Tag Archives: graphene

Harvard University announced new Center on Nano-safety Research

The nano safety center at Harvard University (Massachusetts, US) is a joint center with the US National Institute of Environmental Health  Sciences according to an Aug. 29, 2016 news item on Nanowerk,

Engineered nanomaterials (ENMs)—which are less than 100 nanometers (one millionth of a millimeter) in diameter—can make the colors in digital printer inks pop and help sunscreens better protect against radiation, among many other applications in industry and science. They may even help prevent infectious diseases. But as the technology becomes more widespread, questions remain about the potential risks that ENMs may pose to health and the environment.

Researchers at the new Harvard-NIEHS [US National Institute of Environmental Health Sciences] Nanosafety Research Center at Harvard T.H. Chan School of Public Health are working to understand the unique properties of ENMs—both beneficial and harmful—and to ultimately establish safety standards for the field.

An Aug. 16, 2016 Harvard University press release, which originated the news item, provides more detail (Note: Links have been removed),

“We want to help nanotechnology develop as a scientific and economic force while maintaining safeguards for public health,” said Center Director Philip Demokritou, associate professor of aerosol physics at Harvard Chan School. “If you understand the rules of nanobiology, you can design safer nanomaterials.”

ENMs can enter the body through inhalation, ingestion, and skin contact, and toxicological studies have shown that some can penetrate cells and tissues and potentially cause biochemical damage. Because the field of nanoparticle science is relatively new, no standards currently exist for assessing the health risks of exposure to ENMs—or even for how studies of nano-biological interactions should be conducted.

Much of the work of the new Center will focus on building a fundamental understanding of why some ENMs are potentially more harmful than others. The team will also establish a “reference library” of ENMs, each with slightly varied properties, which will be utilized in nanotoxicology research across the country to assess safety. This will allow researchers to pinpoint exactly what aspect of an ENM’s properties may impact health. The researchers will also work to develop standardized methods for nanotoxicology studies evaluating the safety of nanomaterials.

The Center was established with a $4 million dollar grant from the National Institute of Environmental Health Science (NIEHS) last month, and is the only nanosafety research center to receive NIEHS funding for the next five years. It will also play a coordinating role with existing and future NIEHS nanotoxicology research projects nantionwide. Scientists from the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), MIT, University of Maine, and University of Florida will collaborate on the new effort.

The Center builds on the existing Center for Nanotechnology and Nanotoxicology at Harvard Chan School, established by Demokritou and Joseph Brain, Cecil K. and Philip Drinker Professor of Environmental Physiology, in the School’s Department of Environmental Health in 2010.

A July 5, 2016 Harvard University press release announcing the $4M grant provides more information about which ENMs are to be studied,

The main focus of the new HSPH-NIEHS Center is to bring together  scientists from across disciplines- material science, chemistry, exposure assessment, risk assessment, nanotoxicology and nanobiology- to assess the potential  environmental Health and safety (EHS) implications of engineered nanomaterials (ENMs).

The $4 million dollar HSPH based Center  which is the only Nanosafety Research  Center to be funded by NIEHS this funding cycle, … The new HSPH-NIEHS Nanosafety Center builds upon the nano-related infrastructure in [the] collaborating Universities, developed over the past 10 years, which includes an inter-disciplinary research group of faculty, research staff and students, as well as state-of-the-art platforms for high throughput synthesis of ENMs, including metal and metal oxides, cutting edge 2D/3D ENMs such as CNTs [carbon nanotubes] and graphene, nanocellulose, and advanced nanocomposites, [emphasis mine] coupled with innovative tools to assess the fate and transport of ENMs in biological systems, statistical and exposure assessment tools, and novel in vitro and in vivo platforms for nanotoxicology research.

“Our mission is to integrate material/exposure/chemical sciences and nanotoxicology-nanobiology   to facilitate assessment of potential risks from emerging nanomaterials.  In doing so, we are bringing together the material synthesis/applications and nanotoxicology communities and other stakeholders including industry,   policy makers and the general public to maximize innovation and growth and minimize environmental and public health risks from nanotechnology”, quoted by  Dr Philip Demokritou, …

This effort certainly falls in line with the current emphasis on interdisciplinary research and creating standards and protocols for researching the toxicology of engineered nanomaterials.

