Tag Archives: germline editing

First CRISPR gene-edited babies? Ethics and the science story

Scientists, He Jiankui and Michael Deem, may have created the first human babies born after being subjected to CRISPR (clustered regularly interspaced short palindromic repeats) gene editing.  At this point, no one is entirely certain that these babies  as described actually exist since the information was made public in a rather unusual (for scientists) fashion.

The news broke on Sunday, November 25, 2018 through a number of media outlets none of which included journals associated with gene editing or high impact journals such as Cell, Nature, or Science.The news broke in MIT Technology Review and in Associated Press. Plus, this all happened just before the Second International Summit on Human Genome Editing (Nov. 27 – 29, 2018) in Hong Kong. He Jiankui was scheduled to speak today, Nov. 27, 2018.

Predictably, this news has caused quite a tizzy.

Breaking news

Antonio Regalado broke the news in a November 25, 2018  article for MIT [Massachusetts Institute of Technology] Technology Review (Note: Links have been removed),

According to Chinese medical documents posted online this month (here and here), a team at the Southern University of Science and Technology, in Shenzhen, has been recruiting couples in an effort to create the first gene-edited babies. They planned to eliminate a gene called CCR5 in hopes of rendering the offspring resistant to HIV, smallpox, and cholera.

The clinical trial documents describe a study in which CRISPR is employed to modify human embryos before they are transferred into women’s uteruses.

The scientist behind the effort, He Jiankui, did not reply to a list of questions about whether the undertaking had produced a live birth. Reached by telephone, he declined to comment.

However, data submitted as part of the trial listing shows that genetic tests have been carried out on fetuses as late as 24 weeks, or six months. It’s not known if those pregnancies were terminated, carried to term, or are ongoing.

Apparently He changed his mind because Marilynn Marchione in a November 26, 2018 article for the Associated Press confirms the news,

A Chinese researcher claims that he helped make the world’s first genetically edited babies — twin girls born this month whose DNA he said he altered with a powerful new tool capable of rewriting the very blueprint of life.

If true, it would be a profound leap of science and ethics.

A U.S. scientist [Dr. Michael Deem] said he took part in the work in China, but this kind of gene editing is banned in the United States because the DNA changes can pass to future generations and it risks harming other genes.

Many mainstream scientists think it’s too unsafe to try, and some denounced the Chinese report as human experimentation.

There is no independent confirmation of He’s claim, and it has not been published in a journal, where it would be vetted by other experts. He revealed it Monday [November 26, 2018] in Hong Kong to one of the organizers of an international conference on gene editing that is set to begin Tuesday [November 27, 2018], and earlier in exclusive interviews with The Associated Press.

“I feel a strong responsibility that it’s not just to make a first, but also make it an example,” He told the AP. “Society will decide what to do next” in terms of allowing or forbidding such science.

Some scientists were astounded to hear of the claim and strongly condemned it.

It’s “unconscionable … an experiment on human beings that is not morally or ethically defensible,” said Dr. Kiran Musunuru, a University of Pennsylvania gene editing expert and editor of a genetics journal.

“This is far too premature,” said Dr. Eric Topol, who heads the Scripps Research Translational Institute in California. “We’re dealing with the operating instructions of a human being. It’s a big deal.”

However, one famed geneticist, Harvard University’s George Church, defended attempting gene editing for HIV, which he called “a major and growing public health threat.”

“I think this is justifiable,” Church said of that goal.

h/t Cale Guthrie Weissman’s Nov. 26, 2018 article for Fast Company.

Diving into more detail

Ed Yong in a November 26, 2018 article for The Atlantic provides more details about the claims (Note: Links have been removed),

… “Two beautiful little Chinese girls, Lulu and Nana, came crying into the world as healthy as any other babies a few weeks ago,” He said in the first of five videos, posted yesterday {Nov. 25, 2018] to YouTube [link provided at the end of this section of the post]. “The girls are home now with their mom, Grace, and dad, Mark.” The claim has yet to be formally verified, but if true, it represents a landmark in the continuing ethical and scientific debate around gene editing.

Late last year, He reportedly enrolled seven couples in a clinical trial, and used their eggs and sperm to create embryos through in vitro fertilization. His team then used CRISPR to deactivate a single gene called CCR5 in the embryos, six of which they then implanted into mothers. CCR5 is a protein that the HIV virus uses to gain entry into human cells; by deactivating it, the team could theoretically reduce the risk of infection. Indeed, the fathers in all eight couples were HIV-positive.

Whether the experiment was successful or not, it’s intensely controversial. Scientists have already begun using CRISPR and other gene-editing technologies to alter human cells, in attempts to treat cancers, genetic disorders, and more. But in these cases, the affected cells stay within a person’s body. Editing an embryo [it’s often called, germline editing] is very different: It changes every cell in the body of the resulting person, including the sperm or eggs that would pass those changes to future generations. Such work is banned in many European countries, and prohibited in the United States. “I understand my work will be controversial, but I believe families need this technology and I’m willing to take the criticism for them,” He said.

“Was this a reasonable thing to do? I would say emphatically no,” says Paula Cannon of the University of Southern California. She and others have worked on gene editing, and particularly on trials that knock out CCR5 as a way to treat HIV. But those were attempts to treat people who were definitively sick and had run out of other options. That wasn’t the case with Nana and Lulu.

