shifting bodies of work.

Loc recently became the chief digital officer (CDO) of the National Film Board of Canada, after serving as executive producer and creative technologist for the NFB Digital Studio in Vancouver since 2011. His NFB credits include the interactive documentaries Bear 71, Welcome to Pine Point, Circa 1948, Waterlife, The Last Hunt and Cardboard Crash VR which have been credited with inventing the new form of the interactive documentary.

In December 2011, Loc was named Canada’s Top Digital Producer for 2011 at the Digi Awards in Toronto. In addition, his CBC Radio 3 was one of the world’s first cross media success stories combining the award-winning CBC Radio 3 web magazine, terrestrial and satellite radio, podcasts and 3 user generated content sites that preceded MySpace and YouTube.

Janice Cheam
Co-founder, President & CEO
Neurio Technology Inc.

Janice is an entrepreneurial executive whose vision, commitment, and passion has been the driving force behind Neurio. Coming from over 7 years of utility experience, as the CEO of Neurio Technology, Janice has been working to help businesses promote energy efficiency and engagement among users for over a decade. Having seen a huge unmet need in the smart home market, she and her co-founders answered it by creating Neurio, a smart energy monitoring platform used by over 100,000 homes.

George Rubin
Vice-President, Business Development
General Fusion

George is the Vice-President of Business Development at General Fusion, a company transforming the world’s energy supply by developing the world’s first fusion power plant based on commercially viable technology.

Previously, George was a co-founder, Vice-President and subsequently President of Day4 Energy Inc., where he was instrumental to developing the solar company’s strategic vision and was directly responsible for execution of the corporate development plan. Following his time at Day4, George founded Pacific Surf Partners and served as its Managing Director. In 2016 he joined General Fusion to develop and coordinate relationships in the business and research communities.

A graduate of Moscow State University with a Masters Degree in Quantum Radio Physics, and a British Columbia Institute of Technology graduate with a Diploma in Financial Management and a Bachelor Degree in Accounting, George combines his knowledge of science and business with the experience of over a decade in the cleantech industry.

Gareth Manderson
General Manager, BC Works
Rio Tinto

Gareth is the General Manager of Rio Tinto’s  BC Works. In this role, he leads Rio Tinto Aluminium’s business in British Columbia, incorporating the operations of the Kitimat Smelter, Kemano Power Generation Facility and the Nechako Watershed. Prior to this, he led the Weipa Bauxite Business in Australia comprising of two mining operations, a port and the local town of Weipa.

Gareth has lived and worked in Australia, Canada, the USA and Italy, and completed assignments in a number of other countries. He has held accountability for business and operational leadership, consulting services, administrative and function support, and taken part in strategy development and due diligence work.

Gareth lives in Kitimat, British Columbia, with his wife and two children. He holds an Engineering Degree, a Master of Business Administration and is a Graduate of the Australian Institute of Company Directors.

Stephanie Simmons
Canada Research Chair in Quantum Nanoelectronics & Assistant Professor
Simon Fraser University

Stephanie is an assistant professor in the Department of Physics at Simon Fraser University (SFU), where she leads the Silicon Quantum Technology research group. Stephanie earned a Ph.D. in Materials Science at Oxford University in 2011 as a Clarendon Scholar and a B.Math (Pure Mathematics and Mathematical Physics) from the University of Waterloo. She was a Postdoctoral Research Fellow of the Electrical Engineering Department at UNSW, Australia, and completed her Junior Research Fellowship from St. John’s College, Oxford University.

Stephanie joined SFU as a Canada Research Chair in Quantum Nanoelectronics in fall 2015 and is working to build a silicon-based quantum computer. Her work on silicon quantum technologies was awarded a Physics World Top Ten Breakthrough of the Year of 2013 and again in 2015, and has been covered by the New York Times, CBC, BBC, Scientific American, the New Scientist, and others.

I recently had the pleasure of hearing Simmons speak at the SFU President’s Faculty Lecture on Nov. 30, 2016. You can watch her talk here (the talk is approximately 1 hr. in length).

Getting back to #BCTECH Summit 2017, I’ve provided a small sample of the speakers. By my count there are 103 in total. BTW, kudos to the organizers’ skills and commitment as approximately 35% of the speakers are women. Yes, it could be better but compared to a lot of the meetings I’ve mentioned here, this statistic is a significant improvement. As for diversity, it seems to me that they could probably do a bit better there too.

