Tag Archives: Germany

Europe’s cathedrals get a ‘lift’ with nanoparticles

That headline is a teensy bit laboured but I couldn’t resist the levels of wordplay available to me. They’re working on a cathedral close to the leaning Tower of Pisa in this video about the latest in stone preservation in Europe.

I have covered the topic of preserving stone monuments before (most recently in my Oct. 21, 2014 posting). The action in this field seems to be taking place mostly in Europe, specifically Italy, although other countries are also quite involved.

Finally, getting to the European Commission’s latest stone monument preservation project, Nano-Cathedral, a Sept. 26, 2017 news item on Nanowerk announces the latest developments,

Just a few meters from Pisa’s famous Leaning Tower, restorers are defying scorching temperatures to bring back shine to the city’s Cathedral.

Ordinary restoration techniques like laser are being used on much of the stonework that dates back to the 11th century. But a brand new technique is also being used: a new material made of innovative nanoparticles. The aim is to consolidate the inner structure of the stones. It’s being applied mainly on marble.

A March 7, 2017 item on the Euro News website, which originated the Nanowerk news item, provides more detail,

“Marble has very low porosity, which means we have to use nanometric particles in order to go deep inside the stone, to ensure that the treatment is both efficient while still allowing the stone to breathe,” explains Roberto Cela, civil engineer at Opera Della Primaziale Pisana.

The material developed by the European research team includes calcium carbonate, which is a mix of calcium oxide, water and carbon dioxide.

The nano-particles penetrate the stone cementing its decaying structure.

“It is important that these particles have the same chemical nature as the stones that are being treated, so that the physical and mechanical processes that occur over time don’t lead to the break-up of the stones,” says Dario Paolucci, chemist at the University of Pisa.

Vienna’s St Stephen’s is another of the five cathedrals where the new restoration materials are being tested.

The first challenge for researchers is to determine the mechanical characteristics of the cathedral’s stones. Since there are few original samples to work on, they had to figure out a way of “ageing” samples of stones of similar nature to those originally used.

“We tried different things: we tried freeze storage, we tried salts and acids, and we decided to go for thermal ageing,” explains Matea Ban, material scientist at the University of Technology in Vienna. “So what happens is that we heat the stone at certain temperatures. Minerals inside then expand in certain directions, and when they expand they build up stresses to neighbouring minerals and then they crack, and we need those cracks in order to consolidate them.”

Consolidating materials were then applied on a variety of limestones, sandstones and marble – a selection of the different types of stones that were used to build cathedrals around Europe.

What researchers are looking for are very specific properties.

“First of all, the consolidating material has to be well absorbed by the stone,” says petrologist Johannes Weber of the University of Applied Arts in Vienna. “Then, as it evaporates, it has to settle properly within the stone structure. It should not shrink too much. All materials shrink when drying, including consolidating materials. They should adhere to the particles of the stone but shouldn’t completely obstruct its pores.”

Further tests are underway in cathedrals across Europe in the hope of better protecting our invaluable cultural heritage.

There’s a bit more detail about Nano-Cathedral on the Opera della Primaziale Pisana (O₽A) website (from their Nano-Cathedral project page),

With the meeting of June 3 this year the Nano Cathedral project kicked off, supported by the European Union within the nanotechnology field applied to Horizon 2020 cultural heritage with a fund of about 6.5 million euro.

A total of six monumental buildings will be for three years under the eyes and hands of petrographers, geologists, chemists and restorers of the institutes belonging to the Consortium: five cathedrals have been selected to represent the cultural diversity within Europe from the perspective of developing shared values and transnational identity, and a contemporary monumental building entirely clad in Carrara marble, the Opera House of Oslo.

Purpose: the testing of nanomaterials for the conservation of marble and the outer surfaces of our ‘cathedrals’.
The field of investigation to check degradation, testing new consolidating and protective products is the Cathedral of Pisa together with the Cathedrals of Cologne, Vienna, Ghent and Vitoria.
For the selection of case studies we have crosschecked requirements for their historical and architectural value but also for the different types of construction materials – marble, limestone and sandstone – as well as the relocation of six monumental buildings according to European climates.

The Cathedral of Pisa is the most southern, fully positioned in Mediterranean climate, therefore subject to degradation and very different from those which the weather conditions of the Scandinavian peninsula recorded; all the intermediate climate phases are modulated through Ghent, Vitoria, Cologne and Vienna.

At the conclusion of the three-year project, once the analysis in situ and in the laboratory are completed and all the experiments are tested on each different identified portion in each monumental building, an intervention protocol will be defined in detail in order to identify the mineralogical and petrographic characteristics of stone materials and of their degradation, the assessment of the causes and mechanisms of associated alteration, including interactions with factors of environmental pollution. Then we will be able to identify the most appropriate method of restoration and testing of nanotechnology products for the consolidation and protection of different stone materials.

In 2018 we hope to have new materials to protect and safeguard the ‘skin’ of our historic buildings and monuments for a long time.

Back to my headline and the second piece of wordplay, ‘lift’ as in ‘skin lift’ in that last sentence.

I realize this is a bit off topic but it’s worth taking a look at ORA’s home page,

Gabriele D’Annunzio effectively condenses the wonder and admiration that catch whoever visits the Duomo Square of Pisa.

The Opera della Primaziale Pisana (O₽A) is a non-profit organisation which was established in order to oversee the first works for the construction of the monuments in the Piazza del Duomo, subject to its own charter which includes the protection, promotion and enhancement of its heritage, in order to pass the religious and artistic meaning onto future generations.

«L’Ardea roteò nel cielo di Cristo, sul prato dei Miracoli.»
Gabriele d’Annunzio in Forse che sì forse che no (1910)

If you go to the home page, you can buy tickets to visit the monuments surrounding the square and there are other notices including one for a competition (it’s too late to apply but the details are interesting) to construct four stained glass windows for the Pisa cathedral.

A jellyfish chat on November 28, 2017 at Café Scientifique Vancouver get together

Café Scientifique Vancouver sent me an announcement (via email) about their upcoming event,

We are pleased to announce our next café which will happen on TUESDAY,
NOVEMBER 28TH at 7:30PM in the back room of YAGGER'S DOWNTOWN (433 W
Pender).

JELLYFISH – FRIEND, FOE, OR FOOD?

Did you know that in addition to stinging swimmers, jellyfish also cause
extensive damage to fisheries and coastal power plants? As threats such
as overfishing, pollution, and climate change alter the marine
environment, recent media reports are proclaiming that jellyfish are
taking over the oceans. Should we hail to our new jellyfish overlords or
do we need to examine the evidence behind these claims? Join Café
Scientifique on Nov. 28, 2017 to learn everything you ever wanted to
know about jellyfish, and find out if jelly burgers are coming soon to a
menu near you.

Our speaker for the evening will be DR. LUCAS BROTZ, a Postdoctoral
Research Fellow with the Sea Around Us at UBC’s Institute for the
Oceans and Fisheries. Lucas has been studying jellyfish for more than a
decade, and has been called “Canada’s foremost jellyfish
researcher” by CBC Nature of Things host Dr. David Suzuki. Lucas has
participated in numerous international scientific collaborations, and
his research has been featured in more than 100 media outlets including
Nature News, The Washington Post, and The New York Times. He recently
received the Michael A. Bigg award for highly significant student
research as part of the Coastal Ocean Awards at the Vancouver Aquarium.