Unraveling carbyne (one-dimensional carbon)

An international group of researchers has developed a technique for producing a record-breaking length of one-dimensional carbon (carbon chain) according to an April 4, 2016 news item on Nanowerk,

Elemental carbon appears in many different modifications, including diamond, fullerenes and graphene. Their unique structural, electronic, mechanical, transport and optical properties have a broad range of applications in physics, chemistry and materials science, including composite materials, nanoscale light emitting devices and energy harvesting materials. Within the “carbon family”, only carbyne, the truly one-dimensional form of carbon, has not yet been synthesized despite having been studied for more than 50 years. Its extreme instability in ambient conditions rendered the final experimental proof of its existence elusive.

An international collaboration of researchers now succeeded in developing a novel route for the bulk production of carbon chains composed of more than 6,400 carbon atoms by using thin double-walled carbon nanotubes as protective hosts for the chains.

An April 4, 2016 University of Vienna press release (also on EurekAlert) provides another perspective on the research,

Even in its elemental form, the high bond versatility of carbon allows for many different well-known materials, including diamond and graphite. A single layer of graphite, termed graphene, can then be rolled or folded into carbon nanotubes or fullerenes, respectively. To date, Nobel prizes have been awarded for both graphene (2010) and fullerenes (1996). Although the existence of carbyne, an infinitely long carbon chain, was proposed in 1885 by Adolf von Baeyer (Nobel laureate for his overall contributions in organic chemistry, 1905), scientists have not yet been able to synthesize this material. Von Baeyer even suggested that carbyne would remain elusive as its high reactivity would always lead to its immediate destruction. Nevertheless, carbon chains of increasing length have been successfully synthesized over the last 50 years, with a record of around 100 carbon atoms (2003). This record has now been broken by more than one order of magnitude, with the demonstration of micrometer length-scale chains.

The new record

Researchers from the University of Vienna, led by Thomas Pichler, have presented a novel approach to grow and stabilize carbon chains with a record length of 6,000 carbon atoms, improving the previous record by more than one order of magnitude. They use the confined space inside a double-walled carbon nanotube as a nano-reactor to grow ultra-long carbon chains on a bulk scale. In collaboration with the groups of Kazu Suenaga at the AIST Tsukuba [National Institute of Advanced Industrial Science and Technology] in Japan, Lukas Novotny at the ETH Zürich [Swiss Federal Institute of Technology] in Switzerland and Angel Rubio at the MPI [Max Planck Institute] Hamburg in Germany and UPV/EHU [University of the Basque Country] San Sebastian in Spain, the existence of the chains has been unambiguously confirmed by using a multitude of sophisticated, complementary methods. These are temperature dependent near- and far-field Raman spectroscopy with different lasers (for the investigation of electronic and vibrational properties), high resolution transmission electron spectroscopy (for the direct observation of carbyne inside the carbon nanotubes) and x-ray scattering (for the confirmation of bulk chain growth).

The researchers present their study in the latest edition of Nature Materials. “The direct experimental proof of confined ultra-long linear carbon chains, which are more than an order of magnitude longer than the longest proven chains so far, can be seen as a promising step towards the final goal of unraveling the “holy grail” of carbon allotropes, carbyne”, explains the lead author, Lei Shi.

Application potential

Carbyne is very stable inside double-walled carbon nanotubes. This property is crucial for its eventual application in future materials and devices. According to theoretical models, carbyne’s mechanical properties exceed all known materials, outperforming both graphene and diamond. Carbyne’s electrical properties suggest novel nanoelectronic applications in quantum spin transport and magnetic semiconductors.

Here’s a link to and a citation for the paper,

Confined linear carbon chains as a route to bulk carbyne by Lei Shi, Philip Rohringer, Kazu Suenaga, Yoshiko Niimi, Jani Kotakoski, Jannik C. Meyer, Herwig Peterlik, Marius Wanko, Seymur Cahangirov, Angel Rubio, Zachary J. Lapin, Lukas Novotny, Paola Ayala, & Thomas Pichler. Nature Materials (2016) doi:10.1038/nmat4617 Published online 04 April 2016

This paper is behind a paywall.