“The idea that being born HIV-susceptible, which is what the vast majority of humans are, is somehow a disease state that requires the extraordinary intervention of gene editing blows my mind,” says Cannon. “I feel like he’s appropriating this potentially valuable therapy as a shortcut to doing something in the sphere of gene editing. He’s either very naive or very cynical.”

“I want someone to make sure that it has happened,” says Hank Greely, an ethicist at Stanford University. If it hasn’t, that “would be a pretty bald-faced fraud,” but such deceptions have happened in the past. “If it is true, I’m disappointed. It’s reckless on safety grounds, and imprudent and stupid on social grounds.” He notes that a landmark summit in 2015 (which included Chinese researchers) and a subsequent major report from the National Academies of Science, Engineering, and Medicine both argued that “public participation should precede any heritable germ-line editing.” That is: Society needs to work out how it feels about making gene-edited babies before any babies are edited. Absent that consensus, He’s work is “waving a red flag in front of a bull,” says Greely. “It provokes not just the regular bio-Luddites, but also reasonable people who just wanted to talk it out.”

Societally, the creation of CRISPR-edited babies is a binary moment—a Rubicon that has been crossed. But scientifically, the devil is in the details, and most of those are still unknown.

CRISPR is still inefficient. [emphasis mine] The Chinese teams who first used it to edit human embryos only did so successfully in a small proportion of cases, and even then, they found worrying levels of “off-target mutations,” where they had erroneously cut parts of the genome outside their targeted gene. He, in his video, claimed that his team had thoroughly sequenced Nana and Lulu’s genomes and found no changes in genes other than CCR5.

That claim is impossible to verify in the absence of a peer-reviewed paper, or even published data of any kind. “The paper is where we see whether the CCR5 gene was properly edited, what effect it had at the cellular level, and whether [there were] any off-target effects,” said Eric Topol of the Scripps Research Institute. “It’s not just ‘it worked’ as a binary declaration.”

In the video, He said that using CRISPR for human enhancement, such as enhancing IQ or selecting eye color, “should be banned.” Speaking about Nana and Lulu’s parents, he said that they “don’t want a designer baby, just a child who won’t suffer from a disease that medicine can now prevent.”

But his rationale is questionable. Huang [Junjiu Huang of Sun Yat-sen University ], the first Chinese researcher to use CRISPR on human embryos, targeted the faulty gene behind an inherited disease called beta thalassemia. Mitalipov, likewise, tried to edit a gene called MYBPC3, whose faulty versions cause another inherited disease called hypertrophic cardiomyopathy (HCM). Such uses are still controversial, but they rank among the more acceptable applications for embryonic gene editing as ways of treating inherited disorders for which treatments are either difficult or nonexistent.

In contrast, He’s team disableda normal gene in an attempt to reduce the risk of a disease that neither child had—and one that can be controlled. There are already ways of preventing fathers from passing HIV to their children. There are antiviral drugs that prevent infections. There’s safe-sex education. “This is not a plague for which we have no tools,” says Cannon.

As Marilynn Marchione of the AP reports, early tests suggest that He’s editing was incomplete [emphasis mine], and at least one of the twins is a mosaic, where some cells have silenced copies of CCR5 and others do not. If that’s true, it’s unlikely that they would be significantly protected from HIV. And in any case, deactivating CCR5 doesn’t confer complete immunity, because some HIV strains can still enter cells via a different protein called CXCR4.

Nana and Lulu might have other vulnerabilities. …

It is also unclear if the participants in He’s trial were fully aware of what they were signing up for. [emphasis mine] The team’s informed-consent document describes their work as an “AIDS vaccine development project,” and while it describes CRISPR gene editing, it does so in heavily technical language. It doesn’t mention any of the risks of disabling CCR5, and while it does note the possibility of off-target effects, it also says that the “project team is not responsible for the risk.”

He owns two genetics companies, and his collaborator, Michael Deem of Rice University,  [emphasis mine] holds a small stake in, and sits on the advisory board of, both of them. The AP’s Marchione reports, “Both men are physics experts with no experience running human clinical trials.” [emphasis mine]

Yong’s article is well worth reading in its entirety. As for YouTube, here’s The He Lab’s webpage with relevant videos.

Reactions

Gina Kolata, Sui-Lee Wee, and Pam Belluck writing in a Nov. 26, 2018 article for the New York Times chronicle some of the response to He’s announcement,

It is highly unusual for a scientist to announce a groundbreaking development without at least providing data that academic peers can review. Dr. He said he had gotten permission to do the work from the ethics board of the hospital Shenzhen Harmonicare, but the hospital, in interviews with Chinese media, denied being involved. Cheng Zhen, the general manager of Shenzhen Harmonicare, has asked the police to investigate what they suspect are “fraudulent ethical review materials,” according to the Beijing News.

The university that Dr. He is attached to, the Southern University of Science and Technology, said Dr. He has been on no-pay leave since February and that the school of biology believed that his project “is a serious violation of academic ethics and academic norms,” according to the state-run Beijing News.

In a statement late on Monday, China’s national health commission said it has asked the health commission in southern Guangdong province to investigate Mr. He’s claims.

“I think that’s completely insane,” said Shoukhrat Mitalipov, director of the Center for Embryonic Cell and Gene Therapy at Oregon Health and Science University. Dr. Mitalipov broke new ground last year by using gene editing to successfully remove a dangerous mutation from human embryos in a laboratory dish. [I wrote a three-part series about CRISPR, which included what was then the latest US news, Mitalipov’s announcement, along with a roundup of previous work in China. Links are at the end of this section.’