New energy (nuclear) with fusion at TED 2014′s Session 3: Reshape

Michel Laberge, plasma physicist and founder and Chief Scientist of company General Fusion, describes how his company is working to change our energy sources from fossil fuels to nuclear power (I wrote about General Fusion in a Dec. 2, 2011 posting).

He and his company are currently involved in a large international collaboration, ITER (China. European Union, India, Korea, Russia, and USA as per the website tagline) in the south of France. From the ITER project page (images not included),

ITER is a large-scale scientific experiment that aims to demonstrate that it is possible to produce commercial energy from fusion.

The Q in the formula on the right symbolizes the ratio of fusion power to input power. Q ≥ 10 represents the scientific goal of the ITER project: to deliver ten times the power it consumes. From 50 MW of input power, the ITER machine is designed to produce 500 MW of fusion power—the first of all fusion experiments to produce net energy.

During its operational lifetime, ITER will test key technologies necessary for the next step: the demonstration fusion power plant that will prove that it is possible to capture fusion energy for commercial use.

The science going on at ITER—and all around the world in support of ITER—will benefit all of mankind.

We firmly believe that to harness fusion energy is the only way to reconcile huge conflicting demands which will confront humanity sooner or later.

The issue at stake is how to reconcile the imperative, constantly growing demand of the majority of the world’s population to raise their standard of living … with the enormous environmental hazards resulting from the present energy supply …

… In our opinion, the use of fusion energy is a “must” if we want to be serious about embarking on sustainable development for future generations.

Laberge is speaking very quickly and since I’m not at all familiar with his area of expertise all I can say is he’s clearly very excited about his work and its potential to shift how we produce energy. He provides more than one technical explanation and I look forward to viewing his presentation again when it’s made public.

As for other speakers in this session. they were very interesting but as I noted yesterday I am am trying to focus on speakers whose topics have been covered here in one fashion or another.

Burnaby-based company (Canada) challenges fossil fuel consumption with nuclear fusion

General Fusion, a Burnaby-based company getting ready to commercialize nuclear fusion by the end of this decade, is making a bit of a media splash. From a Nov. 30, 2011 news item on physorg.com (written by Tim Lawrence for AFP),

In the race against world governments and the wealthiest companies to commercialize a nuclear fusion reactor, a small, innovative Canadian firm is hoping to bottle and sell the sun’s energy.

They hope to test a prototype in 2014 and eventually become the first to commercialize the technology, offering a safe, cheap, pollution-free and virtually inexhaustible source of energy.

“What we’re trying to do is build the technology that can make the power that drives the sun, make it here on earth,” said Michael Delage, General Fusion’s vice president.

Most times when we hear ‘nuclear’, especially in the wake of the Fukushima nuclear accident, we think of nuclear fission not nuclear fusion, which is a different technology. From the General Fusion website page on Safety,

Nuclear fusion power plants produce electricity without incurring the dangers associated with nuclear fission.

Fusion systems cannot melt down or explode since the fusion reaction only acts on a small amount of nuclear fuel at a time and can only occur if suitable conditions can be created and maintained for a sufficient time. If any part of the process does not work perfectly, fusion will not occur. In contrast, in a fission reactor, fuel is added in bulk and the reactor controls the rate at which a chain reaction occurs; if the control mechanism fails, the reaction can run away and a meltdown can occur.

Fusion systems do not use or produce highly active, long-lived radioactive waste. In contrast, fission reactors create reaction products that are unstable and more highly radioactive than the parent fuel material. Some of these fission products have half-lives of tens of thousands of years, creating long-term radioactive waste storage problems.

Fusion power plants are unattractive terrorist targets since their destruction cannot cause widespread environmental damage or human injury, and they do not produce or contain any materials that could be used for making bombs.

The description of the benefits from the technology are certainly persuasive (from the General Fusion website section on Benefits),

Environmental

Nuclear fusion power plants produce electricity without emitting greenhouse gases or pollutants.

Sustainability

General Fusion’s technology preserves non-renewable resources and promotes energy access, independence and security.

General Fusion power plants use deuterium and lithium as input fuel. The generator converts the lithium into tritium during the reaction process.

Lithium is abundant and widely available. The current annual lithium production is 16,000 t with 28.5 Mt of known land reserves and 250 Gt of seawater reserves. If fusion power plants were used to generate all of today’s electricity, land and sea reserves of lithium would be sufficient for 207 million years of production.

If you prefer to get your information via video,

Good luck to the  folks at General Fusion!