But, there is this earlier and open access version on arXiv.org,

Confined linear carbon chains: A route to bulk carbyne
Lei Shi, Philip Rohringer, Kazu Suenaga, Yoshiko Niimi, Jani Kotakoski, Jannik C. Meyer, Herwig Peterlik, Paola Ayala, Thomas Pichler (Submitted on 17 Jul 2015 (v1), last revised 20 Jul 2015 (this version, v2))

Graphene-boron nitride material research from Rice University (US) and Polytechnique Montréal (Canada)

A Jan. 13, 2016 Rice University news release (also on EurekAlert) highlights computational research on hybrid material (graphene-boron nitride),

Developing novel materials from the atoms up goes faster when some of the trial and error is eliminated. A new Rice University and Montreal Polytechnic study aims to do that for graphene and boron nitride hybrids.

Rice materials scientist Rouzbeh Shahsavari and Farzaneh Shayeganfar, a postdoctoral researcher at Montreal Polytechnic (also known as École Polytechnique de Montréal or Polytechnique de Montréal), designed computer simulations that combine graphene, the atom-thick form of carbon, with either carbon or boron nitride nanotubes.

Their hope is that such hybrids can leverage the best aspects of their constituent materials. Defining the properties of various combinations would simplify development for manufacturers who want to use these exotic materials in next-generation electronics. The researchers found not only electronic but also magnetic properties that could be useful.

Shahsavari’s lab studies materials to see how they can be made more efficient, functional and environmentally friendly. They include macroscale materials like cement and ceramics as well as nanoscale hybrids with unique properties.

“Whether it’s on the macro- or microscale, if we can know specifically what a hybrid will do before anyone goes to the trouble of fabricating it, we can save cost and time and perhaps enable new properties not possible with any of the constituents,” Shahsavari said.

His lab’s computer models simulate how the intrinsic energies of atoms influence each other as they bond into molecules. For the new work, the researchers modeled hybrid structures of graphene and carbon nanotubes and of graphene and boron nitride nanotubes.

“We wanted to investigate and compare the electronic and potentially magnetic properties of different junction configurations, including their stability, electronic band gaps and charge transfer,” he said. “Then we designed three different nanostructures with different junction geometry.”

Two were hybrids with graphene layers seamlessly joined to carbon nanotubes. The other was similar but, for the first time, they modeled a hybrid with boron nitride nanotubes. How the sheets and tubes merged determined the hybrid’s properties. They also built versions with nanotubes sandwiched between graphene layers.

Graphene is a perfect conductor when its atoms align as hexagonal rings, but the material becomes strained when it deforms to accommodate nanotubes in hybrids. The atoms balance their energies at these junctions by forming five-, seven- or eight-member rings. These all induce changes in the way electricity flows across the junctions, turning the hybrid material into a valuable semiconductor.

The researchers’ calculations allowed them to map out a number of effects. For example, it turned out the junctions of the hybrid system create pseudomagnetic fields.

“The pseudomagnetic field due to strain was reported earlier for graphene, but not these hybrid boron nitride and carbon nanostructures where strain is inherent to the system,” Shahsavari said. He noted the effect may be useful in spintronic and nano-transistor applications.

“The pseudomagnetic field causes charge carriers in the hybrid to circulate as if under the influence of an applied external magnetic field,” he said. “Thus, in view of the exceptional flexibility, strength and thermal conductivity of hybrid carbon and boron nitride systems, we propose the pseudomagnetic field may be a viable way to control the electronic structure of new materials.”

All the effects serve as a road map for nanoengineering applications, Shahsavari said.

“We’re laying the foundations for a range of tunable hybrid architectures, especially for boron nitride, which is as promising as graphene but much less explored,” he said. “Scientists have been studying all-carbon structures for years, but the development of boron nitride and other two-dimensional materials and their various combinations with each other gives us a rich set of possibilities for the design of materials with never-seen-before properties.”

Shahsavari is an assistant professor of civil and environmental engineering and of materials science and nanoengineering.