We hope to see you there!

You can find out more about Lucas Brotz here and about Sea Around Us here.

For anyone who’s curious about the jellyfish ‘issue’, there’s a November 8, 2017 Norwegian University of Science and Technology press release on AlphaGallileo or on EurekAlert, which provides insight into the problems and the possibilities,

Jellyfish could be a resource in producing microplastic filters, fertilizer or fish feed. A new 6 million euro project called GoJelly, funded by the EU and coordinated by the GEOMAR Helmholtz Centre for Ocean Research, Germany and including partners at the Norwegian University of Science and Technology (NTNNU) and SINTEF [headquartered in Trondheim, Norway, is the largest independent research organisation in Scandinavia; more about SINTEF in its Wikipedia entry], hopes to turn jellyfish from a nuisance into a useful product.

Global climate change and the human impact on marine ecosystems has led to dramatic decreases in the number of fish in the ocean. It has also had an unforseen side effect: because overfishing decreases the numbers of jellyfish competitors, their blooms are on the rise.

The GoJelly project, coordinated by the GEOMAR Helmholtz Centre for Ocean Research, Germany, would like to transform problematic jellyfish into a resource that can be used to produce microplastic filter, fertilizer or fish feed. The EU has just approved funding of EUR 6 million over 4 years to support the project through its Horizon 2020 programme.

Rising water temperatures, ocean acidification and overfishing seem to favour jellyfish blooms. More and more often, they appear in huge numbers that have already destroyed entire fish farms on European coasts and blocked cooling systems of power stations near the coast. A number of jellyfish species are poisonous, while some tropical species are even among the most toxic animals on earth.

“In Europe alone, the imported American comb jelly has a biomass of one billion tons. While we tend to ignore the jellyfish there must be other solutions,” says Jamileh Javidpour of GEOMAR, initiator and coordinator of the GoJelly project, which is a consortium of 15 scientific institutions from eight countries led by the GEOMAR Helmholtz Centre for Ocean Research in Kiel.

The project will first entail exploring the life cycle of a number of jellyfish species. A lack of knowledge about life cycles makes it is almost impossible to predict when and why a large jellyfish bloom will occur. “This is what we want to change so that large jellyfish swarms can be caught before they reach the coasts,” says Javidpour.

At the same time, the project partners will also try to answer the question of what to do with jellyfish once they have been caught. One idea is to use the jellyfish to battle another, man-made threat.

“Studies have shown that mucus of jellyfish can bind microplastic. Therefore, we want to test whether biofilters can be produced from jellyfish. These biofilters could then be used in sewage treatment plants or in factories where microplastic is produced,” the GoJelly researchers say.

Jellyfish can also be used as fertilizers for agriculture or as aquaculture feed. “Fish in fish farms are currently fed with captured wild fish, which does not reduce the problem of overfishing, but increases it. Jellyfish as feed would be much more sustainable and would protect natural fish stocks,” says the GoJelly team.

Another option is using jellyfish as food for humans. “In some cultures, jellyfish are already on the menu. As long as the end product is no longer slimy, it could also gain greater general acceptance,” said Javidpour. Finally yet importantly, jellyfish contain collagen, a substance very much sought after in the cosmetics industry.

Project partners from the Norwegian University of Science and Technology, led by Nicole Aberle-Malzahn, and SINTEF Ocean, led by Rachel Tiller, will analyse how abiotic (hydrography, temperature), biotic (abundance, biomass, ecology, reproduction) and biochemical parameters (stoichiometry, food quality) affect the initiation of jellyfish blooms.

Based on a comprehensive analysis of triggering mechanisms, origin of seed populations and ecological modelling, the researchers hope to be able to make more reliable predictions on jellyfish bloom formation of specific taxa in the GoJelly target areas. This knowledge will allow sustainable harvesting of jellyfish communities from various Northern and Southern European populations.

This harvest will provide a marine biomass of unknown potential that will be explored by researchers at SINTEF Ocean, among others, to explore the possible ways to use the material.

A team from SINTEF Ocean’s strategic program Clean Ocean will also work with European colleagues on developing a filter from the mucus of the jellyfish that will catch microplastics from household products (which have their source in fleece sweaters, breakdown of plastic products or from cosmetics, for example) and prevent these from entering the marine ecosystem.

Finally, SINTEF Ocean will examine the socio-ecological system and games, where they will explore the potentials of an emerging international management regime for a global effort to mitigate the negative effects of microplastics in the oceans.

“Jellyfish can be used for many purposes. We see this as an opportunity to use the potential of the huge biomass drifting right in front of our front door,” Javidpour said.

You can find out more about GoJelly on their Twitter account.

Cotton that glows ‘naturally’

Interesting, non? This is causing a bit of excitement but before first, here’s more from the Sept. 14, 2017 American Association for the Advancement of Science (AAAS) news release on EurekAlert,

Cotton that’s grown with molecules that endow appealing properties – like fluorescence or magnetism – may one day eliminate the need for applying chemical treatments to fabrics to achieve such qualities, a new study suggests. Applying synthetic polymers to fabrics can result in a range of appealing properties, but anything added to a fabric can get washed or worn away. Furthermore, while many fibers used in fabrics are synthetic (e.g., polyester), some consumers prefer natural fibers to avoid issues related to sensation, skin irritation, smoothness, and weight. Here, Filipe Natalio and colleagues created cotton fibers that incorporate composites with fluorescent and magnetic properties. They synthesized glucose derivatives that deliver the desirable molecules into the growing ovules of the cotton plant, Gossypium hirsutum. Thus, the molecules are embedded into the cotton fibers themselves, rather than added in the form of a chemical treatment. The resulting fibers exhibited fluorescent or magnetic properties, respectively, although they were weaker than raw fibers lacking the embedded composites, the authors report. They propose that similar techniques could be expanded to other biological systems such as bacteria, bamboo, silk, and flax – essentially opening a new era of “material farming.”

Robert Service’s Sept. 14, 2017 article for Science explores the potential of growing cotton with new properties (Note: A link has been removed),

You may have heard about smartphones and smart homes. But scientists are also designing smart clothes, textiles that can harvest energy, light up, detect pollution, and even communicate with the internet. The problem? Even when they work, these often chemically treated fabrics wear out rapidly over time. Now, researchers have figured out a way to “grow” some of these functions directly into cotton fibers. If the work holds, it could lead to stronger, lighter, and brighter textiles that don’t wear out.

Yet, as the new paper went to press today in Science, editors at the journal were made aware of mistakes in a figure in the supplemental material that prompted them to issue an Editorial Expression of Concern, at least until they receive clarification from the authors. Filipe Natalio, lead author and chemist at the Weizmann Institute of Science in Rehovot, Israel, says the mistakes were errors in the names of pigments used in control experiments, which he is working with the editors to fix.

