Tag Archives: Germany

Buckydiamondoids steer electron flow

One doesn’t usually think about buckyballs (Buckminsterfullerenes) and diamondoids as being together in one molecule but that has not stopped scientists from trying to join them and, in this case, successfully. From a Sept. 9, 2014 news item on ScienceDaily,

Scientists have married two unconventional forms of carbon — one shaped like a soccer ball, the other a tiny diamond — to make a molecule that conducts electricity in only one direction. This tiny electronic component, known as a rectifier, could play a key role in shrinking chip components down to the size of molecules to enable faster, more powerful devices.

Here’s an illustration the scientists have provided,

Illustration of a buckydiamondoid molecule under a scanning tunneling microscope (STM). In this study the STM made images of the buckydiamondoids and probed their electronic properties.

Illustration of a buckydiamondoid molecule under a scanning tunneling microscope (STM). In this study the STM made images of the buckydiamondoids and probed their electronic properties.

A Sept. 9, 2014 Stanford University news release by Glenda Chui (also on EurekAlert), which originated the news item, provides some information about this piece of international research along with background information on buckyballs and diamondoids (Note: Links have been removed),

“We wanted to see what new, emergent properties might come out when you put these two ingredients together to create a ‘buckydiamondoid,’” said Hari Manoharan of the Stanford Institute for Materials and Energy Sciences (SIMES) at the U.S. Department of Energy’s SLAC National Accelerator Laboratory. “What we got was basically a one-way valve for conducting electricity – clearly more than the sum of its parts.”

The research team, which included scientists from Stanford University, Belgium, Germany and Ukraine, reported its results Sept. 9 in Nature Communications.

Many electronic circuits have three basic components: a material that conducts electrons; rectifiers, which commonly take the form of diodes, to steer that flow in a single direction; and transistors to switch the flow on and off. Scientists combined two offbeat ingredients – buckyballs and diamondoids – to create the new diode-like component.

Buckyballs – short for buckminsterfullerenes – are hollow carbon spheres whose 1985 discovery earned three scientists a Nobel Prize in chemistry. Diamondoids are tiny linked cages of carbon joined, or bonded, as they are in diamonds, with hydrogen atoms linked to the surface, but weighing less than a billionth of a billionth of a carat. Both are subjects of a lot of research aimed at understanding their properties and finding ways to use them.

In 2007, a team led by researchers from SLAC and Stanford discovered that a single layer of diamondoids on a metal surface can emit and focus electrons into a tiny beam. Manoharan and his colleagues wondered: What would happen if they paired an electron-emitting diamondoid with another molecule that likes to grab electrons? Buckyballs are just that sort of electron-grabbing molecule.

Details are then provided about this specific piece of research (from the Stanford news release),

For this study, diamondoids were produced in the SLAC laboratory of SIMES researchers Jeremy Dahl and Robert Carlson, who are world experts in extracting the tiny diamonds from petroleum. The diamondoids were then shipped to Germany, where chemists at Justus-Liebig University figured out how to attach them to buckyballs.

The resulting buckydiamondoids, which are just a few nanometers long, were tested in SIMES laboratories at Stanford. A team led by graduate student Jason Randel and postdoctoral researcher Francis Niestemski used a scanning tunneling microscope to make images of the hybrid molecules and measure their electronic behavior. They discovered that the hybrid is an excellent rectifier: The electrical current flowing through the molecule was up to 50 times stronger in one direction, from electron-spitting diamondoid to electron-catching buckyball, than in the opposite direction. This is something neither component can do on its own.

While this is not the first molecular rectifier ever invented, it’s the first one made from just carbon and hydrogen, a simplicity researchers find appealing, said Manoharan, who is an associate professor of physics at Stanford. The next step, he said, is to see if transistors can be constructed from the same basic ingredients.

“Buckyballs are easy to make – they can be isolated from soot – and the type of diamondoid we used here, which consists of two tiny cages, can be purchased commercially,” he said. “And now that our colleagues in Germany have figured out how to bind them together, others can follow the recipe. So while our research was aimed at gaining fundamental insights about a novel hybrid molecule, it could lead to advances that help make molecular electronics a reality.”

Other research collaborators came from the Catholic University of Louvain in Belgium and Kiev Polytechnic Institute in Ukraine. The primary funding for the work came from U.S. the Department of Energy Office of Science (Basic Energy Sciences, Materials Sciences and Engineering Divisions).

Here’s a link to and a citation for the paper,

Unconventional molecule-resolved current rectification in diamondoid–fullerene hybrids by Jason C. Randel, Francis C. Niestemski,    Andrés R. Botello-Mendez, Warren Mar, Georges Ndabashimiye, Sorin Melinte, Jeremy E. P. Dahl, Robert M. K. Carlson, Ekaterina D. Butova, Andrey A. Fokin, Peter R. Schreiner, Jean-Christophe Charlier & Hari C. Manoharan. Nature Communications 5, Article number: 4877 doi:10.1038/ncomms5877 Published 09 September 2014

This paper is open access. The scientists provided not only a standard illustration but a pretty picture of the buckydiamondoid,

Caption: An international team led by researchers at SLAC National Accelerator Laboratory and Stanford University joined two offbeat carbon molecules -- diamondoids, the square cages at left, and buckyballs, the soccer-ball shapes at right -- to create "buckydiamondoids," center. These hybrid molecules function as rectifiers, conducting electrons in only one direction, and could help pave the way to molecular electronic devices. Credit: Manoharan Lab/Stanford University

Caption: An international team led by researchers at SLAC National Accelerator Laboratory and Stanford University joined two offbeat carbon molecules — diamondoids, the square cages at left, and buckyballs, the soccer-ball shapes at right — to create “buckydiamondoids,” center. These hybrid molecules function as rectifiers, conducting electrons in only one direction, and could help pave the way to molecular electronic devices.
Credit: Manoharan Lab/Stanford University

FOE, nano, and food: part two of three (the problem with research)

The first part of this roughly six week food and nano ‘debate’ started off with the May 22, 2014 news item on Nanowerk announcing the Friends of the Earth (FOE) report ‘Way too little: Our Government’s failure to regulate nanomaterials in food and agriculture‘. Adding energy to FOE’s volley was a Mother Jones article written by Tom Philpott which had Dr. Andrew Maynard (Director of the University of Michigan’s Risk Science Center) replying decisively in an article published both on Nanowerk and on the Conversation.