Rice supported the research, and computational resources were provided by Calcul Quebec and Compute Canada.

Here’s a link to and a citation for the paper,

Electronic and pseudomagnetic properties of hybrid carbon/boron-nitride nanomaterials via ab-initio calculations and elasticity theory by Farzaneh Shayeganfar and Rouzbeh Shahsavari. Carbon Volume 99, April 2016, Pages 523–532 doi:10.1016/j.carbon.2015.12.050

This paper is behind a paywall.

Here’s an image illustrating the hybrid material,

Caption: The calculated properties of a three-dimensional hybrid of graphene and boron nitride nanotubes would have pseudomagnetic properties, according to researchers at Rice University and Montreal Polytechnic. Credit: Shahsavari Lab/Rice University

Caption: The calculated properties of a three-dimensional hybrid of graphene and boron nitride nanotubes would have pseudomagnetic properties, according to researchers at Rice University and Montreal Polytechnic. Credit: Shahsavari Lab/Rice University

You gotta shake, shake, shake those nanomaterials out of the water

A team at Michigan Technological University (Michigan Tech) has developed a simple technique for clearing nanoparticles from water according to a Dec. 10, 2015 news item on Nanotechnology Now,

Nano implies small—and that’s great for use in medical devices, beauty products and smartphones—but it’s also a problem. The tiny nanoparticles, nanowires, nanotubes and other nanomaterials that make up our technology eventually find their way into water. The Environmental Protection Agency says more 1,300 commercial products use some kind of nanomaterial. And we just don’t know the full impact on health and the environment.

A Dec. 10, 2015 Michigan Tech news release, which originated the news item, describes the concept and the research in more detail,

“Look at plastic,” says Yoke Khin Yap, a professor of physics at Michigan Technological University. “These materials changed the world over the past decades—but can we clean up all the plastic in the ocean? We struggle to clean up meter-scale plastics, so what happens when we need to clean on the nano-scale?”

The method sounds like a salad dressing recipe: take water, sprinkle in nanomaterials, add oil and shake.

Water and oil don’t mix, of course, but shaking them together is what makes salad dressing so great. Only instead of emulsifying and capturing bits of shitake or basil in tiny olive oil bubbles, this mixture grabs nanomaterials.

Dongyan Zhang, a research professor of physics at Michigan Tech, led the experiments, which covered tests on carbon nanotubes, graphene, boron nitride nanotubes, boron nitride nanosheets and zinc oxide nanowires. Those are used in everything from carbon fiber golf clubs to sunscreen.

“These materials are very, very tiny, and that means if you try to remove them and clean them out of contaminated water, that it’s quite difficult,” Zhang says, adding that techniques like filter paper or meshes often don’t work.

What makes shaking work is the shape of one- and two-dimensional nanomaterials. As the oil and water separate after some rigorous shaking, the wires, tubes and sheets settle at the bottom of the oil, just above the water. The oils trap them. However, zero-dimensional nanomaterials, such as nanospheres do not get trapped.

The researchers, according to the news release, are attempting to anticipate the potential contamination of our water supply by nanomaterials and provide a solution before it happens,

We don’t have to wait until the final vote is in on whether nanomaterials have a positive or negative impact on people’s health and environmental health. With the simplicity of this technique, and how prolific nanomaterials are becoming, removing nanomaterials makes sense. Also, finding ways to effectively remove nanomaterials sooner rather than later could improve the technology’s market potential.

“Ideally for a new technology to be successfully implemented, it needs to be shown that the technology does not cause adverse effects to the environment,” Yap, Zhang and their co-authors write. “Therefore, unless the potential risks of introducing nanomaterials into the environment are properly addressed, it will hinder the industrialization of products incorporating nanotechnology.”

Purifying water and greening nanotechnology could be as simple as shaking a vial of water and oil.