That hasn’t dampened enthusiasm for the work. “I like this paper a lot,” says Michael Strano, a chemical engineer at the Massachusetts Institute of Technology in Cambridge. The study, he says, lays out a new way to add new functions into plants without changing their genes through genetic engineering. Those approaches face steep regulatory hurdles for widespread use. “Assuming the methods claimed are correct, that’s a big advantage,” Strano says.

Sam Lemonick’s Sept. 14, 2017 article for forbes.com describes how the researchers introduced new properties (in this case, glowing colours) into the cotton plants,

His [Filipe Natalio] team of researchers in Israel, Germany, and Austria used sugar molecules to sneak new properties into cotton. Like a Trojan horse, Natalio says. They tested the method by tagging glucose with a fluorescent dye molecule that glows green when hit with the right kind of light.

They bathed cotton ovules—the part of the plant that makes the fibers—in the glucose. And just like flowers suck up dyed water in grade school experiments, the ovules absorbed the sugar solution and piped the tagged glucose molecules to their cells. As the fibers grew, they took on a yellowish tinge—and glowed bright green under ultraviolet light.

Glowing cotton wasn’t enough for Natalio. It took his group about six months to be sure they were actually delivering the fluorescent protein into the cotton cells and not just coating the fibers in it. Once they were certain, they decided to push the envelope with something very unnatural: magnets.

This time, Natalio’s team modified glucose with the rare earth metal dysprosium, making a molecule that acts like a magnet. And just like they did with the dye, the researchers fed it to cotton ovules and ended up with fibers with magnetic properties.

Both Service and Lemonwick note that the editor of the journal Science (where the research paper was published) Jeremy Berg has written an expression of editorial concern as of Sept. 14, 2017,

In the 15 September [2017] issue, Science published the Report “Biological fabrication of cellulose fibers with tailored properties” by F. Natalio et al. (1). After the issue went to press, we became aware of errors in the labeling and/or identification of the pigments used for the control experiments detailed in figs. S1 and S2 of the supplementary materials. Science is publishing this Editorial Expression of Concern to alert our readers to this information as we await full explanation and clarification from the authors.

The problem seems to be one of terminology (from the Lemonwick article),

… Filipe Natalio, lead author and chemist at the Weizmann Institute of Science in Rehovot, Israel, says the mistakes were errors in the names of pigments used in control experiments, which he is working with the editors to fix.

These things happen. Terminology and spelling aren’t always the same from one country to the next and it can result in confusion. I’m glad to see the discussion is being held openly.

Here’s a link to and a citation for the paper,

Biological fabrication of cellulose fibers with tailored properties by Filipe Natalio, Regina Fuchs, Sidney R. Cohen, Gregory Leitus, Gerhard Fritz-Popovski, Oskar Paris, Michael Kappl, Hans-Jürgen Butt. Science 15 Sep 2017: Vol. 357, Issue 6356, pp. 1118-1122 DOI: 10.1126/science.aan5830

This paper is behind a paywall.

Nanoparticles from tattoo inks circulate through your body

English: Tattoo of Hand of Fatima,. Model: Casini. Date: 4 July 2017, 18:13:41. Source : Own work. Author: Stephencdickson.

For those who like their news in video format, there’s this Canadian Broadcasting Corporation (CBC) news item broadcast on Sep. 11, 2017 (after the commercials),

For those who like text and more detail, scientists at the European Synchrotron Radiation Facility (ESRF) have produced a study of the (at the nanoparticle scale) inks in tattoos. From a Sept. 12, 2017 news item on phys.org,

The elements that make up the ink in tattoos travel inside the body in micro and nanoparticle forms and reach the lymph nodes, according to a study published in Scientific Reports on 12 September [2017] by scientists from Germany and the ESRF, the European Synchrotron, Grenoble (France). It is the first time researchers have found analytical evidence of the transport of organic and inorganic pigments and toxic element impurities as well as in depth characterization of the pigments ex vivo in tattooed tissues. Two ESRF beamlines were crucial in this breakthrough.

A Sept. 12, 2017 ESRF press release (also on EurkeAlert), which originated the news item, explains further,

The reality is that little is known about the potential impurities in the colour mixture applied to the skin. Most tattoo inks contain organic pigments, but also include preservatives and contaminants like nickel, chromium, manganese or cobalt. Besides carbon black, the second most common ingredient used in tattoo inks is titanium dioxide (TiO2), a white pigment usually applied to create certain shades when mixed with colorants. Delayed healing, along with skin elevation and itching, are often associated with white tattoos, and by consequence with the use of TiO2. TiO2 is also commonly used in food additives, sun screens and paints. Scientists from the ESRF, the German Federal Institute for Risk Assessment, Ludwig-Maximilians University, and the Physikalisch-Technische Bundesanstalt have managed to get a very clear picture on the location of titanium dioxide once it gets in the tissue. This work was done on the ESRF beamlines ID21 and ID16B.

drawing tattookinetics.jpg

Translocation of tattoo particles from skin to lymph nodes. Upon injection of tattoo inks, particles can be either passively transported via blood and lymph fluids or phagocytized by immune cells and subsequently deposited in regional lymph nodes. After healing, particles are present in the dermis and in the sinusoids of the draining lymph nodes. Credits: C. Seim.

The hazards that potentially derive from tattoos were, until now, only investigated by chemical analysis of the inks and their degradation products in vitro. “We already knew that pigments from tattoos would travel to the lymph nodes because of visual evidence: the lymph nodes become tinted with the colour of the tattoo. It is the response of the body to clean the site of entrance of the tattoo. What we didn’t know is that they do it in a nano form, which implies that they may not have the same behaviour as the particles at a micro level. And that is the problem: we don’t know how nanoparticles react”, explains Bernhard Hesse, one of the two first authors of the study (together with Ines Schreiver, from the German Federal Institute for Risk Assessment) and ESRF visiting scientist.

titaniumdistribution.jpg

Particle mapping and size distribution of different tattoo pigment elements.  a, d) Ti and the Br containing pigment phthalocyanine green 36 are located next to each other. b, e) Log scale mappings of Ti, Br and Fe in the same areas as displayed in a) and d) reveal primary particle sizes of different pigment species. c, f) Magnifications of the indicated areas in b) and e), respectively. Credits: C. Seim.

X-ray fluorescence measurements on ID21 allowed the team to locate titanium dioxide at the micro and nano range in the skin and the lymphatic environment. They found a broad range of particles with up to several micrometres in size in human skin, but only smaller (nano) particles transported to the lymph nodes. This can lead to the chronic enlargement of the lymph nodes and lifelong exposure. Scientists also used the technique of Fourier transform infrared spectroscopy to assess biomolecular changes in the tissues in the proximity of the tattoo particles.

ESRF16_Tattoo-1low.jpg

Ines Schreiver doing experiments on ID16B with Julie Villanova. Credits: B. Hesse.

Altogether the scientists report strong evidence for both migration and long-term deposition of toxic elements and tattoo pigments as well as for conformational alterations of biomolecules that are sometimes linked to cutaneous adversities upon tattooing.