Dr. Mitalipov said that unlike his own work, which focuses on editing out mutations that cause serious diseases that cannot be prevented any other way, Dr. He did not do anything medically necessary. There are other ways to prevent H.I.V. infection in newborns.

Just three months ago, at a conference in late August on genome engineering at Cold Spring Harbor Laboratory in New York, Dr. He presented work on editing the CCR₅ gene in the embryos of nine couples.

At the conference, whose organizers included Jennifer Doudna, one of the inventors of Crispr technology, Dr. He gave a careful talk about something that fellow attendees considered squarely within the realm of ethically approved research. But he did not mention that some of those embryos had been implanted in a woman and could result in genetically engineered babies.

“What we now know is that as he was talking, there was a woman in China carrying twins,” said Fyodor Urnov, deputy director of the Altius Institute for Biomedical Sciences and a visiting researcher at the Innovative Genomics Institute at the University of California. “He had the opportunity to say ‘Oh and by the way, I’m just going to come out and say it, people, there’s a woman carrying twins.’”

“I would never play poker against Dr. He,” Dr. Urnov quipped.

Richard Hynes, a cancer researcher at the Massachusetts Institute of Technology, who co-led an advisory group on human gene editing for the National Academy of Sciences and the National Academy of Medicine, said that group and a similar organization in Britain had determined that if human genes were to be edited, the procedure should only be done to address “serious unmet needs in medical treatment, it had to be well monitored, it had to be well followed up, full consent has to be in place.”

It is not clear why altering genes to make people resistant to H.I.V. is “a serious unmet need.” Men with H.I.V. do not infect embryos. …

Dr. He got his Ph.D., from Rice University, in physics and his postdoctoral training, at Stanford, was with Stephen Quake, a professor of bioengineering and applied physics who works on sequencing DNA, not editing it.

Experts said that using Crispr would actually be quite easy for someone like Dr. He.

After coming to Shenzhen in 2012, Dr. He, at age 28, established a DNA sequencing company, Direct Genomics, and listed Dr. Quake on its advisory board. But, in a telephone interview on Monday, Dr. Quake said he was never associated with the company.

Deem, the US scientist who worked in China with He is currently being investigated (from a Nov. 26, 2018 article by Andrew Joseph in STAT),

Rice University said Monday that it had opened a “full investigation” into the involvement of one of its faculty members in a study that purportedly resulted in the creation of the world’s first babies born with edited DNA.

Michael Deem, a bioengineering professor at Rice, told the Associated Press in a story published Sunday that he helped work on the research in China.

Deem told the AP that he was in China when participants in the study consented to join the research. Deem also said that he had “a small stake” in and is on the scientific advisory boards of He’s two companies.

Megan Molteni in a Nov. 27, 2018 article for Wired admits she and her colleagues at the magazine may have dismissed CRISPR concerns about designer babies prematurely while shedding more light on this  latest development (Note: Links have been removed),

We said “don’t freak out,” when scientists first used Crispr to edit DNA in non-viable human embryos. When they tried it in embryos that could theoretically produce babies, we said “don’t panic.” Many years and years of boring bench science remain before anyone could even think about putting it near a woman’s uterus. Well, we might have been wrong. Permission to push the panic button granted.

Late Sunday night, a Chinese researcher stunned the world by claiming to have created the first human babies, a set of twins, with Crispr-edited DNA….

What’s perhaps most strange is not that He ignored global recommendations on conducting responsible Crispr research in humans. He also ignored his own advice to the world—guidelines that were published within hours of his transgression becoming public.

On Monday, He and his colleagues at Southern University of Science and Technology, in Shenzhen, published a set of draft ethical principles “to frame, guide, and restrict clinical applications that communities around the world can share and localize based on religious beliefs, culture, and public-health challenges.” Those principles included transparency and only performing the procedure when the risks are outweighed by serious medical need.

The piece appeared in the The Crispr Journal, a young publication dedicated to Crispr research, commentary, and debate. Rodolphe Barrangou, the journal’s editor in chief, where the peer-reviewed perspective appeared, says that the article was one of two that it had published recently addressing the ethical concerns of human germline editing, the other by a bioethicist at the University of North Carolina. Both papers’ authors had requested that their writing come out ahead of a major gene editing summit taking place this week in Hong Kong. When half-rumors of He’s covert work reached Barrangou over the weekend, his team discussed pulling the paper, but ultimately decided that there was nothing too solid to discredit it, based on the information available at the time.

Now Barrangou and his team are rethinking that decision. For one thing, He did not disclose any conflicts of interest, which is standard practice among respectable journals. It’s since become clear that not only is He at the helm of several genetics companies in China, He was actively pursuing controversial human research long before writing up a scientific and moral code to guide it.“We’re currently assessing whether the omission was a matter of ill-management or ill-intent,” says Barrangou, who added that the journal is now conducting an audit to see if a retraction might be warranted. …

“There are all sorts of questions these issues raise, but the most fundamental is the risk-benefit ratio for the babies who are going to be born,” says Hank Greely, an ethicist at Stanford University. “And the risk-benefit ratio on this stinks. Any institutional review board that approved it should be disbanded if not jailed.”

