Tag Archives: GO Foundation

Graphene Canada and its second annual conference

An Aug. 31, 2016 news item on Nanotechnology Now announces Canada’s second graphene-themed conference,

The 2nd edition of Graphene & 2D Materials Canada 2016 International Conference & Exhibition (www.graphenecanadaconf.com) will take place in Montreal (Canada): 18-20 October, 2016.

– An industrial forum with focus on Graphene Commercialization (Abalonyx, Alcereco Inc, AMO GmbH, Avanzare, AzTrong Inc, Bosch GmbH, China Innovation Alliance of the Graphene Industry (CGIA), Durham University & Applied Graphene Materials, Fujitsu Laboratories Ltd., Hanwha Techwin, Haydale, IDTechEx, North Carolina Central University & Chaowei Power Ltd, NTNU&CrayoNano, Phantoms Foundation, Southeast University, The Graphene Council, University of Siegen, University of Sunderland and University of Waterloo)
– Extensive thematic workshops in parallel (Materials & Devices Characterization, Chemistry, Biosensors & Energy and Electronic Devices)
– A significant exhibition (Abalonyx, Go Foundation, Grafoid, Group NanoXplore Inc., Raymor | Nanointegris and Suragus GmbH)

As I noted in my 2015 post about Graphene Canada and its conference, the group is organized in a rather interesting fashion and I see the tradition continues, i.e., the lead organizers seem to be situated in countries other than Canada. From the Aug. 31, 2016 news item on Nanotechnology Now,

Organisers: Phantoms Foundation [located in Spain] www.phantomsnet.net
Catalan Institute of Nanoscience and Nanotechnology – ICN2 (Spain) | CEMES/CNRS (France) | GO Foundation (Canada) | Grafoid Inc (Canada) | Graphene Labs – IIT (Italy) | McGill University (Canada) | Texas Instruments (USA) | Université Catholique de Louvain (Belgium) | Université de Montreal (Canada)

You can find the conference website here.

Superconducting graphene from Saint Jean Carbon (a Canadian company)

An announcement from Saint Jean Carbon helps to paint a picture of one Canadian graphene research and commercialization effort. From an Oct. 26, 2015 news item on Azonano,

Saint Jean Carbon Inc., a carbon sciences company engaged in the development of natural graphite properties and related carbon products is pleased to announce that it has completed an initial phase of research and development (R&D) work on the development of superconducting graphene.

An Oct. 22, 2015 Saint Jean Carbon news release, (also on Marketwired) which originated the news item, explains the company’s interest in superconducting graphene,

The result of the work has produced graphene that possibly may have magnetic properties; Magnetic properties are what is needed if the material is used in superconducting applications. This is believed to be a first. The encouraging result is just the very first step with many more tests to complete. Hopefully, this puts the project on the path towards the development of a low-temperature superconductor that leverages key properties of graphene.

Superconductivity is defined as a quantum mechanical phenomenon that offers the potential for zero electrical resistance. The ability to operate with no electrical resistance at or near room temperature holds significant potential in a wide range of product and technology applications. This include high-performance smart grids, electric power transmission, transformers, power storage devices, electric motors used in vehicle propulsion as in maglev trains, magnetic levitation devices, spintronic devices and superconducting magnetic refrigeration. Solving this puzzle; would have enormous technological importance.

The work has been based on the identification of the growing understanding of the magnetic properties (the ability to repel magnetic fields) of graphene. These properties could play a crucial role in enhancing superconductivity and therefore make it a good candidate for continued efforts to realize its potential. To truly understand the magnetic properties, the material has been sent to a third party for full magnetometer temperature testing; this is believed to be the only way to get accurate nano material measurements. The tests are very complex and time consuming but will provide us with absolute definitive measurements and a clear path forward for possible applications. Upon completion of the tests (estimated to be completed by October 28th 2015), the company will release the results. [emphases mine] Elements of the research work have relied on a patented (nanoparticle ultrasound separation) system designed to isolate and create large quantities of graphene cost effectively.

Company management must feel quite confident about the results of their testing to issue this ‘preview’ news release which goes on to highlight the advantages of using Canadian graphite for producing graphene,

The base graphite used in the research program was very pure, which minimized the need for costly and environmentally harsh purification. In addition, the graphene that was produced has excellent electrical/thermal connectivity; large high surface area, very good wettability, and had some promise of magnetic properties.

The production method has been initially shown to be less aggressive and significantly more cost effective than other processes such as the Hummers Method. This should further improve the overall ability to produce base material for many other needed applications for graphene today. The process may greatly shorten the time to market, and we are encouraged that there are already real needs for the material in all sorts of applications including polymers, epoxies and other coatings. The company plans to work with industry partners to develop a solution based application that can be developed today and be in use in a short time frame.