Then next step for the team is to inspect further samples of patients with adverse effects in their tattoos in order to find links with chemical and structural properties of the pigments used to create these tattoos.

Here’s a link to and  a citation for the paper,

Synchrotron-based ν-XRF mapping and μ-FTIR microscopy enable to look into the fate and effects of tattoo pigments in human skin by Ines Schreiver, Bernhard Hesse, Christian Seim, Hiram Castillo-Michel, Julie Villanova, Peter Laux, Nadine Dreiack, Randolf Penning, Remi Tucoulou, Marine Cotte, & Andreas Luch. Scientific Reports 7, Article number: 11395 (2017) doi:10.1038/s41598-017-11721-z Published online: 12 September 2017

This paper is open access.

Nanowire fingerprint technology

Apparently this technology from France’s Laboratoire d’électronique des technologies de l’information (CEA-Leti) will make fingerprinting more reliable. From a Sept. 5, 2017 news item on Nanowerk,

Leti today announced that the European R&D project known as PiezoMAT has developed a pressure-based fingerprint sensor that enables resolution more than twice as high as currently required by the U.S. Federal Bureau of Investigation (FBI).

The project’s proof of concept demonstrates that a matrix of interconnected piezoelectric zinc-oxide (ZnO) nanowires grown on silicon can reconstruct the smallest features of human fingerprints at 1,000 dots per inch (DPI).

“The pressure-based fingerprint sensor derived from the integration of piezo-electric ZnO nanowires grown on silicon opens the path to ultra-high resolution fingerprint sensors, which will be able to reach resolution much higher than 1,000 DPI,” said Antoine Viana, Leti’s project manager. “This technology holds promise for significant improvement in both security and identification applications.”

A Sept. 5, 2017 Leti press release, which originated the news item, delves further,

The eight-member project team of European companies, universities and research institutes fabricated a demonstrator embedding a silicon chip with 250 pixels, and its associated electronics for signal collection and post-processing. The chip was designed to demonstrate the concept and the major technological achievements, not the maximum potential nanowire integration density. Long-term development will pursue full electronics integration for optimal sensor resolution.

The project also provided valuable experience and know-how in several key areas, such as optimization of seed-layer processing, localized growth of well-oriented ZnO nanowires on silicon substrates, mathematical modeling of complex charge generation, and synthesis of new polymers for encapsulation. The research and deliverables of the project have been presented in scientific journals and at conferences, including Eurosensors 2016 in Budapest.

The 44-month, €2.9 million PiezoMAT (PIEZOelectric nanowire MATrices) research project was funded by the European Commission in the Seventh Framework Program. Its partners include:

  • Leti (Grenoble, France): A leading European center in the field of microelectronics, microtechnology and nanotechnology R&D, Leti is one of the three institutes of the Technological Research Division at CEA, the French Alternative Energies and Atomic Energy Commission. Leti’s activities span basic and applied research up to pilot industrial lines. www.leti-cea.com/cea-tech/leti/english
  • Fraunhofer IAF (Freiburg, Germany): Fraunhofer IAF, one of the leading research facilities worldwide in the field of III-V semiconductors, develops electronic and optical devices based on modern micro- and nanostructures. Fraunhofer IAF’s technologies find applications in areas such as security, energy, communication, health, and mobility. www.iaf.fraunhofer.de/en
  • Centre for Energy Research, Hungarian Academy of Sciences (Budapest, Hungary):  The Institute for Technical Physics and Materials Science, one of the institutes of the Research Centre, conducts interdisciplinary research on complex functional materials and nanometer-scale structures, exploration of physical, chemical, and biological principles, and their exploitation in integrated micro- and nanosystems www.mems.hu, www.energia.mta.hu/en
  • Universität Leipzig (Leipzig, Germany): Germany’s second-oldest university with continuous teaching, established in 1409, hosts about 30,000 students in liberal arts, medicine and natural sciences. One of its scientific profiles is “Complex Matter”, and contributions to PIEZOMAT are in the field of nanostructures and wide gap materials. www.zv.uni-leipzig.de/en/
  • Kaunas University of Technology (Kaunas, Lithuania): One of the largest technical universities in the Baltic States, focusing its R&D activities on novel materials, smart devices, advanced measurement techniques and micro/nano-technologies. The Institute of Mechatronics specializes on multi-physics simulation and dynamic characterization of macro/micro-scale transducers with well-established expertise in the field of piezoelectric devices. http://en.ktu.lt/
  • SPECIFIC POLYMERS (Castries, France): SME with twelve employees and an annual turnover of about 1M€, SPECIFIC POLYMERS acts as an R&D service provider and scale-up producer in the field of functional polymers with high specificity (>1000 polymers in catalogue; >500 customers; >50 countries). www.specificpolymers.fr/
  • Tyndall National Institute (Cork, Ireland): Tyndall National Institute is one of Europe’s leading research centres in Information and Communications Technology (ICT) research and development and the largest facility of its type in Ireland. The Institute employs over 460 researchers, engineers and support staff, with a full-time graduate cohort of 135 students. With a network of 200 industry partners and customers worldwide, Tyndall generates around €30M income each year, 85% from competitively won contracts nationally and internationally. Tyndall is a globally leading Institute in its four core research areas of Photonics, Microsystems, Micro/Nanoelectronics and Theory, Modeling and Design. www.tyndall.ie/
  • OT-Morpho (Paris, France): OT-Morpho is a world leader in digital security & identification technologies with the ambition to empower citizens and consumers alike to interact, pay, connect, commute, travel and even vote in ways that are now possible in a connected world. As our physical and digital, civil and commercial lifestyles converge, OT-Morpho stands precisely at that crossroads to leverage the best in security and identity technologies and offer customized solutions to a wide range of international clients from key industries, including Financial services, Telecom, Identity, Security and IoT. With close to €3bn in revenues and more than 14,000 employees, OT-Morpho is the result of the merger between OT (Oberthur Technologies) and Safran Identity & Security (Morpho) completed in 31 May 2017. Temporarily designated by the name “OT-Morpho”, the new company will unveil its new name in September 2017. For more information, visit www.morpho.com and www.oberthur.com

I have tended to take fingerprint technology for granted but last fall (2016) I stumbled on a report suggesting that forensic sciences, including fingerprinting, was perhaps not as conclusive as one might expect after watching fictional police procedural television programmes. My Sept. 23, 2016 posting features the US President’s Council of Advisors on Science and Technology (PCAST) released a report (‘Forensic Science in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison Methods‘ 174 pp PDF).

Cosmopolitanism and the Local in Science and Nature (a three year Canadian project nearing its end date)

Working on a grant from Canada’s Social Sciences and Humanities Research Council (SSHRC), the  Cosmopolitanism and the Local in Science and Nature project has been establishing a ‘cosmopolitanism’ research network that critiques the eurocentric approach so beloved of Canadian academics and has set up nodes across Canada and in India and Southeast Asia.

I first wrote about the project in a Dec. 12, 2014 posting which also featured a job listing. It seems I was there for the beginning and now for the end. For one of the project’s blog postings in its final months, they’re profiling one of their researchers (Dr. Letitia Meynell, Sept. 6, 2017 posting),

1. What is your current place of research?

I am an associate professor in philosophy at Dalhousie University, cross appointed with gender and women studies.