Reporting by Stat indicates that He may have just gotten in over his head and tried to cram a self-guided ethics education into a few short months. The young scientist—records indicate He is just 34—has a background in biophysics, with stints studying in the US at Rice University and in bioengineer Stephen Quake’s lab at Stanford. His resume doesn’t read like someone steeped deeply in the nuances and ethics of human research. Barrangou says that came across in the many rounds of edits He’s framework went through.

… China’s central government in Beijing has yet to come down one way or another. Condemnation would make He a rogue and a scientific outcast. Anything else opens the door for a Crispr IVF cottage industry to emerge in China and potentially elsewhere. “It’s hard to imagine this was the only group in the world doing this,” says Paul Knoepfler, a stem cell researcher at UC Davis who wrote a book on the future of designer babies called GMO Sapiens. “Some might say this broke the ice. Will others forge ahead and go public with their results or stop what they’re doing and see how this plays out?”

Here’s some of the very latest information with the researcher attempting to explain himself.

What does He have to say?

After He’s appearance at the Second International Summit on Human Genome Editing today, Nov. 27, 2018, David Cyranoski produced this article for Nature,

He Jiankui, the Chinese scientist who claims to have helped produce the first people born with edited genomes — twin girls — appeared today at a gene-editing summit in Hong Kong to explain his experiment. He gave his talk amid threats of legal action and mounting questions, from the scientific community and beyond, about the ethics of his work and the way in which he released the results.

He had never before presented his work publicly outside of a handful of videos he posted on YouTube. Scientists welcomed the fact that he appeared at all — but his talk left many hungry for more answers, and still not completely certain that He has achieved what he claims.

“There’s no reason not to believe him,” says Robin Lovell-Badge, a developmental biologist at the Francis Crick Institute in London. “I’m just not completely convinced.”

Lovell-Badge, like others at the conference, says that an independent body should confirm the test results by performing an in-depth comparison of the parents’ and childrens’ genes.

Many scientists faulted He for a lack of transparency and the seemingly cavalier nature in which he embarked on such a landmark, and potentially risky, project.

“I’m happy he came but I was really horrified and stunned when he described the process he used,” says Jennifer Doudna, a biochemist at the University of California, Berkeley and a pioneer of the CRISPR/Cas-9 gene-editing technique that He used. “It was so inappropriate on so many levels.”

He seemed shaky approaching the stage and nervous during the talk. “I think he was scared,” says Matthew Porteus, who researches genome-editing at Stanford University in California and co-hosted a question-and-answer session with He after his presentation. Porteus attributes this either to the legal pressures that He faces or the mounting criticism from the scientists and media he was about to address.

He’s talk leaves a host of other questions unanswered, including whether the prospective parents were properly informed of the risks; why He selected CCR5 when there are other, proven ways to prevent HIV; why he chose to do the experiment with couples in which the fathers have HIV, rather than mothers who have a higher chance of passing the virus on to their children; and whether the risks of knocking out CCR5 — a gene normally present in people, which could have necessary but still unknown functions — outweighed the benefits in this case.

In the discussion following He’s talk, one scientist asked why He proceeded with the experiments despite the clear consensus among scientists worldwide that such research shouldn’t be done. He didn’t answer the question.

He’s attempts to justify his actions mainly fell flat. In response to questions about why the science community had not been informed of the experiments before the first women were impregnated, he cited presentations that he gave last year at meetings at the University of California, Berkeley, and at the Cold Spring Harbor Laboratory in New York. But Doudna, who organized the Berkeley meeting, says He did not present anything that showed he was ready to experiment in people. She called his defence “disingenuous at best”.

He also said he discussed the human experiment with unnamed scientists in the United States. But Porteus says that’s not enough for such an extraordinary experiment: “You need feedback not from your two closest friends but from the whole community.” …

Pressure was mounting on He ahead of the presentation. On 27 November, the Chinese national health commission ordered the Guangdong health commission, in the province where He’s university is located, to investigate.

On the same day, the Chinese Academy of Sciences issued a statement condemning his work, and the Genetics Society of China and the Chinese Society for Stem Cell Research jointly issued a statement saying the experiment “violates internationally accepted ethical principles regulating human experimentation and human rights law”.

The hospital cited in China’s clinical-trial registry as the that gave ethical approval for He’s work posted a press release on 27 November saying it did not give any approval. It questioned the signatures on the approval form and said that the hospital’s medical-ethics committee never held a meeting related to He’s research. The hospital, which itself is under investigation by the Shenzhen health authorities following He’s revelations, wrote: “The Company does not condone the means of the Claimed Project, and has reservations as to the accuracy, reliability and truthfulness of its contents and results.”

He has not yet responded to requests for comment on these statements and investigations, nor on why the hospital was listed in the registry and the claim of apparent forged signatures.

Alice Park’s Nov. 26, 2018 article for Time magazine includes an embedded video of He’s Nov. 27, 2018 presentation at the summit meeting.

What about the politics?

Mara Hvistendahl’s Nov. 27, 2018 article about this research for Slate.com poses some geopolitical questions (Note: Links have been removed),

The informed consent agreement for He Jiankui’s experiment describes it as an “AIDS vaccine development project” and used highly technical language to describe the procedure that patients would undergo. If the reality for some Chinese patients is that such agreements are glossed over, densely written, or never read, the reality for some researchers working in the country is that the appeal of cutting-edge trials is too great to resist. It is not just Chinese scientists who can be blinded by the lure of quick breakthroughs. Several of the most notable breaches of informed consent on the mainland have involved Western researchers or co-authors. … When people say that the usual rules don’t apply in China, they are really referring to authoritarian science, not some alternative communitarian ethics.