Here’s a video about the research supplied by Michigan Tech,

Here’s a link to and a citation for the paper,

A Simple and Universal Technique To Extract One- and Two-Dimensional Nanomaterials from Contaminated Water by Bishnu Tiwari, Dongyan Zhang, Dustin Winslow, Chee Huei Lee, Boyi Hao, and Yoke Khin Yap. ACS Appl. Mater. Interfaces, 2015, 7 (47), pp 26108–26116 DOI: 10.1021/acsami.5b07542 Publication Date (Web): November 9, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

Graphene and water (G20 Water commentary)

Tim Harper’s, Chief Executive Officer (CEO) of G2O Water, July 13, 2015 commentary was published on Nanotechnology Now. Harper, a longtime figure in the nanotechnology community (formerly CEO of Cientifica, an emerging technologies consultancy and current member of the World Economic Forum, not unexpectedly focused on water,

In the 2015 World Economic Forum’s Global Risks Report survey participants ranked Water Crises as the biggest of all risks, higher than Weapons of Mass Destruction, Interstate Conflict and the Spread of Infectious Diseases (pandemics). Our dependence on the availability of fresh water is well documented, and the United Nations World Water Development Report 2015 highlights a 40% global shortfall between forecast water demand and available supply within the next fifteen years. Agriculture accounts for much of the demand, up to 90% in most of the world’s least-developed countries, and there is a clear relationship between water availability, health, food production and the potential for civil unrest or interstate conflict.

The looming crisis is not limited to water for drinking or agriculture. Heavy metals from urban pollution are finding their way into the aquatic ecosystem, as are drug residues and nitrates from fertilizer use that can result in massive algal blooms. To date, there has been little to stop this accretion of pollutants and in closed systems such as lakes these pollutants are being concentrated with unknown long term effects.

Ten years ago, following discussions with former Israeli Prime Minister Shimon Peres, I organised a conference in Amsterdam called Nanowater to look at how nanotechnology could address global water issues. [emphasis mine] While the meeting raised many interesting points, and many companies proposed potential solutions, there was little subsequent progress.

Rather than a simple mix of one or two contaminants, most real world water can contain hundreds of different materials, and pollutants like heavy metals may be in the form of metal ions that can be removed, but are equally likely to be bound to other larger pieces of organic matter which cannot be simply filtered through nanopores. In fact the biggest obstacle to using nanotechnology in water treatment is the simple fact that small holes are easily blocked, and susceptibility to fouling means that most nanopore membranes quickly become barriers instead of filters.

Fortunately some recent developments in the ‘wonder material’ graphene may change the economics of water. One of the major challenges in the commercialisation of graphene is the ability to create large areas of defect-free material that would be suitable for displays or electronics, and this is a major research topic in Europe where the European Commission is funding graphene research to the tune of a billion euros. …

Tim goes on to describe some graphene-based solutions including a technology developed at the University of South Carolina, which is also mentioned in a July 16, 2015 G20 Water press release,

Fouling of nano/ultrafiltration membranes in oil/water separation is a longstanding issue and a major economic barrier for their widespread adoption. Currently membranes typically show severe fouling, resulting from the strong adhesion of oil on the membrane surface and/or oil penetration inside the membranes. This greatly degrades their performance and shortens service lifetime as well as increasing the energy usage.

G2O™s bio inspired approach uses graphene oxide (GO) for the fabrication of fully-recoverable membranes for high flux, antifouling oil/water separation via functional and structural mimicking of fish scales. The ultra-thin, amphiphilic, water-locking GO coating mimics the thin mucus layer covering fish scales, while the combination of corrugated GO flakes and intrinsic roughness of the porous supports successfully reproduces the hierarchical roughness of fish scales. Cyclic membrane performance evaluation tests revealed circa 100% membrane recovery by facile surface water flushing, establishing their excellent easy-to-recover capability.

The pore sizes can be tuned to specific applications such as water desalination, oil/water separation, storm water treatment and industrial waste water recovery. By varying the GO concentration in water, GO membranes with different thickness can be easily fabricated via a one-time filtration process.
G2O™s patented graphene oxide technology acts as a functional coating for modifying the surface properties of existing filter media resulting in:
Higher pure water flux;
High fouling resistance;
Excellent mechanical strength;
High chemical stability;
Good thermal stability;
Low cost.