Coincidentally or not, there were a couple of news items about ‘nano and food’ research efforts during the ‘debate’. A June 11, 2014 news item on Nanowerk highlights a Franco-German research project into the effects that nanomaterials have on the liver and the intestines while noting the scope of the task researchers face,

What mode of action do nanomaterials ingested via food have in liver and intestine? Which factors determine their toxicity? Due to the large number of different nanomaterials, it is hardly possible to test every one for its toxic properties. [emphasis mine] For this reason, specific properties for the classification of nanomaterials are to be examined within the scope of the Franco-German research project “SolNanoTox”, which began on 1 March 2014. The [German] Federal Institute for Risk Assessment (BfR) requires data on bioavailability for its assessment work, in particular on whether the solubility of nanomaterials has an influence on uptake and accumulation in certain organs, such as liver and intestine. “We want to find out in our tests whether the criterion ‘soluble or insoluble’ is a determining factor for uptake and toxicity of nanomaterials,” says BfR President Professor Dr. Andreas Hensel.

A June 13, 2014 German Federal Institute for Risk Assessment (BfR) press release, which originated the news item, details the research and the participating agencies,

A risk assessment of nanomaterials is hardly possible at the moment and involves a very high degree of uncertainty, as important toxicological data on their behaviour in tissue and cells are still missing. [emphasis mine] The German-French SolNanoTox research project examines which role the solubility of nanomaterials plays with regard to their accumulation and potential toxic properties. The project is to run for three and a half years during which the BfR will work closely with its French sister organisation ANSES. Other partners are the Institut des Sciences Chimiques de Rennes and Universität Leipzig. The German Research Foundation and French Agence Nationale de la Recherche (ANR) are funding the project.

The tasks of the BfR include in vitro tests (e.g. the investigation of the influence of the human gastrointestinal system) and analysis of biological samples with regard to the possible accumulation of nanomaterials. In addition to this, the BfR uses modern methods of mass spectrometry imaging to find out whether nanoparticles alter the structure of biomolecules, e.g. the structure of the lipids of the cellular membrane. So far, these important tests, which are necessary for assessing possible changes in DNA or cellular structures caused by nanomaterials in food, have not been conducted.

Metallic nanoparticles are to be studied (from the press release),

In the project, two fundamentally different types of nanoparticles are examined as representatives for others of their type: titanium dioxide as representative of water insoluble nanoparticles and aluminium as an example of nanomaterials which show a certain degree of water solubility after oxidation. [emphases mine] It is examined whether the degree of solubility influences the distribution of the nanomaterials in the body and whether soluble materials may possibly accumulate more in other organs than insoluble ones. The object is to establish whether there is a direct toxic effect of insoluble nanomaterials in general after oral uptake due to their small size.

Different innovative analytical methods are combined in the project with the aim to elucidate the behaviour of nanomaterials in tissue and their uptake into the cell. The main focus is on effects which can trigger genotoxic damage and inflammation. At first, the effects of both materials are examined in human cultures of intestinal and liver cells in an artificial environment (in vitro). In the following, it has to be verified by animal experimentation whether the observed effects can also occur in humans. This modus operandi allows to draw conclusions on effects and mode of action of orally ingested nanomaterials with different properties. The goal is to group nanomaterials on the basis of specific properties and to allocate the corresponding toxicological properties to these groups. Motivation for the project is the enormous number of nanomaterials with large differences in physicochemical properties. Toxicological tests cannot be conducted for all materials.

In the meantime, a June 19, 2014 news item on Azonano (also on EurekAlert but dated June 18, 2014) features some research into metallic nanoparticles in dietary supplement drinks,

Robert Reed [University of Arizona] and colleagues note that food and drink manufacturers use nanoparticles in and on their products for many reasons. In packaging, they can provide strength, control how much air gets in and out, and keep unwanted microbes at bay. As additives to food and drinks, they can prevent caking, deliver nutrients and prevent bacterial growth. But as nanoparticles increase in use, so do concerns over their health and environmental effects. Consumers might absorb some of these materials through their skin, and inhale and ingest them. What doesn’t get digested is passed in urine and feces to the sewage system. A handful of initial studies on nanomaterials suggest that they could be harmful, but Reed’s team wanted to take a closer look.

They tested the effects of eight commercial drinks containing nano-size metal or metal-like particles on human intestinal cells in the lab. The drinks changed the normal organization and decreased the number of microvilli, finger-like projections on the cells that help digest food. In humans, if such an effect occurs as the drinks pass through the gastrointestinal tract, these materials could lead to poor digestion or diarrhea, they say. The researchers’ analysis of sewage waste containing these particles suggests that much of the nanomaterials from these products are likely making their way back into surface water, where they could potentially cause health problems for aquatic life.

This piece is interesting for two reasons. First, the researchers don’t claim that metallic nanoparticles cause digestion or diarrhea due to any action in the gastrointestinal tract. They studied the impact that metallic nanoparticles in supplementary drinks had on cells (in vitro testing) from the gastrointestinal tract. Based on what they observed in the laboratory, “… these materials could lead to poor digestion or diarrhea… .” The researchers also suggest a problem could occur as these materials enter surface water in increasing quantities.

Here’s a link to and a citation for the paper,

Supplement Drinks and Assessment of Their Potential Interactions after Ingestion by Robert B. Reed, James J. Faust, Yu Yang, Kyle Doudrick, David G. Capco, Kiril Hristovski, and Paul Westerhoff. ACS Sustainable Chem. Eng., 2014, 2 (7), pp 1616–1624 DOI: 10.1021/sc500108m Publication Date (Web): June 2, 2014

Copyright © 2014 American Chemical Society

With Paul Westerhoff as one of the authors and the reference to metallic nanoparticles entering water supplies, I’m guessing that this research is associated with the LCnano (lifecycle nano) project headquartered at Arizona State university (April 8, 2014 posting).

Getting back to the Franco-German SolNanoTox project, scientists do not know what happens when the cells in your intestines, liver, etc. encounter metallic or other nanoparticles, some of which may be naturally occurring. It should also be noted that we have likely been ingesting metallic nanoparticles for quite some time. After all, anyone who has used silver cutlery has ingested some silver nanoparticles.

There are many, many questions to be asked and answered with regard to nanomaterials in our foods.  Here are a few of mine:

  • How many metallic and other nanoparticles did we ingest before the advent of ‘nanomaterials in food’?
  • What is the biopersistence of naturally occurring and engineered metallic and other nanoparticles in the body?
  • Is there an acceptable dose versus a fatal dose? (Note: There’s naturally occurring formaldehyde in pears as per my May 19, 2014 post about doses, poisons, and the Sense about Science group’s campaign/book, Making Sense of Chemical Stories.)
  • What happens as the metallic and other engineered nanoparticles are added to food and drink and eventually enter our water, air, and soil?