For the many scientists in China who adhere to recognized international standards, the incident comes as a disgrace. He Jiankui now faces an ethics investigation from provincial health authorities, and his institution, Southern University of Science and Technology, was quick to issue a statement noting that He was on unpaid leave. …

It would seem that US scientists wanting to avoid pesky ethics requirements in the US have found that going to China could be the answer to their problems. I gather it’s not just big business that prefers deregulated environments.

Guillaume Levrier’s  (he’ studying for a PhD at the Universté Sorbonne Paris Cité) November 16, 2018 essay for The Conversation sheds some light on political will and its impact on science (Note: Links have been removed),

… China has entered a “genome editing” race among great scientific nations and its progress didn’t come out of nowhere. China has invested heavily in the natural-sciences sector over the past 20 years. The Ninth Five-Year Plan (1996-2001) mentioned the crucial importance of biotechnologies. The current Thirteenth Five-Year Plan is even more explicit. It contains a section dedicated to “developing efficient and advanced biotechnologies” and lists key sectors such as “genome-editing technologies” intended to “put China at the bleeding edge of biotechnology innovation and become the leader in the international competition in this sector”.

Chinese embryo research is regulated by a legal framework, the “technical norms on human-assisted reproductive technologies”, published by the Science and Health Ministries. The guidelines theoretically forbid using sperm or eggs whose genome have been manipulated for procreative purposes. However, it’s hard to know how much value is actually placed on this rule in practice, especially in China’s intricate institutional and political context.

In theory, three major actors have authority on biomedical research in China: the Science and Technology Ministry, the Health Ministry, and the Chinese Food and Drug Administration. In reality, other agents also play a significant role. Local governments interpret and enforce the ministries’ “recommendations”, and their own interpretations can lead to significant variations in what researchers can and cannot do on the ground. The Chinese National Academy of Medicine is also a powerful institution that has its own network of hospitals, universities and laboratories.

Another prime actor is involved: the health section of the People’s Liberation Army (PLA), which has its own biomedical faculties, hospitals and research labs. The PLA makes its own interpretations of the recommendations and has proven its ability to work with the private sector on gene editing projects. …

One other thing from Levrier’s essay,

… And the media timing is just a bit too perfect, …

Do read the essay; there’s a twist at the end.

Final thoughts and some links

If I read this material rightly, there are suspicions there may be more of this work being done in China and elsewhere. In short, we likely don’t have the whole story.

As for the ethical issues, this is a discussion among experts only, so far. The great unwashed (thee and me) are being left at the wayside. Sure, we’ll be invited to public consultations, one day,  after the big decisions have been made.

Anyone who’s read up on the history of science will tell you this kind of breach is very common at the beginning. Richard Holmes’  2008 book, ‘The Age of Wonder: How the Romantic Generation Discovered the Beauty and Terror of Science’ recounts stories of early scientists (European science) who did crazy things. Some died, some shortened their life spans; and, some irreversibly damaged their health.  They also experimented on other people. Informed consent had not yet been dreamed up.

In fact, I remember reading somewhere that the largest human clinical trial in history was held in Canada. The small pox vaccine was highly contested in the US but the Canadian government thought it was a good idea so they offered US scientists the option of coming here to vaccinate Canadian babies. This was in the 1950s and the vaccine seems to have been administered almost universally. That was a lot of Canadian babies. Thankfully, it seems to have worked out but it does seem mind-boggling today.

For all the indignation and shock we’re seeing, this is not the first time nor will it be the last time someone steps over a line in order to conduct scientific research. And, that is the eternal problem.

Meanwhile I think some of the real action regarding CRISPR and germline editing is taking place in the field (pun!) of agriculture:

My Nov. 27, 2018 posting titled: ‘Designer groundcherries by CRISPR (clustered regularly interspaced short palindromic repeats)‘ and a more disturbing Nov. 27, 2018 post titled: ‘Agriculture and gene editing … shades of the AquAdvantage salmon‘. That second posting features a company which is trying to sell its gene-editing services to farmers who would like cows that  never grow horns and pigs that never reach puberty.

Then there’s this ,

The Genetic Revolution‘, a documentary that offers relatively up-to-date information about gene editing, which was broadcast on Nov. 11, 2018 as part of The Nature of Things series on CBC (Canadian Broadcasting Corporation).

My July 17, 2018 posting about research suggesting that scientists hadn’t done enough research on possible effects of CRISPR editing titled: ‘The CRISPR ((clustered regularly interspaced short palindromic repeats)-CAS9 gene-editing technique may cause new genetic damage kerfuffle’.

My 2017 three-part series on CRISPR and germline editing:

CRISPR and editing the germline in the US (part 1 of 3): In the beginning

CRISPR and editing the germline in the US (part 2 of 3): ‘designer babies’?

CRISPR and editing the germline in the US (part 3 of 3): public discussions and pop culture

There you have it.

Added on November 30, 2018: David Cyanowski has written one final article (Nov. 30, 2018 for Nature) about He and the Second International Summit on Human Genome Editing. He did not make his second scheduled appearance at the summit, returning to China before the summit concluded. He was rebuked in a statement produced by the Summit’s organizing committee at the end of the three-day meeting. The situation with regard to his professional status in China is ambiguous. Cyanowski ends his piece with the information that the third summit will take place in London (likely in the UK) in 2021. I encourage you to read Cyanowski’s Nov. 30, 2018 article in its entirety; it’s not long.