2. Could you give us some details about your education background?

My 1st degree was in Theater, which I did at York University. I did, however, minor in Philosophy and I have always had a particular interest in philosophy of science. So, my minor was perhaps a little anomalous, comprising courses on philosophy of physics, philosophy of nature, and the philosophy of Karl Popper along with courses on aesthetics and existentialism. After taking a few more courses in philosophy at the University of Calgary, I enrolled there for a Master’s degree, writing a thesis on conceptualization, with a view to its role in aesthetics and epistemology. From there I moved to the University of Western Ontario where I brought these three interests together, writing a thesis on the epistemology of pictures in science. Throughout these studies I maintained a keen interest in feminist philosophy, especially the politics of knowledge, and I have always seen my work on pictures in science as fitting into broader feminist commitments.

3. What projects are you currently working on and what are some projects you’ve worked on in the past?

4. What’s one thing you particularly enjoy about working in your field?

5. How do you relate your work to the broader topic of ‘cosmopolitanism and the local’?

As feminist philosophers have long realized, having perspectives on a topic that are quite different to your own is incredibly powerful for critically assessing both your own views and those of others. So, for instance, if you want to address the exploitation of nonhuman animals in our society it is incredibly powerful to consider how people from, say, South Asian traditions have thought about the differences, similarities, and relationships between humans and other animals. Keeping non-western perspectives in mind, even as one works in a western philosophical tradition, helps one to be both more rigorous in one’s analyses and less dogmatic. Rigor and critical openness are, in my opinion, central virtues of philosophy and, indeed, science.

Dr. Maynell will be speaking at the ‘Bridging the Gap: Scientific Imagination Meets Aesthetic Imagination‘ conference Oct. 5-6, 2017 at the London School of Economics,

On 5–6 October, this 2-day conference aims to connect work on artistic and scientific imagination, and to advance our understanding of the epistemic and heuristic roles that imagination can play.

Why, how, and when do scientists imagine, and what epistemological roles does the imagination play in scientific progress? Over the past few years, many philosophical accounts have emerged that are relevant to these questions. Roman Frigg, Arnon Levy, and Adam Toon have developed theories of scientific models that place imagination at the heart of modelling practice. And James R. Brown, Tamar Gendler, James McAllister, Letitia Meynell, and Nancy Nersessian have developed theories that recognize the indispensable role of the imagination in the performance of thought experiments. On the other hand, philosophers like Michael Weisberg dismiss imagination-based views of scientific modelling as mere “folk ontology”, and John D. Norton seems to claim that thought experiments are arguments whose imaginary components are epistemologically irrelevant.

In this conference we turn to aesthetics for help in addressing issues concerning scientific imagination-use. Aesthetics is said to have begun in 1717 with an essay called “The Pleasures of the Imagination” by Joseph Addison, and ever since imagination has been what Michael Polyani called “the cornerstone of aesthetic theory”. In recent years Kendall Walton has fruitfully explored the fundamental relevance of imagination for understanding literary, visual and auditory fictions. And many others have been inspired to do the same, including Greg Currie, David Davies, Peter Lamarque, Stein Olsen, and Kathleen Stock.

This conference aims to connect work on artistic and scientific imagination, and to advance our understanding of the epistemic and heuristic roles that imagination can play. Specific topics may include:

  • What kinds of imagination are involved in science?
  • What is the relation between scientific imagination and aesthetic imagination?
  • What are the structure and limits of knowledge and understanding acquired through imagination?
  • From a methodological point of view, how can aesthetic considerations about imagination play a role in philosophical accounts of scientific reasoning?
  • What can considerations about scientific imagination contribute to our understanding of aesthetic imagination?

The conference will include eight invited talks and four contributed papers. Two of the four slots for contributed papers are being reserved for graduate students, each of whom will receive a travel bursary of £100.

Invited speakers

Margherita Arcangeli (Humboldt University, Berlin)

Andrej Bicanski (Institute of Cognitive Neuroscience, University College London)

Gregory Currie (University of York)

Jim Faeder (University of Pittsburgh School of Medicine)

Tim de Mey (Erasmus University of Rotterdam)

Laetitia Meynell (Dalhousie University, Canada)

Adam Toon (University of Exeter)

Margot Strohminger (Humboldt University, Berlin)

This event is organised by LSE’s Centre for Philosophy of Natural and Social Science and it is co-sponsored by the British Society of Aesthetics, the Mind Association, the Aristotelian Society and the Marie Skłodowska-Curie grant agreement No 654034.

I wonder if they’ll be rubbing shoulders with Angelina Jolie? She is slated to be teaching there in Fall 2017 according to a May 23, 2016 news item in the Guardian (Note: Links have been removed),

The Hollywood actor and director has been appointed a visiting professor at the London School of Economics, teaching a course on the impact of war on women.

From 2017, Jolie will join the former foreign secretary William Hague as a “professor in practice”, the university announced on Monday, as part of a new MSc course on women, peace and security, which LSE says is the first of its kind in the world.

The course, it says, is intended to “[develop] strategies to promote gender equality and enhance women’s economic, social and political participation and security”, with visiting professors playing an active part in giving lectures, participating in workshops and undertaking their own research.

Getting back to ‘Cosmopolitanism’, some of the principals organized a summer 2017 event (from a Sept. 6, 2017 posting titled: Summer Events – 25th International Congress of History of Science and Technology),

CosmoLocal partners Lesley Cormack (University of Alberta, Canada), Gordon McOuat (University of King’s College, Halifax, Canada), and Dhruv Raina (Jawaharlal Nehru University, India) organized a symposium “Cosmopolitanism and the Local in Science and Nature” as part of the 25th International Congress of History of Science and Technology.  The conference was held July 23-29, 2017, in Rio de Janeiro, Brazil.  The abstract of the CosmoLocal symposium is below, and a pdf version can be found here.

Science, and its associated technologies, is typically viewed as “universal”. At the same time we were also assured that science can trace its genealogy to Europe in a period of rising European intellectual and imperial global force, ‘going outwards’ towards the periphery. As such, it is strikingly parochial. In a kind of sad irony, the ‘subaltern’ was left to retell that tale as one of centre-universalism dominating a traditionalist periphery. Self-described ‘modernity’ and ‘the west’ (two intertwined concepts of recent and mutually self-supporting origin) have erased much of the local engagement and as such represent science as emerging sui generis, moving in one direction. This story is now being challenged within sociology, political theory and history.

… Significantly, scholars who study the history of science in Asia and India have been examining different trajectories for the origin and meaning of science. It is now time for a dialogue between these approaches. Grounding the dialogue is the notion of a “cosmopolitical” science. “Cosmopolitics” is a term borrowed from Kant’s notion of perpetual peace and modern civil society, imagining shared political, moral and economic spaces within which trade, politics and reason get conducted.  …

The abstract is a little ‘high falutin’ but I’m glad to see more efforts being made in  Canada to understand science and its history as a global affair.