Returning to the ‘debate’, a July 11, 2014 article by Sarah Shemkus for a sponsored section in the UK’s Guardian newspaper highlights an initiative taken by an environmental organization, As You Sow, concerning titanium dioxide in Dunkin’ Donuts’ products (Note: A link has been removed),

The activists at environmental nonprofit As You Sow want you to take another look at your breakfast doughnut. The organization recently filed a shareholder resolution asking Dunkin’ Brands, the parent company of Dunkin’ Donuts, to identify products that may contain nanomaterials and to prepare a report assessing the risks of using these substances in foods.

Their resolution received a fair amount of support: at the company’s annual general meeting in May, 18.7% of shareholders, representing $547m in investment, voted for it. Danielle Fugere, As You Sow’s president, claims that it was the first such resolution to ever receive a vote. Though it did not pass, she says that she is encouraged by the support it received.

“That’s a substantial number of votes in favor, especially for a first-time resolution,” she says.

The measure was driven by recent testing sponsored by As You Sow, which found nanoparticles of titanium dioxide in the powdered sugar that coats some of the donut chain’s products. [emphasis mine] An additive widely used to boost whiteness in products from toothpaste to plastic, microscopic titanium dioxide has not been conclusively proven unsafe for human consumption. Then again, As You Sow contends, there also isn’t proof that it is harmless.

“Until a company can demonstrate the use of nanomaterials is safe, we’re asking companies either to not use them or to provide labels,” says Fugere. “It would make more sense to understand these materials before putting them in our food.”

As You Sow is currently having 16 more foods tested. The result should be available later this summer, Fugere says.

I wonder if As You Sow will address the question of whether the nanoscale titanium dioxide they find indicates that nanoscale particles are being deliberately added or whether the particles are the inadvertent consequence of the production process. That said, I find it hard to believe no one in the food industry is using engineered nanoscale additives as they claim  (the other strategy is to offer a nonanswer) in Shemkus’ article (Note: Links have been removed).,

In a statement, Dunkin’ Donuts argues that the titanium dioxide identified by As You Sow does not qualify as a nanomaterial according to European Union rules or draft US Food and Drug Administration regulations. The company also points out that there is no agreed-upon standard method for identifying nanoparticles in food.

In 2008, As You Sow filed nanomaterial labeling resolutions with McDonald’s and Kraft Foods. In response, McDonald’s released a statement declaring that it does not support the use of nanomaterials in its food, packaging or toys. Kraft responded that it would make sure to address health and safety concerns before ever using nanomaterials in its products.

While Shemkus’ article appears in the Guardian’s Food Hub which is sponsored by the Irish Food Board, this article manages to avoid the pitfalls found in Philpott’s nonsponsored article.

Coming next: the US Food and Drug Administration Guidance issued five weeks after the FOE kicks off the ‘nano and food’ debate in May 2014 with its ‘Way too little: Our Government’s failure to regulate nanomaterials in food and agriculture‘ report.

Part one (an FOE report is published)

Part three (final guidance)

Bespoke (custom made) carbon nanotubes

Researchers have found a way to create single-walled carbon nanotubes (SWCNTs) that  are consistent and, hopefully, designed for specific applications if I’m reading the research rightly, (I have an embedded video in a March 15, 2013 posting which illustrates some of the issues with producing carbon nanotubes.) Getting back to this latest research, it suggests that we could order SWCNTs-on-demand. An Aug. 14, 2014 news item on Azonano provides more insight,

In future, it will be possible to specifically equip carbon nanotubes with properties which they need for electronic applications, for example. Researchers at Empa in Dübendorf/Switzerland and the Max Planck Institute for Solid State Research in Stuttgart [Germany] have succeeded for the first time in growing single-walled carbon nanotubes (CNTs) with only a single, prespecified structure.

The nanotubes thereby have identical electronic properties. The decisive trick here: The team has taken up an idea which originated from the Stuttgart-based Max Planck researchers and produced the CNT from custom-made organic precursor molecules. The researchers started with these precursor molecules and have built up the nanotubes on a platinum surface, as they report in the latest issue of the scientific journal Nature. Such CNTs could be used in future, for instance, in ultra-sensitive light detectors and very tiny transistors.

An Aug. 13, 2014 Max Planck Institute press release, which originated the news item, provides more detail,

For 20 years, material scientists working on the development of carbon nanotubes for a range of applications have been battling a problem – now an elegant solution is at hand. With their unusual mechanical, thermal and electronic properties, the tiny tubes with their honeycomb lattice of graphitic carbon have become the embodiment of nanomaterials. They could be used to manufacture the next generation of electronic and electro-optical components so that they are even smaller and with even faster switching times than before. But to achieve this, the material scientists must specifically equip the nanotubes with desired properties, and these depend on their structure. The production methods used to date, however, always result in a mixture of different CNTs. The team from Empa  and the Max Planck Institute for Solid State Research has now remedied the situation with a new production path for single-walled nanotubes.

Carbon nanotubes with the best possible varietal purity are in demand

With a diameter of around one nanometre, single-walled CNTs (SWCNTs) are deemed to be quantum structures; very tiny structural differences, in the diameter, for example, or in the orientation of the atomic lattice, can dramatically change the electronic properties: one SWCNT can be a metal, while one with a slightly different structure is semi-conducting. Correspondingly great is the interest in reliable methods for producing SWCNTs with the best possible varietal purity. Researchers working with Martin Jansen, Director Emeritus at the Max Planck Institute for Solid State Research, have been pursuing suitable concepts for the synthesis for ten years. But it is only now that the surface physicists at Empa and the chemists at the Stuttgart-based Max Planck Institute have succeeded in implementing one of these ideas in the laboratory. The researchers allowed structurally identical SWCNTs to grow on a platinum surface in a self-organised process and were able to unambiguously define their electronic properties.

The Max Planck research team headed by Martin Jansen had the idea of starting with small precursor molecules to synthesise carbon nanotubes. They felt it should be possible to achieve controlled conversion of the precursor molecules into a cap which acts as the seed for a SWCNT and thus unambiguously specify the structure of the nanotube. With this concept, they approached the Empa team working with Roman Fasel, head of Empa’s «nanotech@surfaces» department and titular professor at the Department of Chemistry and Biochemistry of the University of Bern. This group has already been working for some time on how molecules on a surface can be converted or combined into complex nanostructures according to the principle of molecular self-organisation. “The challenge now consists in finding the right precursor molecule which would actually grow on a smooth surface,” says Roman Fasel. This was ultimately achieved by Andreas Mueller and Konstantin Amsharov from the Max Planck Institute in Stuttgart with the synthesis of a hydrocarbon molecule from a not-inconsiderable 150 atoms.