We’re going through a water shortage here in Vancouver, Canada after a long spring season which distinguished itself with a lack of rain and the introduction of a heatwave extending into summer. It is by no means equivalent to the situation in many parts of the world but it does give even those of us who are usually waterlogged some insight into what it means when there isn’t enough water.

For more insight into water crises with a special focus on the Middle East (notice Harper mentioned Israel’s former Prime Minister Shimon Peres in his commentary), I have a Feb. 24, 2014 posting (Water desalination to be researched at Oman’s newly opened Nanotechnology Laboratory at Sultan Qaboos University) and a June 25, 2013 post (Nanotechnology-enabled water resource collaboraton between Israel and Chicago).

You can check out the World Economic Forum’s Outlook on the Global Agenda 2015 here.

The Outlook on the Global Agenda 2015 features an analysis of the Top 10 trends which will preoccupy our experts for the next 12-18 months as well as the key challenges facing the world’s regions, an overview of global leadership and governance, and the emerging issues that will define our future.

G20 Water can be found here.

Graphite research at Simon Fraser University (Vancouver, Canada) and NanoXplore’s (Montréal, Canada) graphene oxide production


Simon Fraser University (SFU) announced a partnership with Ontario’s Sheridan College and three Canadian companies (Terrella Energy Systems, Alpha Technologies, and Westport Innovations) in a research project investigating low-cost graphite thermal management products. From an April 9, 2015 SFU news release,

Simon Fraser University is partnering with Ontario’s Sheridan College, and a trio of Canadian companies, on research aimed at helping the companies to gain market advantage from improvements on low-cost graphite thermal management products.


Graphite is an advanced engineering material with key properties that have potential applications in green energy systems, automotive components and heating ventilating air conditioning systems.


The project combines expertise from SFU’s Laboratory for Alternative Energy Conversion with Sheridan’s Centre for Advanced Manufacturing and Design Technologies.


With $700,000 in funding from the Natural Sciences and Engineering Research Council’s (NSERC) College and Community Innovation program, the research will help accelerate the development and commercialization of this promising technology, says project lead Majid Bahrami, an associate professor in SFU’s School of Mechatronics Systems Engineering (MSE) at SFU’s Surrey campus.


The proposed graphite products take aim at a strategic $40 billion/year thermal management products market, Bahrami notes. 


Inspired by the needs of the companies, Bahrami says the project has strong potential for generating intellectual property, leading to advanced manufacturing processes as well as new, efficient graphite thermal products.


The companies involved include:


Terrella Energy Systems, which recently developed a roll-embossing process that allows high-volume, cost-effective manufacturing of micro-patterned, coated and flexible graphite sheets;


Alpha Technologies, a leading telecom/electronics manufacturer, which is in the process of developing next-generation ‘green’ cooling solutions for their telecom/electronics systems;


Westport Innovations, which is interested in integrating graphite heat exchangers in their natural gas fuel systems, such as heat exchangers for heavy-duty trucks.


Bahrami, who holds a Canada Research Chair in Alternative Energy Conversion Systems, expects the project will also lead to significant training and future business and employment opportunities in the manufacturing and energy industry, as well as the natural resource sector and their supply chain.


“This project leverages previous federal government investment into world-class testing equipment, and SFU’s strong industrial relationships and entrepreneurial culture, to realize collective benefits for students, researchers, and companies,” says Joy Johnson, SFU’s VP Research. “By working together and pooling resources, SFU and its partners will continue to generate novel green technologies and energy conversion solutions.”


Fast Facts:

  • The goal of the NSERC College and Community Innovation program is to increase innovation at the community and/or regional level by enabling Canadian colleges to increase their capacity to work with local companies, particularly small and medium-sized enterprises (SMEs).
  • Canada is the fifth largest exporter of raw graphite.

I have mentioned graphite here before. Generally, it’s in relation to graphite mining deposits in Ontario and Québec, which seem to have been of great interest as a source for graphene production. A Feb. 20, 2015 posting was the the latest of those mentions and, coincidentally, it features NanoXplore and graphene, the other topic noted in the head for this posting.