Democracy through mathematics

Prime Minister Justin Trudeau promised electoral reform before he and his party won the 2015 Canadian federal election. In February 2017, Trudeau’s government abandoned any and all attempts at electoral reform (see Feb. 1, 2017 article by Laura Stone about the ‘broken’ promise for the Globe and Mail). Months later, the issue lingers on.

Anyone who places the cross for a candidate in a democratic election assumes the same influence as all other voters. Therefore, as far as the population is concerned, the constituencies should be as equal as possible. (Photo: Fotolia / Stockfotos-MG)

While this research doesn’t address the issue of how to change the system so that votes might be more meaningful especially in districts where the outcome of any election is all but guaranteed, it does suggest there are better ways of changing the electoral map (redistricting), from a June 12, 2017 Technical University of Munich (TUM) press release (also on EurekAlert but dated June 23, 2017),

For democratic elections to be fair, voting districts must have similar sizes. When populations shift, districts need to be redistributed – a complex and, in many countries, controversial task when political parties attempt to influence redistricting. Mathematicians at the Technical University of Munich (TUM) have now developed a method that allows the efficient calculation of optimally sized voting districts.

When constituents cast their vote for a candidate, they assume it carries the same weight as that of the others. Voting districts should thus be sized equally according to population. When populations change, boundaries need to be redrawn.

For example, 34 political districts were redrawn for the upcoming parliamentary election in Germany – a complex task. In other countries, this process often results in major controversy. Political parties often engage in gerrymandering, to create districts with a disproportionately large number of own constituents. In the United States, for example, state governments frequently exert questionable influence when redrawing the boundaries of congressional districts.

“An effective and neutral method for political district zoning, which sounds like an administrative problem, is actually of great significance from the perspective of democratic theory,” emphasizes Stefan Wurster, Professor of Policy Analysis at the Bavarian School of Public Policy at TUM. “The acceptance of democratic elections is in danger whenever parties or individuals gain an advantage out of the gate. The problem becomes particularly relevant when the allocation of parliamentary seats is determined by the number of direct mandates won. This is the case in majority election systems like in USA, Great Britain and France.”
Test case: German parliamentary election

Prof. Peter Gritzmann, head of the Chair of Applied Geometry and Discrete Mathematics at TUM, in collaboration with his staff member Fabian Klemm and his colleague Andreas Brieden, professor of statistics at the University of the German Federal Armed Forces, has developed a methodology that allows the optimal distribution of electoral district boundaries to be calculated in an efficient and, of course, politically neutral manner.

The mathematicians tested their methodology using electoral districts of the German parliament. According to the German Federal Electoral Act, the number of constituents in a district should not deviate more than 15 percent from the average. In cases where the deviation exceeds 25 percent, electoral district borders must be redrawn. In this case, the relevant election commission must adhere to various provisions: For example, districts must be contiguous and not cross state, county or municipal boundaries. The electoral districts are subdivided into precincts with one polling station each.
Better than required by law

“There are more ways to consolidate communities to electoral districts than there are atoms in the known universe,” says Peter Gritzmann. “But, using our model, we can still find efficient solutions in which all districts have roughly equal numbers of constituents – and that in a ‘minimally invasive’ manner that requires no voter to switch precincts.”

Deviations of 0.3 to 8.7 percent from the average size of electoral districts cannot be avoided based solely on the different number of voters in individual states. But the new methodology achieves this optimum. “Our process comes close to the theoretical limit in every state, and we end up far below the 15 percent deviation allowed by law,” says Gritzmann.
Deployment possible in many countries

The researchers used a mathematical model developed in the working group to calculate the electoral districts: “Geometric clustering” groups the communities to clusters, the optimized electoral districts. The target definition for calculations can be arbitrarily modified, making the methodology applicable to many countries with different election laws.

The methodology is also applicable to other types of problems: for example, in voluntary lease and utilization exchanges in agriculture, to determine adequate tariff groups for insurers or to model hybrid materials. “However, drawing electoral district boundaries is a very special application, because here mathematics can help strengthen democracies,” sums up Gritzmann.

Although the electoral wards for the German election were newly tailored in 2012, already in 2013, the year of the election, population changes led to deviations above the desired maximum value in some of them (left). The mathematical method results in significantly lower deviations, thus providing better fault tolerance. (Image: F. Klemm / TUM)

 

Here’s a link to and a citation for the paper,

Constrained clustering via diagrams: A unified theory and its application to electoral district design by Andreas Brieden, Peter Gritzmann, Fabian Klemma. European Journal of Operational Research Volume 263, Issue 1, 16 November 2017, Pages 18–34 https://doi.org/10.1016/j.ejor.2017.04.018

This paper is behind a paywall.

While the redesign of electoral districts has been a contentious issue federally and provincially in Canada (and I imagine in municipalities where this is representation by districts), the focus for electoral reform had been on eliminating the ‘first-past-the-post’ system and replacing it with something new. Apparently, there is also some interest in the US. A June 27, 2017 article by David Daley for salon.com describes one such initiative,

Some people blame gerrymandering, while others cite geography or rage against dark money. All are corrupting factors. All act as accelerants on the underlying issue: Our winner-take-all [first-ast-the-post]system of districting that gives all the seats to the side with 50 percent plus one vote and no representation to the other 49.9 percent. We could end gerrymandering tomorrow and it wouldn’t help the unrepresented Republicans in Connecticut, or Democrats in Kansas, feel like they had a voice in Congress.

A Virginia congressman wants to change this. Rep. Don Beyer, a Democrat, introduced something called the Fair Representation Act this week. Beyer aims to wipe out today’s map of safe red and blue seats and replace them with larger, multimember districts (drawn by nonpartisan commissions) of three, four or five representatives. Smaller states would elect all members at large. All members would then be elected with ranked-choice voting. That would ensure that as many voters as possible elect a candidate of their choice: In a multimember district with five seats, for example, a candidate could potentially win with one-sixth of the vote.

This is how you fix democracy. The larger districts would help slay the gerrymander. A ranked-choice system would eliminate our zero-sum, winner-take-all politics. Leadership of the House would belong to the side with the most votes — unlike in 2012, for example, when Democratic House candidates received 1.4 million more votes than Republicans, but the GOP maintained a 33-seat majority. No wasted votes and no spoilers, bridge builders in Congress, and (at least in theory) less negative campaigning as politicians vied to be someone’s second choice if not their first. There’s a lot to like here.

There are other similar schemes but the idea is always to reestablish the primacy (meaningfulness) of a vote and to achieve better representation of the country’s voters and interests. As for the failed Canadian effort, such as it was, the issue’s failure to fade away hints that Canadian politicians at whatever jurisdictional level they inhabit might want to tackle the situation a little more seriously than they have previously.

In scientific race US sees China coming up from rear

Sometime it seems as if scientific research is like a race with everyone competing for first place. As in most sports, there are multiple competitions for various sub-groups but only one important race. The US has held the lead position for decades although always with some anxiety. These days the anxiety is focused on China. A June 15, 2017 news item on ScienceDaily suggests that US dominance is threatened in at least one area of research—the biomedical sector,

American scientific teams still publish significantly more biomedical research discoveries than teams from any other country, a new study shows, and the U.S. still leads the world in research and development expenditures.