Molecular origami on the platinum surface

What exactly is the process in which the carbon nanotube forms? In the first step, the flat precursor molecule must – as is the case in origami – convert into a three-dimensional object, the seed. This takes place on a hot platinum surface with the aid of a catalytic reaction, whereby hydrogen atoms split off from the precursor molecule and form new carbon-carbon bonds at very specific positions. The seed folds up from the flat molecule: a tiny, domed shape with open rim, which sits on the platinum surface. This so-called end cap forms the top of the growing SWCNT.

In a second chemical process, further carbon atoms, which are formed during the catalytic decomposition of ethanol on the platinum surface, are taken up. They deposit on the open rim between end cap and platinum surface and lift the cap higher and higher; the tube slowly grows upwards. The atomic structure of the nanotube is determined solely by the shape of the seed. The researchers proved this by analysing the vibrational modes of the SWCNTs and taking measurements with the scanning tunnelling microscope. Further investigations at Empa showed that the SWCNTs produced were over 300 nanometres in length.

Different nanotubes are formed from suitable precursor molecules

The researchers have thus proved that they can unambiguously specify the growth and thus the structure of long SWCNTs using custom-made molecular seeds. The SWCNTs synthesised in this study can exist in two forms, which correspond to an object and its mirror image. By choosing the precursor molecule appropriately, the researchers were able to influence which of the two variants forms. Depending on how the honeycomb atomic lattice is derived from the original molecule – straight or oblique with respect to the CNT axis – it is also possible for helically wound tubes, i.e. with right- or left-handed rotation, and with non-mirror symmetry to form. And it is precisely this structure that then determines which electronic, thermo-electric and optical properties of the material. In principle, the researchers can therefore specifically produce materials with different properties through their choice of precursor molecule.

In further steps, Roman Fasel and his colleagues want to gain an even better understanding of how SWCNTs establish themselves on a surface. Even if well in excess of 100 million nanotubes per square centimetre already grow on the platinum surface, only a relatively small fraction of the seeds actually develop into «mature» nanotubes. The question remains as to which processes are responsible for this, and how the yield can be increased.

Here’s a link to and a citation for the paper,

Controlled synthesis of single-chirality carbon nanotubes by Juan Ramon Sanchez-Valencia, Thomas Dienel, Oliver Gröning, Ivan Shorubalko, Andreas Mueller, Martin Jansen, Konstantin Amsharov, Pascal Ruffieux, & Roman Fasel. Nature 512, 61–64 (07 August 2014) doi:10.1038/nature13607

Published online 06 August 2014

This paper is behind a paywall.

Graphene and an artificial retina

A graphene-based artificial retina project has managed to intermingle the European Union’s two major FET (Future and Emerging Technologies) funding projects, 1B Euros each to be disbursed over 10 years, the Graphene Flagship and the Human Brain Project. From an Aug. 7, 2014 Technische Universitaet Muenchen (TUM) news release (also on EurekAlert),

Because of its unusual properties, graphene holds great potential for applications, especially in the field of medical technology. A team of researchers led by Dr. Jose A. Garrido at the Walter Schottky Institut of the TUM is taking advantage of these properties. In collaboration with partners from the Institut de la Vision of the Université Pierre et Marie Curie in Paris and the French company Pixium Vision, the physicists are developing key components of an artificial retina made of graphene.

Retina implants can serve as optical prostheses for blind people whose optical nerves are still intact. The implants convert incident light into electrical impulses that are transmitted to the brain via the optical nerve. There, the information is transformed into images. Although various approaches for implants exist today, the devices are often rejected by the body and the signals transmitted to the brain are generally not optimal.

Already funded by the Human Brain Project as part of the Neurobotics effort, Garrido and his colleagues will now also receive funding from the Graphene Flagship. As of July 2014, the Graphene Flagship has added 86 new partners including TUM according to the news release.

Here’s an image of an ‘invisible’ graphene sensor (a precursor to developing an artificial retina),

Graphene electronics can be prepared on flexible substrates. Only the gold metal leads are visible in the transparent graphene sensor. (Photo: Natalia Hutanu / TUM)

Graphene electronics can be prepared on flexible substrates. Only the gold metal leads are visible in the transparent graphene sensor. (Photo: Natalia Hutanu / TUM)

Artificial retinas were first featured on this blog in an Aug. 18, 2011 posting about video game Deus Ex: Human Revolution which features a human character with artificial sight. The post includes links to a video of a scientist describing an artificial retina trial with 30 people and an Israeli start-up company, ‘Nano Retina’, along with information about ‘Eyeborg’, a Canadian filmmaker who on losing an eye in an accident had a camera implanted in the previously occupied eye socket.

More recently, a Feb. 15, 2013 posting featured news about the US Food and Drug Administration’s decision to allow sale of the first commercial artificial retinas in the US in the context of news about a neuroprosthetic implant in a rat which allowed it to see in the infrared range, normally an impossible feat.

Astonishing observation about gold nanoparticles and self-assembly

An Aug. 4, 2014 news item on ScienceDaily features research on self-assembling gold nanoparticles from Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) and Humboldt-Universität zu Berlin (HU, Berlin),

Researchers at HZB in co-operation with Humboldt-Universität zu Berlin (HU, Berlin) have made an astonishing observation: they were investigating the formation of gold nanoparticles in a solvent and observed that the nanoparticles had not distributed themselves uniformly, but instead were self-assembled into small clusters.

An Aug. 4, 2014 HZB press release (also on EurekAlert), which originated the news item, provides additional technical information about the equipment used to make the observations,

This was determined using Small-Angle X-ray Scattering (SAXS) at BESSY II. A thorough examination with an [a transmission] electron microscope (TEM) confirmed their result. “The research on this phenomenon is now proceeding because we are convinced that such nanoclusters lend themselves as catalysts, whether in fuel cells, in photocatalytic water splitting, or for other important reactions in chemical engineering”, explains Dr. Armin Hoell of HZB. The results have just appeared in two peer reviewed international academic journals.

“What is special about the new process is that it is extremely simple and works with an environmentally friendly and inexpensive solvent”, explains Professor Klaus Rademann from HU Berlin. The solvent actually consists of two powders that one would sooner expect to find in agriculture that in a research laboratory: a supplement in chicken feed (choline chloride, aka vitamin B), and urea. British colleagues discovered a few years ago that mixing the two powders forms a transparent liquid able to dissolve metal oxides and heavy metals, called deep eutectic solvent (DES). The researchers in Berlin then positioned above the solvent gold foil that they could bombard with ions of noble gas in order to detach individual atoms of gold. This is how nanoparticles initially formed that distributed themselves in the solvent.