Added on Dec. 3, 2018: The story continues. Ed Yong has written a summary of the issues to date in a Dec. 3, 2018 article for The Atlantic (even if you know the story ift’s eyeopening to see all the parts put together.

J. Benjamin Hurlbut, Associate Professor of Life Sciences at Arizona State University (ASU) and Jason Scott Robert, Director of the Lincoln Center for Applied Ethics at Arizona State University have written a provocative (and true) Dec. 3, 2018 essay titled, CRISPR babies raise an uncomfortable reality – abiding by scientific standards doesn’t guarantee ethical research, for The Conversation. h/t phys.org

Why don’t you CRISPR yourself?

It must have been quite the conference. Josiah Zayner plunged a needle into himself and claimed to have changed his DNA (deoxyribonucleic acid) while giving his talk. (*Segue: There is some Canadian content if you keep reading.*) From an Oct. 10, 2017 article by Adele Peters for Fast Company (Note: A link has been removed),

“What we’ve got here is some DNA, and this is a syringe,” Josiah Zayner tells a room full of synthetic biologists and other researchers. He fills the needle and plunges it into his skin. “This will modify my muscle genes and give me bigger muscles.”

Zayner, a biohacker–basically meaning he experiments with biology in a DIY lab rather than a traditional one–was giving a talk called “A Step-by-Step Guide to Genetically Modifying Yourself With CRISPR” at the SynBioBeta conference in San Francisco, where other presentations featured academics in suits and the young CEOs of typical biotech startups. Unlike the others, he started his workshop by handing out shots of scotch and a booklet explaining the basics of DIY [do-it-yourwelf] genome engineering.

If you want to genetically modify yourself, it turns out, it’s not necessarily complicated. As he offered samples in small baggies to the crowd, Zayner explained that it took him about five minutes to make the DNA that he brought to the presentation. The vial held Cas9, an enzyme that snips DNA at a particular location targeted by guide RNA, in the gene-editing system known as CRISPR. In this case, it was designed to knock out the myostatin gene, which produces a hormone that limits muscle growth and lets muscles atrophy. In a study in China, dogs with the edited gene had double the muscle mass of normal dogs. If anyone in the audience wanted to try it, they could take a vial home and inject it later. Even rubbing it on skin, Zayner said, would have some effect on cells, albeit limited.

Peters goes on to note that Zayner has a PhD in molecular biology and biophysics and worked for NASA (US National Aeronautics and Space Administration). Zayner’s Wikipedia entry fills in a few more details (Note: Links have been removed),

Zayner graduated from the University of Chicago with a Ph.D. in biophysics in 2013. He then spent two years as a researcher at NASA’s Ames Research Center,[2] where he worked on Martian colony habitat design. While at the agency, Zayner also analyzed speech patterns in online chat, Twitter, and books, and found that language on Twitter and online chat is closer to how people talk than to how they write.[3] Zayner found NASA’s scientific work less innovative than he expected, and upon leaving in January 2016, he launched a crowdfunding campaign to provide CRISPR kits to let the general public experiment with editing bacterial DNA. He also continued his grad school business, The ODIN, which sells kits to let the general public experiment at home. As of May 2016, The ODIN had four employees and operates out of Zayner’s garage.[2]

He refers to himself as a biohacker and believes in the importance in letting the general public participate in scientific experimentation, rather than leaving it segregated to labs.[2][4][1] Zayner found the biohacking community exclusive and hierarchical, particularly in the types of people who decide what is “safe”. He hopes that his projects can let even more people experiment in their homes. Other scientists responded that biohacking is inherently privileged, as it requires leisure time and money, and that deviance from the safety rules of concern would lead to even harsher regulations for all.[5] Zayner’s public CRISPR kit campaign coincided with wider scrutiny over genetic modification. Zayner maintained that these fears were based on misunderstandings of the product, as genetic experiments on yeast and bacteria cannot produce a viral epidemic.[6][7] In April 2015, Zayner ran a hoax on Craigslist to raise awareness about the future potential of forgery in forensics genetics testing.[8]

In February 2016, Zayner performed a full body microbiome transplant on himself, including a fecal transplant, to experiment with microbiome engineering and see if he could cure himself from gastrointestinal and other health issues. The microbiome from the donors feces successfully transplanted in Zayner’s gut according to DNA sequencing done on samples.[2] This experiment was documented by filmmakers Kate McLean and Mario Furloni and turned into the short documentary film Gut Hack.[9]

In December 2016, Zayner created a fluorescent beer by engineering yeast to contain the green fluorescent protein from jellyfish. Zayner’s company, The ODIN, released kits to allow people to create their own engineered fluorescent yeast and this was met with some controversy as the FDA declared the green fluorescent protein can be seen as a color additive.[10] Zayner, views the kit as a way that individual can use genetic engineering to create things in their everyday life.[11]

I found the video for Zayner’s now completed crowdfunding campaign,

I also found The ODIN website (mentioned in the Wikipedia essay) where they claim to be selling various gene editing and gene engineering kits including the CRISPR editing kits mentioned in Peters’ article,

In 2016, he [Zayner] sold $200,000 worth of products, including a kit for yeast that can be used to brew glowing bioluminescent beer, a kit to discover antibiotics at home, and a full home lab that’s roughly the cost of a MacBook Pro. In 2017, he expects to double sales. Many kits are simple, and most buyers probably aren’t using the supplies to attempt to engineer themselves (many kits go to classrooms). But Zayner also hopes that as people using the kits gain genetic literacy, they experiment in wilder ways.

