Tag Archives: Govind Menon

Small boxes in your bloodstream

The boxes in question self-assemble although why anyone would consider the image of small boxes in one’s bloodstream appealing escapes me. Well, we are talking about engineers and mathematicians so perhaps it’s understandable. From the April 23, 2012 news item on Nanowerk,

… now, interdisciplinary research by engineers at Johns Hopkins University in Baltimore, Md., and mathematicians at Brown University in Providence, R.I., has led to a breakthrough showing that higher order polyhedra can indeed fold up and assemble themselves.

“What is remarkable here is not just that a structure folds up on its own, but that it folds into a very precise, three-dimensional shape, and it happens without any tweezers or human intervention,” says David Gracias, a chemical and biomolecular engineer at Johns Hopkins. “Much like nature assembles everything from sea shells to gem stones from the bottom up, the idea of self-assembly promises a new way to manufacture objects from the bottom up.”

Here’s a video from the US National Science Foundation about the work being done by David Gracias and his colleague at Brown University, mathematician Govind Menon,

Miles O’Brien of the NSF’s Science Nation magazine notes in his April 23, 2012 article that there are many applications for these structures,

Imagine thousands of precisely structured, tiny, biodegradable, boxes rushing through the bloodstream en route to a sick organ. Once they arrive at their destination, they can release medicine with pinpoint accuracy. That’s the vision for the future. For now, the more immediate concern is getting the design of the structures just right so that they can be manufactured with high yields.

“Our process is also compatible with integrated circuit fabrication, so we envision that we can use it to put silicon-based logic and memory chips onto the faces of 3-D polyhedra. Our methodology opens the door to the creation of truly three-dimensional ‘smart’ and multi-functional particles on both micro- and nano- length scales,” says Gracias.

Here’s more about the structures themselves, as mentioned in the video and in O’Brien’s article,

Menon’s team at Brown began designing these tiny 3-D structures by first flattening them out. They worked with a number of shapes, such as 12-sided interconnected panels, which can potentially fold into a dodecahedron shaped container. “Imagine cutting it up and flattening out the faces as you go along,” says Menon. “It’s a two-dimensional unfolding of the polyhedron.”

And not all flat shapes are created equal; some fold better than others. “The best ones are the ones which are most compact. There are 43,380 ways to fold a dodecahedron,” notes Menon.

The researchers developed an algorithm to sift through all of the possible choices, narrowing the field to a few compact shapes that easily fold into 3-D structures. Menon’s team sent those designs to Gracias and his team at Johns Hopkins who built the shapes, and validated the hypothesis.

“We deposit a material in between the faces and the edges, and then heat them up, which creates surface tension and pulls the edges together, fusing the structure shut,” explains Gracias. “The angle between adjacent panels in a dodecahedron is 116.6 degrees and in our process, pentagonal panels precisely align at these remarkably precise angles and seal themselves; all on their own.”

As noted earlier, I’m not thrilled with the idea of tiny boxes in my bloodstream but, analogy aside, the medical applications are appealing. As for Gracias’ smart and multifunctional particles, I look forward to hearing more about them.

3-D and self-assembly

Here’s an intriguing approach to self-assembly for manufacturing purposes from scientists at Brown and Johns Hopkins Universities, respectively. From the Dec. 7, 2011 news item on Nanowerk,

In a paper published in the Proceedings of National Academy of Sciences (“Algorithmic design of self-folding polyhedra”), researchers from Brown and Johns Hopkins University determined the best 2-D arrangements, called planar nets, to create self-folding polyhedra with dimensions of a few hundred microns, the size of a small dust particle. The strength of the analysis lies in the combination of theory and experiment. The team at Brown devised algorithms to cut through the myriad possibilities and identify the best planar nets to yield the self-folding 3-D structures. Researchers at Johns Hopkins then confirmed the nets’ design principles with experiments.

Here’s the magnitude of the problem these scientists were solving (from the news item),

Material chemists and engineers would love to figure out how to create self-assembling shells, containers or structures that could be used as tiny drug-carrying containers or to build 3-D sensors and electronic devices.

There have been some successes with simple 3-D shapes such as cubes, but the list of possible starting points that could yield the ideal self-assembly for more complex geometric configurations gets long fast. For example, while there are 11 2-D arrangements for a cube, there are 43,380 for a dodecahedron (12 equal pentagonal faces). Creating a truncated octahedron (14 total faces – six squares and eight hexagons) has 2.3 million possibilities.

Associate professor of applied mathematics at Brown University, Govind Menon, says (from the news item),

“The issue is that one runs into a combinatorial explosion. … How do we search efficiently for the best solution within such a large dataset? This is where math can contribute to the problem.”

Here’s how they solved the problem (from the news item),

 

“Using a combination of theory and experiments, we uncovered design principles for optimum nets which self-assemble with high yields,” said David Gracias, associate professor in of chemical and biomolecular engineering at Johns Hopkins and a co-corresponding author on the paper.

“In doing so, we uncovered striking geometric analogies between natural assembly of proteins and viruses and these polyhedra, which could provide insight into naturally occurring self-assembling processes and is a step toward the development of self-assembly as a viable manufacturing paradigm.”

“This is about creating basic tools in nanotechnology,” said Menon, co-corresponding author on the paper. “It’s important to explore what shapes you can build. The bigger your toolbox, the better off you are.” While the approach has been used elsewhere to create smaller particles at the nanoscale, the researchers at Brown and Johns Hopkins used larger sizes to better understand the principles that govern self-folding polyhedra.

The news item on Nanowerk features more details, a video of a self-assembling dodecahedron, and an image of various options for 2-D nets that can be used to create 3-D shapes.

“Using a combination of theory and experiments, we uncovered design principles for optimum nets which self-assemble with high yields,” said David Gracias, associate professor in of chemical and biomolecular engineering at Johns Hopkins and a co-corresponding author on the paper. “In doing so, we uncovered striking geometric analogies between natural assembly of proteins and viruses and these polyhedra, which could provide insight into naturally occurring self-assembling processes and is a step toward the development of self-assembly as a viable manufacturing paradigm.”
“This is about creating basic tools in nanotechnology,” said Menon, co-corresponding author on the paper. “It’s important to explore what shapes you can build. The bigger your toolbox, the better off you are.”
While the approach has been used elsewhere to create smaller particles at the nanoscale, the researchers at Brown and Johns Hopkins used larger sizes to better understand the principles that govern self-folding polyhedra.