The researchers did not expect what happened next (from the press release),

The longer the bombardment (sputtering) of the gold foil lasted, the larger the nanoparticles could become, the scientists reasoned. However, this was not the case: the particles ceased growing at five nanometres. Instead, an increasing number of nanoparticles formed over longer sputtering times. The second surprise: these nanoparticles did not distribute themselves uniformly in the liquid, but instead self-assembled into small groups or clusters that could consist of up to twelve nanoparticles.

These kinds of observations cannot be easily made under a microscope, of course, but require instead an indirect, statistical approach: “Using small-angle X-ray scattering at BESSY II, we were not only able to ascertain that the nanoparticles are all around five nanometres in diameter, but also measure what the separations between them are. From these measurements, we found the nanoparticles arrange themselves into clusters”, explains Hoell.

“We ran computer models in advance of how the nanoparticles could distribute themselves in the solution to better understand the measurement results, and then compared the results of the simulation with the results of the small-angle X-ray scattering”, explains Dr. Vikram Singh Raghuwanshi, who works as a postdoc at HU Berlin as well as HZB. An image from the cryogenic transmission electron microscope that colleagues at HU prepared confirmed their findings. “But we could not have achieved this result using only electron microscopy, since it can only display details and sections of the specimen”, Hoell emphasised. “Small-angle X-ray scattering is indispensable for measuring general trends and averages!”

The press release concludes thusly,

It is obvious to the researchers that the special DES-solvent plays an important role in this self-organising process: various interactions between the ions of the solvent and the particles of gold result firstly in the nanoparticles reaching only a few thousand atoms in size, and secondly that they mutually attract somewhat – but only weakly – so that the small clusters arise. “We know, however, that these kinds of small clusters of nanoparticles are especially effective as catalysts for chemical reactions we want: a many-fold increase in the reaction speed due only to particle arrangement has already been demonstrated”, says Rademann.

Here are links to and citations for the two papers the team has published on their latest work,

Deep Eutectic Solvents for the Self-Assembly of Gold Nanoparticles: A SAXS, UV–Vis, and TEM Investigation by Vikram Singh Raghuwanshi, Miguel Ochmann, Armin Hoell, Frank Polzer, and Klaus Rademann. Langmuir, 2014, 30 (21), pp 6038–6046 DOI: 10.1021/la500979p Publication Date (Web): May 11, 2014

Copyright © 2014 American Chemical Society

Self-assembly of gold nanoparticles on deep eutectic solvent (DES) surfaces by V. S. Raghuwanshi, M. Ochmann, F. Polzer, A. Hoell and K. Rademann.  Chem. Commun., 2014,50, 8693-8696 DOI: 10.1039/C4CC02588A
First published online 10 Jun 2014

Both papers are behind a paywall.

This research is being presented at two conferences, one of which is taking place now (Aug.5, 2014; from the press release),

Dr. Raghuwanshi will give a talk on these results, as well as providing a preview of the catalysis research approaches now planned, at the International conference, IUCr2014, taking place from 5-12 August 2014 in Montreal, Canada.

In the coming year, HZB will incidentally be one of the hosts of the 16th International Small-Angle Scattering Conference, SAS2015.

There you have all the news.

Germany’s nano-supercapacitors for electric cars

Kudos to the writer for giving a dull topic, supercapacitors and electric cars, a jolt of life. From a July 24, 2014 news item on ScienceDaily,

Innovative nano-material based supercapacitors are set to bring mass market appeal a good step closer to the lukewarm public interest in Germany. [emphasis mine] This movement is currently being motivated by the advancements in the state-of-the-art of this device.

A July 1, 2014 Fraunhofer-Gesellschaft press release (also on EurekAlert), which originated the news item and, sadly, did not reveal the writer’s name, goes on in this refreshing fashion,

Electric cars are very much welcomed in Norway and they are a common sight on the roads of the Scandinavian country – so much so that electric cars topped the list of new vehicle registrations for the second time. This poses a stark contrast to the situation in Germany, where electric vehicles claim only a small portion of the market. Of the 43 million cars on the roads in Germany, only a mere 8000 are electric powered. The main factors discouraging motorists in Germany from switching to electric vehicles are the high investments cost, their short driving ranges and the lack of charging stations. Another major obstacle en route to the mass acceptance of electric cars is the charging time involved. The minutes involved in refueling conventional cars are so many folds shorter that it makes the situation almost incomparable. However, the charging durations could be dramatically shortened with the inclusion of supercapacitors. These alternative energy storage devices are fast charging and can therefore better support the use of economical energy in electric cars. Taking traditional gasoline-powered vehicles for instance, the action of braking converts the kinetic energy into heat which is dissipated and unused. Per contra, generators on electric vehicles are able to tap into the kinetic energy by converting it into electricity for further usage. This electricity often comes in jolts and requires storage devices that can withstand high amount of energy input within a short period of time. In this example, supercapacitors with their capability in capturing and storing this converted energy in an instant fits in the picture wholly. Unlike batteries that offer limited charging/discharging rates, supercapacitors require only seconds to charge and can feed the electric power back into the air-conditioning systems, defogger, radio, etc. as required.

So, the Norwegians have embraced electric cars while the Germans have remained reluctant. The writer offers a clear explanation of supercapacitors and mentions a solution for improving the electric vehicle acceptance rate in Germany (from the press release)

Rapid energy storage devices are distinguished by their energy and power density characteristics – in other words, the amount of electrical energy the device can deliver with respect to its mass and within a given period of time. Supercapacitors are known to possess high power density, whereby large amounts of electrical energy can be provided or captured within short durations, albeit at a short-coming of low energy density. The amount of energy in which supercapacitors are able to store is generally about 10% that of electrochemical batteries (when the two devices of same weight are being compared). This is precisely where the challenge lies and what the “ElectroGraph” project is attempting to address.

ElectroGraph is a project supported by the EU and its consortium consists of ten partners from both research institutes and industries. One of the main tasks of this project is to develop new types of supercapacitors with significantly improved energy storage capacities. As the project is approaches its closing phase in June, the project coordinator at Fraunhofer Institute for Manufacturing Engineering and Automation IPA in Stuttgart, Carsten Glanz explained the concept and approach taken en route to its successful conclusion: “during the storage process, the electrical energy is stored as charged particles attached on the electrode material.” “So to store more energy efficiently, we designed light weight electrodes with larger, usable surfaces.”

Next, the ‘nano’ aspect (graphene) of this particular project is explained,

In numerous tests, the researcher and his team investigated the nano-material graphene, whose extremely high specific surface area of up to 2,600 m2/g and high electrical conductivity practically cries out for use as an electrode material. It consists of an ultrathin monolayer lattice made of carbon atoms. When used as an electrode material, it greatly increases the surface area with the same amount of material. From this aspect, graphene is showing its potential in replacing activated carbon – the material that has been used in commercial supercapacitors to date – which has a specific surface area between 1000 and 1800 m2/g.