Zayner sells a full home biohacking lab that’s roughly the cost of a MacBook Pro. [Photo: The ODIN]

He questions whether traditional research methods, like randomized controlled trials, are the only way to make discoveries, pointing out that in newer personalized medicine (such as immunotherapy for cancer, which is personalized for each patient), a sample size of one person makes sense. At his workshop, he argued that people should have the choice to self-experiment if they want to; we also change our DNA when we drink alcohol or smoke cigarettes or breathe in dirty city air. Other society-sanctioned activities are more dangerous. “We sacrifice maybe a million people a year to the car gods,” he said. “If you ask someone, ‘Would you get rid of cars?’–no.” …

US researchers both conventional and DIY types such as Zayner are not the only ones who are editing genes. The Chinese study mentioned in Peters’ article was written up in an Oct. 19, 2015 article by Antonio Regalado for the MIT [Massachusetts Institute of Technology] Technology Review (Note: Links have been removed),

Scientists in China say they are the first to use gene editing to produce customized dogs. They created a beagle with double the amount of muscle mass by deleting a gene called myostatin.

The dogs have “more muscles and are expected to have stronger running ability, which is good for hunting, police (military) applications,” Liangxue Lai, a researcher with the Key Laboratory of Regenerative Biology at the Guangzhou Institutes of Biomedicine and Health, said in an e-mail.

Lai and 28 colleagues reported their results last week in the Journal of Molecular Cell Biology, saying they intend to create dogs with other DNA mutations, including ones that mimic human diseases such as Parkinson’s and muscular dystrophy. “The goal of the research is to explore an approach to the generation of new disease dog models for biomedical research,” says Lai. “Dogs are very close to humans in terms of metabolic, physiological, and anatomical characteristics.”

Lai said his group had no plans breed to breed the extra-muscular beagles as pets. Other teams, however, could move quickly to commercialize gene-altered dogs, potentially editing their DNA to change their size, enhance their intelligence, or correct genetic illnesses. A different Chinese Institute, BGI, said in September it had begun selling miniature pigs, created via gene editing, for $1,600 each as novelty pets.

People have been influencing the genetics of dogs for millennia. By at least 36,000 years ago, early humans had already started to tame wolves and shape the companions we have today. Charles Darwin frequently cited dog breeding in The Origin of Species to demonstrate how evolution gradually occurs by a process of selection. With CRISPR, however, evolution is no longer gradual or subject to chance. It is immediate and under human control.

It is precisely that power that is stirring wide debate and concern over CRISPR. Yet at least some researchers think that gene-edited dogs could put a furry, friendly face on the technology. In an interview this month, George Church, a professor at Harvard University who leads a large effort to employ CRISPR editing, said he thinks it will be possible to augment dogs by using DNA edits to make them live longer or simply make them smarter.

Church said he also believed the alteration of dogs and other large animals could open a path to eventual gene editing of people. “Germline editing of pigs or dogs offers a line into it,” he said. “People might say, ‘Hey, it works.’ ”

In the meantime, Zayner’s ideas are certainly thought provoking. I’m not endorsing either his products or his ideas but it should be noted that early science pioneers such as Humphrey Davy and others experimented on themselves. For anyone unfamiliar with Davy, (from the Humphrey Davy Wikipedia entry; Note: Links have been removed),

Sir Humphry Davy, 1st Baronet PRS MRIA FGS (17 December 1778 – 29 May 1829) was a Cornish chemist and inventor,[1] who is best remembered today for isolating a series of substances for the first time: potassium and sodium in 1807 and calcium, strontium, barium, magnesium and boron the following year, as well as discovering the elemental nature of chlorine and iodine. He also studied the forces involved in these separations, inventing the new field of electrochemistry. Berzelius called Davy’s 1806 Bakerian Lecture On Some Chemical Agencies of Electricity[2] “one of the best memoirs which has ever enriched the theory of chemistry.”[3] He was a Baronet, President of the Royal Society (PRS), Member of the Royal Irish Academy (MRIA), and Fellow of the Geological Society (FGS). He also invented the Davy lamp and a very early form of incandescent light bulb.

Canadian content*

A Nov. 11, 2017 posting on the Canadian Broadcasting Corporation’s (CBC) Quirks and Quarks blog notes that self-experimentation has a long history and goes on to describe Zayner’s and others biohacking exploits before describing the legality of biohacking in Canada,

With biohackers entering into the space traditionally held by scientists and clinicians, it begs questions. Professor Timothy Caulfield, a Canada research chair in health, law and policy at the University of Alberta, says when he hears of somebody giving themselves biohacked gene therapy, he wonders: “Is this legal? Is this safe? And if it’s not safe, is there anything that we can do about regulating it? And to be honest with you that’s a tough question and I think it’s an open question.”

In Canada, Caulfield says, Health Canada focuses on products. “You have to have something that you are going to regulate or you have to have something that’s making health claims. So if there is a product that is saying I can cure X, Y, or Z, Health Canada can say, ‘Well let’s make sure the science really backs up that claim.’ The problem with these do-it-yourself approaches is there isn’t really a product. You know these people are experimenting on themselves with something that may or may not be designed for health purposes.”