But American dominance is slowly shrinking, the analysis finds, as China’s skyrocketing investing on science over the last two decades begins to pay off. Chinese biomedical research teams now rank fourth in the world for total number of new discoveries published in six top-tier journals, and the country spent three-quarters what the U.S. spent on research and development during 2015.

Meanwhile, the analysis shows, scientists from the U.S. and other countries increasingly make discoveries and advancements as part of teams that involve researchers from around the world.

A June 15, 2017 Michigan Medicine University of Michigan news release (also on EurekAlert), which originated the news item, details the research team’s insights,

The last 15 years have ushered in an era of “team science” as research funding in the U.S., Great Britain and other European countries, as well as Canada and Australia, stagnated. The number of authors has also grown over time. For example, in 2000 only two percent of the research papers the new study looked include 21 or more authors — a number that increased to 12.5 percent in 2015.

The new findings, published in JCI Insight by a team of University of Michigan researchers, come at a critical time for the debate over the future of U.S. federal research funding. The study is based on a careful analysis of original research papers published in six top-tier and four mid-tier journals from 2000 to 2015, in addition to data on R&D investment from those same years.

The study builds on other work that has also warned of America’s slipping status in the world of science and medical research, and the resulting impact on the next generation of aspiring scientists.

“It’s time for U.S. policy-makers to reflect and decide whether the year-to-year uncertainty in National Institutes of Health budget and the proposed cuts are in our societal and national best interest,” says Bishr Omary, M.D., Ph.D., senior author of the new data-supported opinion piece and chief scientific officer of Michigan Medicine, U-M’s academic medical center. “If we continue on the path we’re on, it will be harder to maintain our lead and, even more importantly, we could be disenchanting the next generation of bright and passionate biomedical scientists who see a limited future in pursuing a scientist or physician-investigator career.”

The analysis charts South Korea’s entry into the top 10 countries for publications, as well as China’s leap from outside the top 10 in 2000 to fourth place in 2015. They also track the major increases in support for research in South Korea and Singapore since the start of the 21st Century.

Meticulous tracking

First author of the study, U-M informationist Marisa Conte, and Omary co-led a team that looked carefully at the currency of modern science: peer-reviewed basic science and clinical research papers describing new findings, published in journals with long histories of accepting among the world’s most significant discoveries.

They reviewed every issue of six top-tier international journals (JAMA, Lancet, the New England Journal of Medicine, Cell, Nature and Science), and four mid-ranking journals (British Medical Journal, JAMA Internal Medicine, Journal of Cell Science, FASEB Journal), chosen to represent the clinical and basic science aspects of research.

The analysis included only papers that reported new results from basic research experiments, translational studies, clinical trials, metanalyses, and studies of disease outcomes. Author affiliations for corresponding authors and all other authors were recorded by country.

The rise in global cooperation is striking. In 2000, 25 percent of papers in the six top-tier journals were by teams that included researchers from at least two countries. In 2015, that figure was closer to 50 percent. The increasing need for multidisciplinary approaches to make major advances, coupled with the advances of Internet-based collaboration tools, likely have something to do with this, Omary says.

The authors, who also include Santiago Schnell, Ph.D. and Jing Liu, Ph.D., note that part of their group’s interest in doing the study sprang from their hypothesis that a flat NIH budget is likely to have negative consequences but they wanted to gather data to test their hypothesis.

They also observed what appears to be an increasing number of Chinese-born scientists who had trained in the U.S. going back to China after their training, where once most of them would have sought to stay in the U.S. In addition, Singapore has been able to recruit several top notch U.S. and other international scientists due to their marked increase in R&D investments.

The same trends appear to be happening in Great Britain, Australia, Canada, France, Germany and other countries the authors studied – where research investing has stayed consistent when measured as a percentage of the U.S. total over the last 15 years.

The authors note that their study is based on data up to 2015, and that in the current 2017 federal fiscal year, funding for NIH has increased thanks to bipartisan Congressional appropriations. The NIH contributes to most of the federal support for medical and basic biomedical research in the U.S. But discussion of cuts to research funding that hinders many federal agencies is in the air during the current debates for the 2018 budget. Meanwhile, the Chinese R&D spending is projected to surpass the U.S. total by 2022.

“Our analysis, albeit limited to a small number of representative journals, supports the importance of financial investment in research,” Omary says. “I would still strongly encourage any child interested in science to pursue their dream and passion, but I hope that our current and future investment in NIH and other federal research support agencies will rise above any branch of government to help our next generation reach their potential and dreams.”

Here’s a link to and a citation for the paper,

Globalization and changing trends of biomedical research output by Marisa L. Conte, Jing Liu, Santiago Schnell, and M. Bishr Omary. JCI Insight. 2017;2(12):e95206 doi:10.1172/jci.insight.95206 Volume 2, Issue 12 (June 15, 2017)

Copyright © 2017, American Society for Clinical Investigation

This paper is open access.

The notion of a race and looking back to see who, if anyone, is gaining on you reminded me of a local piece of sports lore, the Roger Banister-John Landy ‘Miracle Mile’. In the run up to the 1954 Commonwealth Games held in Vancouver, Canada, two runners were known to have broken the 4-minute mile limit (previously thought to have been impossible) and this meeting was considered an historic meeting. Here’s more from the miraclemile1954.com website,

On August 7, 1954 during the British Empire and Commonwealth Games in Vancouver, B.C., England’s Roger Bannister and Australian John Landy met for the first time in the one mile run at the newly constructed Empire Stadium.

Both men had broken the four minute barrier previously that year. Bannister was the first to break the mark with a time of 3:59.4 on May 6th in Oxford, England. Subsequently, on June 21st in Turku, Finland, John Landy became the new record holder with an official time of 3:58.

The world watched eagerly as both men approached the starting blocks. As 35,000 enthusiastic fans looked on, no one knew what would take place on that historic day.

Promoted as “The Mile of the Century”, it would later be known as the “Miracle Mile”.

With only 90 yards to go in one of the world’s most memorable races, John Landy glanced over his left shoulder to check his opponent’s position. At that instant Bannister streaked by him to victory in a Commonwealth record time of 3:58.8. Landy’s second place finish in 3:59.6 marked the first time the four minute mile had been broken by two men in the same race.

The website hosts an image of the moment memorialized in bronze when Landy looks to his left as Banister passes him on his right,

By Statue: Jack HarmanPhoto: Paul Joseph from vancouver, bc, canada – roger bannister running the four minute mileUploaded by Skeezix1000, CC BY 2.0, https://commons.wikimedia.org/w/index.php?curid=9801121

Getting back to science, I wonder if some day we’ll stop thinking of it as a race where, inevitably, there’s one winner and everyone else loses and find a new metaphor.

Nanotechnology-enabled warming textile being introduced at Berlin (Germany) Fashion Week July 4 – 7, 2017

Acanthurus GmbH, a Frankfurt-based (Germany) nanotechnology company announced its participation in Berlin Fashion Week’s (July 4 – 7, 2017) showcase for technology in fashion, Panorama Berlin  (according to Berlin Fashion Week’s Fashion Fair Highlights in July 2017 webpage; scroll down to Panorama Berlin subsection).