“The space between the electrodes is filled with a liquid electrolyte,” revealed Glanz. “We use ionic liquids for this purpose. Graphene-based electrodes together with ionic liquid electrolytes present an ideal material combination where we can operate at higher voltages.” “By arranging the graphene layers in a manner that there is a gap between the individual layers, the researchers were able to establish a manufacturing method that efficiently uses the intrinsic surface area available of this nano-material. This prevents the individual graphene layers from restacking into graphite, which would reduce the storage surface and consequently the amount of energy storage capacity. “Our electrodes have already surpassed commercially available one by 75 percent in terms of storage capacity,” emphasizes the engineer. “I imagine that the cars of the future will have a battery connected to many capacitors spread throughout the vehicle, which will take over energy supply during high-power demand phases during acceleration for example and ramming up of the air-conditioning system. These capacitors will ease the burden on the battery and cover voltage peaks when starting the car. As a result, the size of massive batteries can be reduced.”

Whether this effort has already been or, at some time in the future, will be demonstrated is not entirely clear to me,

In order to present the new technology, the ElectroGraph consortium developed a demonstrator consisting of supercapacitors installed in an automobile side-view mirror and charged by a solar cell in an energetically self-sufficient system. The demonstrator will be unveiled at the end of May [2015?] during the dissemination workshop at Fraunhofer IPA.

I imagine improved supercapacitors will be prove to be an enticement for more than one reluctant electric car purchaser no matter where they reside.

‘Llam’ me lend you some antibodies—antibody particles extracted from camels and llamas

Sometimes the urge for wordplay overwhelms me as it did this morning (June 12, 2014) when I saw llamas mentioned in a news item. For anyone unfamiliar with how Canadian English (and I can safely include American English here but am not sure about any other Englishes) is spoken, we leave out consonants in some phrases. For example, ‘let me’ becomes ‘lemme’, which when you’re playing with ‘llama,’ becomes ‘llam’me. As for the verb ‘lend’, I used it for its alliterative quality and used more accurate verb ‘extracted’ later in the headline.

Getting on to the antibodies and the camels and llamas, here’s more from a June 12, 2014 news item on Nanowerk (Note: A link has been removed),

The use of nanoparticles in cancer research is considered as a promising approach in detecting and fighting tumour cells. The method has, however, often failed because the human immune system recognizes the particles as foreign objects and rejects them before they can fulfil their function. Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and at University College Dublin [UCD[ in Ireland have, along with other partners, developed nanoparticles that not only bypass the body’s defence system, but also find their way to the diseased cells ("Diagnostic nanoparticle targeting of the EGF-receptor in complex biological conditions using single-domain antibodies"). This procedure uses fragments from a particular type of antibody that only occurs in camels and llamas. The small particles were even successful under conditions which are very similar to the situation within potential patients’ bodies.

A June 12, 2014 HZDR press release, which originated the news item, supplies a quote from one of the researchers where he explains the problems he and his colleagues were attempting to address,

Describing the current state of research, Dr. Kristof Zarschler of the Helmholtz Virtual Institute NanoTracking at the HZDR explains, "At the moment we must overcome three challenges. First, we need to produce the smallest possible nanoparticles. We then need to modify their surface in a way that the proteins in the human bodies do not envelop them, which would thus render them ineffective. In order to ensure, that the particles do their job, we must also somehow program them to find the diseased cells." Therefore, the Dresden [HZDR is in Dresden] and Dublin researchers combined expertise to develop nanoparticles made of silicon dioxide with fragments of camel antibodies.

The press release and Zarschler go on to explain the advantages of camel and llama antibodies,

In contrast to conventional antibodies, which consist of two light and two heavy protein chains, those taken from camels and llamas are less complex and are made up of only two heavy chains. “Due to this simplified structure, they are easier to produce than normal antibodies,” explains Zarschler. “We also only need one particular fragment – the portion of the molecule that binds to certain cancer cells – which makes the production of much smaller nanoparticles possible.” By modifying the surface of the nanoparticle, it also gets more difficult for the immune system to recognize the foreign material, which allows the nanoparticles to actually reach their target.

The ultra-small particles should then detect the so-called epidermal growth factor receptor (EGFR) in the human body. In various types of tumours, this molecule is overexpressed and/or exists in a mutated form, which allows the cells to grow and multiply uncontrollably. The Dresden researchers could demonstrate in experiments that nanoparticles that have been combined with the camel antibody fragments can more firmly bind to the cancer cells. “The EGFR is a virtual lock to which our antibody fits like a key,” explains Zarschler.

Most exciting are the experiments the researchers performed with human blood (from the press release),

They even obtained the same results in experiments involving human blood serum – a biologically relevant environment the scientists point out: “This means that we carried out the tests under conditions that are very similar to the reality of the human body,” explains Dr. Holger Stephan, who leads the project. “The problem with many current studies is that artificial conditions are chosen where no disruptive factors exist. While this provides good results, it is ultimately useless because the nanoparticles fail finally in experiments conducted under more complex conditions. In our case, we could at least reduce this error source.”

There are no immediate plans for clinical trials according to the press release,

However, more time is required before the nanoparticles can be utilized in diagnosing human tumours. “The successful tests have brought us one step further,” explains Stephan. “The road, however, to its clinical use is long.” The next aim is to reduce the size of the nanoparticles, which are now approximately fifty nanometres in diameter, to less than ten nanometres. “That would be optimal,” according to Zarschler. “Then they would only remain in the human body for a short period – just long enough to detect the tumour.”

Here’s a link to and a citation for the paper,

Diagnostic nanoparticle targeting of the EGF-receptor in complex biological conditions using single-domain antibodies by K. Zarschler, K. Prapainop, E. Mahon, L. Rocks,  M. Bramini, P. M. Kelly, H. Stephan, and K. A. Dawson. Nanoscale, 2014,6, 6046-6056 DOI: 10.1039/C4NR00595C
First published online 16 Apr 2014

This paper is in an open access journal.

The researchers have provided an illustration of the new antibody particles,

 Title Bild Nanopartikel Copyright 	CBNI, UCD


Title Bild Nanopartikel
With help of proteins, nanoparticles can be produced, which bind specifically to cancer cells, thus making it possible to detect tumours. Copyright CBNI, UCD

Hitchhikers at the nanoscale show how cells stir themselves

A May 30, 2014 news item on Nanowerk highlights some molecule-tracking research,

Chemical engineers from Rice University and biophysicists from Georg-August Universität Göttingen in Germany and the VU University Amsterdam in the Netherlands have successfully tracked single molecules inside living cells with carbon nanotubes.

Through this new method, the researchers found that cells stir their interiors using the same motor proteins that serve in muscle contraction.