The next phase of the joint research effort is to prepare a bench scale system capable of producing larger quantities of high purity graphene samples for potential industry partners. Mr. Ogilvie commented, “We believe our working relationship with the university teams is an excellent opportunity to leverage Saint Jean’s graphite experience and assets while simultaneously expanding our focus on critical new carbon-based opportunities such as graphene superconductors. As one of the next steps in our go-forward plan is to quickly advance the product applications by working with a number of companies and potential strategic partners. Given the potential of graphene in everything from quantum computing to energy storage, Saint Jean has been encouraged by the breadth and depth of these preliminary discussions. As the work unfolds we look forward to keeping our shareholders actively informed on our continued efforts and results.” Dr. Don MacIntyre, the Company’s geologist, P. Geo., and Qualified Person, reviewed and approved the technical and scientific information in this release.

While the company’s executive offices are in Ontario with a second office in Alberta (company contact page), the graphite mines are in Québec (from  the news release),

About Saint Jean

Saint Jean is a publicly traded carbon sciences company with interest graphite mining claims on five 100% Company owned properties located in the province of Quebec in Canada. The five properties include the Walker property, a past producing mine, the Wallingford property, the St. Jovite property, East Miller and Clot property. For information on Saint Jean’s other properties and the latest news please go to the website: www.saintjeancarbon.com

Saint Jean Carbon’s chief executive officer (CEO) has an interesting carbon background (from the Management page),

Mr. Ogilvie brings a wealth of knowledge to the graphite sector. Mr. Ogilvie has been extensively involved in several start-ups, including emerging graphite companies, for over 33 years. He most recently served as Chief Executive Officer and Director for both Mega Graphite Inc. and Canada Carbon. Prior to this, in 2007 Mr. Ogilvie led a private investment group in the redevelopment and turnaround of Industrial Minerals Inc. (now known as Northern Graphite [emphasis mine] Corporation (NGC-TSX.V), a junior mining company that is presently developing one of the largest large-flake natural graphite deposits in the world. Mr. Ogilvie has direct experience in the development of technologies related to the production of graphite ores and the operation of global graphite markets for base and high purity graphite products.

Northern Graphite was last mentioned here in a March 9, 2015 post (scroll down about 50% of the way) featuring a report about the worldwide graphite market. In a Feb. 6, 2012 post, the first one about Northern Graphite, the focus is on the flakes.

Final comment: It seems like quite the month for Canadian graphene efforts of all stripes; I wrote an October 19, 2015 post featuring a new international graphene foundation (GO Foundation for graphene commercialization) being launched in Canada.

GO Foundation for graphene commercialization launched

I’ve often wondered where Canada is with regard to graphene research and commercialization. At least one of my questions has been partly answered by the formation of a new graphene foundation. from an Oct. 12, 2015 news item on Azonano,

NAATBatt International of the United States; Phantoms Foundation of Spain, and; Grafoid Inc. of Canada [emphasis mine], are pleased to announce the launch of GO Foundation (Graphene Organization Foundation), a not-for-profit organization dedicated to supporting graphene innovation and commercialization for the betterment of humanity.

The About GO webpage provides more information about the Canadian contribution,

Our multi-purpose mission is to accelerate the time to commercialization of graphene-related technologies – on a globally accessible basis – while serving as a permanent fixture at the center of graphene innovation.

With significant support from the Government of Canada [emphasis mine] and donations from major international organizations engaged in graphene technologies development, the GO Foundation’s Co-Founders are: Grafoid Inc. of Canada; U.S.-based NATTBatt International, and; the Phantoms Foundation of Spain.

As an accelerator, our vision is to provide a neutral ground for collaboration among all graphene-related stakeholder/applicants to eliminate technological and other impediments to commercial success.

And, as an advocate for broad industrial acceptance of transformative, disruptive graphene technologies in materials and product development, the Foundation holds the capabilities to bridge knowledge chasms between business and science through the organization and promotion of international graphene conferences and scientific symposia.

By raising graphene’s universal profile, the Foundation succeeds by inspiring growth from unique, disruptive industrial-scale technologies that produce new high technology jobs from commercial ventures spun out of the Foundation’s acceleration initiatives.

GoFoundation-Logo-Final-PANTONE [sic]
The Foundation’s incubator/accelerator strategy succeeds by lessening time-to-market developments by drawing down the accumulated scientific, engineering and business expertise and other practical intangibles supplied by GO and its multinational partners …

It’s not much information but It’s more than I had before. BTW, the organization’s office is located in Ontario, Canada.