Here are more details about Acanthurus’ participation from a July 4, 2017 news item on innovationintextiles.com,

This week, Frankfurt-based nanotechnology company Acanthurus GmbH will introduce its innovative nanothermal warming textile technology nanogy at the Berlin FashionTech exhibition. An innovative warming technology was developed by Chinese market leader j-NOVA for the European market, under the brand name nanogy.

A July 3, 2017 nanogy press release, which originated the news item, offers another perspective on the story,

Too cold for your favorite dress? Leave your heavy coat at home and stay warm with ground-breaking nanotechnology instead.

Frankfurt-based nano technology company Acanthurus GmbH has brought an innovative warming technology developed by Chinese market leader j-NOVA© to the European market, under the brand name nanogy. “This will make freezing a thing of the past,” says Carsten Wortmann, founder and CEO of Acanthurus GmbH. The ultra-light, high-tech textiles can be integrated into any garment – including that go-to jacket everyone loves to wear on chilly days. All you need is a standard power bank to feel the warmth flow through your body, even on the coldest of days.

The innovative, lightweight technology is completely non-metallic, meaning it emits no radiation. The non-metallic nature of the technology allows it to be washed at any temperature, so there’s no need to worry about accidental spillages, whatever the circumstances. The technology is extremely thin and flexible and, as there is absolutely no metal included, can be scrunched or crumpled without damaging its function. This also means that the technology can be integrated into garments without any visible lines or hems, making it the optimal solution for fashion and textile companies alike.

nanogy measures an energy conversion rate of over 90%, making it one of the most sustainable and environmentally friendly warming solutions ever developed. The technology is also recyclable, so consumers can dispose of it as they would any other garment.

“Our focus is not just to provide world class technology, but also to improve people’s lives without harming our environment. We call this a nanothermal experience, and our current use cases have only covered a fraction of potential opportunities,” says Jeni Odley, Director of Acanthurus GmbH. As expected for any modern tech company, users can even control the temperature of the textile with a mobile app, making the integration of nanogy a simplified, one-touch experience.

I wasn’t able to find much about j-Nova but there was this from the ISPO Munich 2017 exhibitor details webpage,

j-NOVA.WORKS Co., Ltd.

4-B302, No. 328 Creative Industry Park, Xinhu St., Suzhou Industrial Park
215123 Jiangsu Prov.
China
P  +49 69 130277-70
F  +49 69 130277-75

As the new generation of warming technology, we introduce our first series of intelligent textiles: j-NOVA intelligent warming textiles.

The intelligent textiles are based on complex nano-technology, and maintain a constant temperature whilst preserving a low energy conversion rate. The technology can achieve an efficiency level of up to 90%, depending on its power source.

The combination of advanced nano material and intelligent modules bring warmth from the fabric and garment itself, which can be scrunched up or washed without affecting its function.

j-NOVA.WORKS aims to balance technology with tradition, and to improve the relationship between nature and humans.

Acanthurus GmbH is the sole European Distributor.

So, j-NOVA is the company with the nanotechnology and Acanthurus represents their interests in Europe. I wish I could find out more about the technology but this is the best I’ve been able to accomplish in the time I have available.

Light-based computation made better with silver

It’s pretty amazing to imagine a future where computers run on light but according to a May 16, 2017 news item on ScienceDaily the idea is not beyond the realms of possibility,

Tomorrow’s computers will run on light, and gold nanoparticle chains show much promise as light conductors. Now Ludwig-Maximilians-Universitaet (LMU) in Munich scientists have demonstrated how tiny spots of silver could markedly reduce energy consumption in light-based computation.

Today’s computers are faster and smaller than ever before. The latest generation of transistors will have structural features with dimensions of only 10 nanometers. If computers are to become even faster and at the same time more energy efficient at these minuscule scales, they will probably need to process information using light particles instead of electrons. This is referred to as “optical computing.”

The silver serves as a kind of intermediary between the gold particles while not dissipating energy. Capture: Liedl/Hohmann (NIM)

A March 15, 2017 LMU press release (also one EurekAlert), which originated the news item, describes a current use of light in telecommunications technology and this latest research breakthrough (the discrepancy in dates is likely due to when the paper was made available online versus in print),

Fiber-optic networks already use light to transport data over long distances at high speed and with minimum loss. The diameters of the thinnest cables, however, are in the micrometer range, as the light waves — with a wavelength of around one micrometer — must be able to oscillate unhindered. In order to process data on a micro- or even nanochip, an entirely new system is therefore required.

One possibility would be to conduct light signals via so-called plasmon oscillations. This involves a light particle (photon) exciting the electron cloud of a gold nanoparticle so that it starts oscillating. These waves then travel along a chain of nanoparticles at approximately 10% of the speed of light. This approach achieves two goals: nanometer-scale dimensions and enormous speed. What remains, however, is the energy consumption. In a chain composed purely of gold, this would be almost as high as in conventional transistors, due to the considerable heat development in the gold particles.

A tiny spot of silver

Tim Liedl, Professor of Physics at LMU and PI at the cluster of excellence Nanosystems Initiative Munich (NIM), together with colleagues from Ohio University, has now published an article in the journal Nature Physics, which describes how silver nanoparticles can significantly reduce the energy consumption. The physicists built a sort of miniature test track with a length of around 100 nanometers, composed of three nanoparticles: one gold nanoparticle at each end, with a silver nanoparticle right in the middle.

The silver serves as a kind of intermediary between the gold particles while not dissipating energy. To make the silver particle’s plasmon oscillate, more excitation energy is required than for gold. Therefore, the energy just flows “around” the silver particle. “Transport is mediated via the coupling of the electromagnetic fields around the so-called hot spots which are created between each of the two gold particles and the silver particle,” explains Tim Liedl. “This allows the energy to be transported with almost no loss, and on a femtosecond time scale.”

Textbook quantum model

The decisive precondition for the experiments was the fact that Tim Liedl and his colleagues are experts in the exquisitely exact placement of nanostructures. This is done by the DNA origami method, which allows different crystalline nanoparticles to be placed at precisely defined nanodistances from each other. Similar experiments had previously been conducted using conventional lithography techniques. However, these do not provide the required spatial precision, in particular where different types of metals are involved.

In parallel, the physicists simulated the experimental set-up on the computer – and had their results confirmed. In addition to classical electrodynamic simulations, Alexander Govorov, Professor of Physics at Ohio University, Athens, USA, was able to establish a simple quantum-mechanical model: “In this model, the classical and the quantum-mechanical pictures match very well, which makes it a potential example for the textbooks.”

Here’s a link to and c citation for the paper,

Hotspot-mediated non-dissipative and ultrafast plasmon passage by Eva-Maria Roller, Lucas V. Besteiro, Claudia Pupp, Larousse Khosravi Khorashad, Alexander O. Govorov, & Tim Liedl. Nature Physics (2017) doi:10.1038/nphys4120 Published online 15 May 2017

This paper is behind a paywall.