A May 29, 2014 Rice University news release by Mike Williams, which originated the news item, describes the researchers’ work,

The team attached carbon nanotubes to transport molecules known as kinesin motors to visualize and track them as they moved through the cytoplasm of living cells.

Carbon nanotubes are hollow cylinders of pure carbon with one-atom-thick walls. They naturally fluoresce with near-infrared wavelengths when exposed to visible light, a property discovered at Rice by Professor Rick Smalley a decade ago and then leveraged by Rice Professor Bruce Weisman to image carbon nanotubes. When attached to a molecule, the hitchhiking nanotubes serve as tiny beacons that can be precisely tracked over long periods of time to investigate small, random motions inside cells.

“Any probe that can hitch the length and breadth of the cell, rough it, slum it, struggle against terrible odds, win through and still know where its protein is, is clearly a probe to be reckoned with,” said lead author Nikta Fakhri, paraphrasing “The Hitchhiker’s Guide to the Galaxy.” Fakhri, who earned her Rice doctorate in Pasquali’s lab in 2011, is currently a Human Frontier Science Program Fellow at Göttingen.

“In fact, the exceptional stability of these probes made it possible to observe intracellular motions from times as short as milliseconds to as long as hours,” she said.

For long-distance transport, such as along the long axons of nerve cells, cells usually employ motor proteins tied to lipid vesicles, the cell’s “cargo containers.” This process involves considerable logistics: Cargo needs to be packed, attached to the motors and sent off in the right direction.

“This research has helped uncover an additional, much simpler mechanism for transport within the cell interior,” said principal investigator Christoph Schmidt, a professor of physics at Göttingen. “Cells vigorously stir themselves, much in the way a chemist would accelerate a reaction by shaking a test tube. This will help them to move objects around in the highly crowded cellular environment.”

The researchers showed the same type of motor protein used for muscle contraction is responsible for stirring. They reached this conclusion after exposing the cells to drugs that suppressed these specific motor proteins. The tests showed that the stirring was suppressed as well.

The mechanical cytoskeleton of cells consists of networks of protein filaments, like actin. Within the cell, the motor protein myosin forms bundles that actively contract the actin network for short periods. The researchers found random pinching of the elastic actin network by many myosin bundles resulted in the global internal stirring of the cell. Both actin and myosin play a similar role in muscle contraction.

The highly accurate measurements of internal fluctuations in the cells were explained in a theoretical model developed by VU co-author Fred MacKintosh, who used the elastic properties of the cytoskeleton and the force-generation characteristics of the motors.

“The new discovery not only promotes our understanding of cell dynamics, but also points to interesting possibilities in designing ‘active’ technical materials,” said Fakhri, who will soon join the Massachusetts Institute of Technology faculty as an assistant professor of physics. “Imagine a microscopic biomedical device that mixes tiny samples of blood with reagents to detect disease or smart filters that separate squishy from rigid materials.”

There is an accompanying video,

This video is typical of the kind of visual image that nanoscientists look at and provides an interesting contrast to ‘nano art’ where colours and other enhancements are added. as per this example, NanoOrchard, from a May 13, 2014 news item on Nanowerk about the 2014 Materials Research Society spring meeting and their Science as Art competition,

NanoOrchard – Electrochemically overgrown CuNi nanopillars. (Image courtesy of the Materials Research Society Science as Art Competition and Josep Nogues, Institut Catala de Nanociencia i Nanotecnologia (ICN2), Spain, and A. Varea, E. Pellicer, S. Suriñach, M.D. Baro, J. Sort, Univ. Autonoma de Barcelona) [downloaded from http://www.nanowerk.com/nanotechnology-news/newsid=35631.php]

NanoOrchard – Electrochemically overgrown CuNi nanopillars. (Image courtesy of the Materials Research Society Science as Art Competition and Josep Nogues, Institut Catala de Nanociencia i Nanotecnologia (ICN2), Spain, and A. Varea, E. Pellicer, S. Suriñach, M.D. Baro, J. Sort, Univ. Autonoma de Barcelona) [downloaded from http://www.nanowerk.com/nanotechnology-news/newsid=35631.php]

Getting back to the carbon nanotube hitchhikers, here’s a link to and a citation for the paper,

High-resolution mapping of intracellular fluctuations using carbon nanotubes by Nikta Fakhri, Alok D. Wessel, Charlotte Willms, Matteo Pasquali, Dieter R. Klopfenstein, Frederick C. MacKintosh, and Christoph F. Schmidt. Science 30 May 2014: Vol. 344 no. 6187 pp. 1031-1035 DOI: 10.1126/science.1250170

This article is behind a paywall.

One final comment, I am delighted by the researcher’s reference to the Hitchhiker’s Guide to the Galaxy.

CREATE ISOSIM (isotopes for science and medicine) and NanoMat (nanomaterials) program at the University of British Columbia (Canada)

It seems the Natural Sciences and Engineering Research Council (NSERC; one of Canada’s ‘big three’ science national funding agencies) has a new funding program, CREATE (Collaborative Research and Training Experience) and two local (Vancouver, Canada) institutions, the University of British Columbia (UBC) and TRIUMF (Canada’s National Laboratory for Particle and Nuclear Physics) are beneficiaries to the tune of $3.3M.

Before getting the happy news, here’s a little information about this new NSERC program (from the CREATE page),

The Collaborative Research and Training Experience (CREATE) Program supports the training of teams of highly qualified students and postdoctoral fellows from Canada and abroad through the development of innovative training programs that:

  • encourage collaborative and integrative approaches, and address significant scientific challenges associated with Canada’s research priorities; and
  • facilitate the transition of new researchers from trainees to productive employees in the Canadian workforce.

These innovative programs must include the acquisition and development of important professional skills among students and postdoctoral fellows that complement their qualifications and technical skills.

In addition, these programs should encourage the following as appropriate:

  • student mobility, nationally or internationally, between individual universities and between universities and other sectors;
  • interdisciplinary research within the natural sciences and engineering (NSE), or at the interface between the NSE and health, or the social sciences and humanities. However, the main focus of the training must still lie within the NSE;
  • increased collaboration between industry and academia; and
  • for the industrial stream, an additional objective is to support improved job-readiness within the industrial sector by exposing participants to the specific challenges of this sector and training people with the skills identified by industry.

I wonder what they mean by “professional skills?” They use the phrase again in the Description,

The CREATE Program is designed to improve the mentoring and training environment for the Canadian researchers of tomorrow by improving areas such as professional skills, communication and collaboration, as well as providing experience relevant to both academic and non-academic research environments.

This program is intended for graduate students and has two streams, Industrial and International Collaboration. At this point, they have two international collaboration partners, one each in Germany and in Brazil.