According to Caufield, if you could buy a gene therapy kit that was being marketed to you to biohack yourself, that would be different. “Health Canada could jump in. But right here that’s not the case,” he says.

There are places in the world that do regulate biohacking, says Caulfield. “Germany, for example, they have specific laws for it. And here in Canada we do have a regulatory framework that says that you cannot do gene therapy that will alter the germ line. In other words, you can’t do gene therapy or any kind of genetic editing that will create a change that you will pass on to your offspring. So that would be illegal, but that’s not what’s happening here. And I don’t think there’s a regulatory framework that adequately captures it.”

Infectious disease and policy experts aren’t that concerned yet about the possibility of a biohacker unleashing a genetically modified super germ into the population.

“I think in the future that could be a problem,”says Caulfield, “but this isn’t something that would be easy to do in your garage. I think it’s complicated science. But having said that, the science is moving quickly. We need to think about how we are going to control the potential harms.”

You can find out more about the ‘wild’ people (mostly men) of early science in Richard Holmes’ 2008 book, The Age of Wonder: How the Romantic Generation Discovered the Beauty and Terror of Science.

Finally, should you be interested in connecting with synthetic biology enthusiasts, entrepreneurs, and others, SynBioBeta is more than a conference; it’s also an activity hub.

ETA January 25, 2018 (five minutes later): There are some CRISPR/CAS9 events taking place in Toronto, Canada on January 24 and 25, 2018. One is a workshop with Portuguese artist, Marta de Menezes, and the other is a panel discussion. See my January 10, 2018 posting for more details.

*’Segue: There is some Canadian content if you keep reading.’ and ‘Canadian content’ added January 25, 2018 six minutes after first publication.

ETA February 20, 2018: Sarah Zhang’s Feb. 20, 2018 article for The Atlantic revisits Josiah Zayner’s decision to inject himself with CRISPR,

When Josiah Zayner watched a biotech CEO drop his pants at a biohacking conference and inject himself with an untested herpes treatment, he realized things had gone off the rails.

Zayner is no stranger to stunts in biohacking—loosely defined as experiments, often on the self, that take place outside of traditional lab spaces. You might say he invented their latest incarnation: He’s sterilized his body to “transplant” his entire microbiome in front of a reporter. He’s squabbled with the FDA about selling a kit to make glow-in-the-dark beer. He’s extensively documented attempts to genetically engineer the color of his skin. And most notoriously, he injected his arm with DNA encoding for CRISPR that could theoretically enhance his muscles—in between taking swigs of Scotch at a live-streamed event during an October conference. (Experts say—and even Zayner himself in the live-stream conceded—it’s unlikely to work.)

So when Zayner saw Ascendance Biomedical’s CEO injecting himself on a live-stream earlier this month, you might say there was an uneasy flicker of recognition.

“Honestly, I kind of blame myself,” Zayner told me recently. He’s been in a soul-searching mood; he recently had a kid and the backlash to the CRISPR stunt in October [2017] had been getting to him. “There’s no doubt in my mind that somebody is going to end up hurt eventually,” he said.

Yup, it’s one of the reasons for rules; people take things too far. The trick is figuring out how to achieve balance between risk taking and recklessness.

Alan Copperman and Amanda Marcotte have a very US-centric discussion about CRISPR and germline editing (designer babies?)

For anyone who needs more information, I ran a three part series on CRISPR germline editing on August 15, 2017:

Part 1 opens the series with a basic description of CRISPR and the germline research that occasioned the series along with some of the ethical issues and patent disputes that are arising from this new technology. CRISPR and editing the germline in the US (part 1 of 3): In the beginning

Part 2 covers three critical responses to the reporting and between them describe the technology in more detail and the possibility of ‘designer babies’.  CRISPR and editing the germline in the US (part 2 of 3): ‘designer babies’?

Part 3 is all about public discussion or, rather, the lack of and need for according to a couple of social scientists. Informally, there is some discussion via pop culture and Joelle Renstrom notes although she is focused on the larger issues touched on by the television series, Orphan Black and as I touch on in my final comments. CRISPR and editing the germline in the US (part 3 of 3): public discussions and pop culture

The news about CRISPR and germline editing by a US team made a bit of a splash even being mentioned on Salon.com, which hardly ever covers any science news (except for some occasional climate change pieces). In a Sept. 4, 2017 salon.com item (an excerpt from the full interview) Amanda Marcotte talks with Dr. Alan Copperman director of the division of reproductive endocrinology and infertility at Mount Sinai Medical Center about the technology and its implications.  As noted in the headline, it’s a US-centric discussion where assumptions are made about who will be leading discussions about the future of the technology.

It’s been a while since I’ve watched it but I believe they do mention in passing that Chinese scientists published two studies about using CRISPR to edit the germline (i think there’s a third Chinese paper in the pipeline) before the American team announced its accomplishment in August 2017. By the way, the first paper by the Chinese caused quite the quandary in April 2015. (My May 14, 2015 posting covers some of the ethical issues; scroll down about 50% of the way for more about the impact of the published Chinese research.)

Also, you might want notice just how smooth Copperman’s responses are almost always emphasizing the benefits of the technology before usually answering the question. He’s had media training and he’s good at this.

They also talk about corn and CRISPR just about the time that agricultural research was announced. Interesting timing, non? (See my Oct. 11, 2017 posting about CRISPR edited corn coming to market in 2020.)

For anyone who wants to skip to the full Marcotte/Cooperman interview, go here on Facebook.