There’s a subsection on the CREATE page titled Merit of the proposed training program (in my world that’s ‘criteria for assessment’),

Applicable to all applications:

  • the extent to which the program is associated with a research area of high priority to Canada and will provide a higher quality of training;
  • how the research area proposed relates to the current scientific or technical developments in the field, with references to the current literature;
  • the extent to which the research training program will facilitate the transition of the trainees to the Canadian workforce and will promote interaction of the trainees with non-academic sectors, such as private companies, industry associations, not-for-profit organizations, government departments, etc., as appropriate;
  • the description of the potential employers and a qualitative assessment of the job prospects for trainees;
  • the extent to which the program will provide opportunities for the trainees to develop professional skills;
  • the extent to which the program uses novel and interesting approaches to graduate student training in an integrated manner to provide an enriched experience for all participants;
  • the research training program’s focus and clarity of objectives, both short- and long-term; and
  • the added value that trainees will receive through their participation.

Clearly, this program is about training tomorrow’s workers and I expect CREATE is welcome in many corners. We (in Canada and elsewhere internationally) have a plethora of PhDs and nowhere for them to go. I have, of course, two provisos. First, I hope this program is not a precursor to a wholesale change in funding to a indulge a form of short-term thinking. Not every single course of study has to lead to a clearly defined job as defined by industry. Sometimes, industry doesn’t know what it needs until there’s a shortage. Second, I hope the administrators for this program support it. You (the government) can formulate all sorts of great policies but it’s the civil service that will implement your policies and if they don’t support them, you (the government) are likely to experience failure.

Here’s the CREATE funding announcement in a May 19, 2014 news item on Azonano,

Researchers studying nanomaterials and isotopes at the University of British Columbia received a $3.3 million boost in funding from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Two UBC teams, led respectively by Chemistry Prof. Mark MacLachlan and Physics Prof. Reiner Kruecken, received $1.65 million each from NSERC’s Collaborative Research and Training Experience (CREATE) grants. The funding extends over a six-year period. The investment will help MacLachlan and Kruecken mentor and train graduate students and postdoctoral fellows.

A May 16, 2014 UBC news release, which originated the news item, provides more information including some background for the two project leaders,

Mark MacLachlan, Professor, UBC Department of Chemistry
NanoMAT: NSERC CREATE Training Program in Nanomaterials Science & Technology

Nanomaterials have dimensions about 1/1000th the width of a human hair. Though invisible to our eyes, these materials are already used for diagnosing and treating diseases, environmental remediation, developing solar cells and batteries, as well as other applications. Nanomaterials form a multi-billion dollar industry that is expanding rapidly. To address the growing need for highly qualified trainees in Canada, UBC researchers have spearheaded the NanoMat program. Through a unique interdisciplinary training program, science and engineering students will undertake innovative research projects, receive hands-on training, and undertake internships at companies in Canada and across the world.

Reiner Kruecken, Professor, UBC Department of Physics and Astronomy
ISOSIM, ISOtopes for Science and Medicine

The ISOSIM program is designed to provide students with enriched training experiences in the production and preparation of nuclear isotopes for innovative applications that range from medical research and environmental science to investigations of the foundations of the universe. This will prepare students for positions in a number of Canadian industrial sectors including medical diagnostics and treatment, pharmaceutical sciences, development of next-generation electronic devices, environmental sciences, and isotope production. This project builds on the existing cooperation between UBC and TRIUMF, Canada’s national laboratory for particle and nuclear phsyics, [sic] on isotopes science.

Not mentioned in the UBC news release is that ISOSIM is a program that is jointly run with TRIUMF, Canada’s National Laboratory for Particle and Nuclear Physics. Here’s how TRIUMF views their CREATE grant, from a May 16, 2014 TRIUMF news release,

The ISOSIM program will train undergraduate students, graduate students, and postdoctoral researchers at UBC and TRIUMF from fields associated with isotope sciences in an individually tailored, interdisciplinary curriculum that will build on and complement the education in their specialty field. Unique in Canada, this program offers a combination of interdisciplinary isotope-related training ranging from pure to applied sciences, industrial internships, and mobility with German research institutions with unique large-scale equipment and scientific infrastructures.

It seems this particular grant was awarded as part of the international collaboration stream. (I wonder if TRIUMF or TRIUMF-friendly individuals had a role in developing that particular aspect of the CREATE program. Following on that thought, is there a large Canadian science organization with ties to Brazil?)

Getting back to TRIUMF’s current CREATE grant, the news release emphasizes an industrial focus,

“ISOSIM represents a timely and nationally important training initiative and is built on a world-class collaborative research environment,” says Dr. Reiner Kruecken, TRIUMF’s Science Division Head and Professor at UBC Department of Physics and Astronomy. Kruecken is leading the ISOSIM initiative and is joined by over twenty collaborators from UBC, TRIUMF, and several research institutes in Germany.

ISOSIM is poised to create the next generation of leaders for isotope-related industries and markets, including commercial, public health, environmental, and governmental sectors, as well as academia. The combination of research institutions like UBC, TRIUMF, and the BC Cancer Agency with Canadian companies like Nordion Inc., and Advanced Cyclotron Solutions Inc., have transformed Vancouver into a hub for isotope-related research and industries, emerging as “Isotope Valley”.

The inspiration for the ISOSIM program came from an interdisciplinary TRIUMF-led team who, in response to the isotope crisis, demonstrated non-reactor methods for producing the critical medical isotope Tc-99m. This required a coordinated approach of physicists, chemists, biologists, and engineers.

Similar interdisciplinary efforts are needed for expanding the use and application of isotopes in key areas. While their medical use is widely known, isotopes enjoy growing importance in many fields. Isotopes are used as tracers to examine the trace flow of nutrients and pollutants in the environment. Isotopes are also used to characterize newly designed materials and the behaviour of nanostructured materials that play a key role in modern electronics devices. The production and investigation of very short-lived radioactive isotopes, also known as rare-isotopes, is a central approach in nuclear physics research to understand the nuclear force and how the chemical elements heavier than iron were formed in stars and stellar explosions.

I really wish they (marketing/communications and/or business people) would stop trying to reference ‘silicon valley’ as per this news release’s ‘isotope valley’. Why not ‘isotope galaxy’? It fits better with the isotope and star theme.

Getting back to the “professional skills” mentioned in the CREATE grant description, I don’t see any mention of etiquette, good manners, listening skills, or the quality of humility, all of which are handy in the workplace and having had my share of experience dealing with fresh out-of-graduate-school employees, I’d say they’re sorely needed.

Regardless, I wish both MacLachlan and Krueken the best as they and their students pioneer what I believe is a new NSERC program.