Graphene and NanoXplore

An April 17, 2015 news item on Azonano makes a production announcement,

Group NanoXplore Inc., a Montreal-based company specialising in the production and application of graphene and its derivative materials, announced today that it is producing Graphene Oxide in industrial quantities. The Graphene Oxide is being produced in the same 3 metric tonne per year facility used to manufacture NanoXplore’s standard graphene grades and derivative products such as a unique graphite-graphene composite suitable for anodes in Li-ion batteries.

An April 16, 2015 NanoXplore news release on MarketWired, which originated the news item, describes graphene oxide and its various uses,

Graphene Oxide (GO) is similar to graphene but with significant amounts of oxygen introduced into the graphene structure. GO, unlike graphene, can be readily mixed in water which has led people to use GO in thin films, water-based paints and inks, and biomedical applications. GO is relatively simple to synthesise on a lab scale using a modified Hummers’ method, but scale-up to industrial production is quite challenging and dangerous. This is because the Hummers’ method uses strong oxidizing agents in a highly exothermic reaction which produces toxic and explosive gas. NanoXplore has developed a completely new and different approach to producing GO based upon its proprietary graphene production platform. This novel production process is completely safe and environmentally friendly and produces GO in volumes ranging from kilogram to tonne quantities.

“NanoXplore’s ability to produce industrially useful quantities of Graphene Oxide in a safe and scalable manner is a game changer, said Dr. Soroush Nazarpour, President and CEO of NanoXplore. “Mixing graphene with standard industrially materials is the key to bringing it to industrial markets. Graphene Oxide mixes extremely well with all water based solutions, and we have received repeated customer requests for water soluble graphene over the last two years”.

It sounds exciting but it would be helpful (for someone like me, who’s ignorant about these things) to know the graphene oxide market’s size. This would help me to contextualize the excitement.

You can find out more about NanoXplore here.

Converting light to electricity at femto speeds

This is a pretty remarkable (to me anyway) piece of research on speeding up the process of converting light to electricity. From an April 14, 2015 Institute of Photonic Science press release (also on EurekAlert but dated April 15, 2015),

The efficient conversion of light into electricity plays a crucial role in many technologies, ranging from cameras to solar cells. It also forms an essential step in data communication applications, since it allows for information carried by light to be converted into electrical information that can be processed in electrical circuits. Graphene is an excellent material for ultrafast conversion of light to electrical signals, but so far it was not known how fast graphene responds to ultrashort flashes of light.

The new device that the researchers developed is capable of converting light into electricity in less than 50 femtoseconds (a twentieth of a millionth of a millionth of a second). To do this, the researchers used a combination of ultrafast pulse-shaped laser excitation and highly sensitive electrical readout. As Klaas-Jan Tielrooij comments, “the experiment uniquely combined the ultrafast pulse shaping expertise obtained from single molecule ultrafast photonics with the expertise in graphene electronics. Facilitated by graphene’s nonlinear photo-thermoelectric response, these elements enabled the observation of femtosecond photodetection response times.”

The ultrafast creation of a photovoltage in graphene is possible due to the extremely fast and efficient interaction between all conduction band carriers in graphene. This interaction leads to a rapid creation of an electron distribution with an elevated electron temperature. Thus, the energy absorbed from light is efficiently and rapidly converted into electron heat. Next, the electron heat is converted into a voltage at the interface of two graphene regions with different doping. This photo-thermoelectric effect turns out to occur almost instantaneously, thus enabling the ultrafast conversion of absorbed light into electrical signals. As Prof. van Hulst states, “it is amazing how graphene allows direct non-linear detecting of ultrafast femtosecond (fs) pulses”.

The results obtained from the findings of this work, which has been partially funded by the EC Graphene Flagship, open a new pathway towards ultra-fast optoelectronic conversion. As Prof. Koppens comments, “Graphene photodetectors keep showing fascinating performances addressing a wide range of applications”.

Here’s a link to and a citation for the paper,

Generation of photovoltage in graphene on a femtosecond timescale through efficient carrier heating by K. J. Tielrooij, L. Piatkowski, M. Massicotte, A. Woessner, Q. Ma, Y. Lee,  K. S. Myhro, C. N. Lau, P. Jarillo-Herrero, N. F. van Hulst & F. H. L. Koppens. Nature Nanotechnology (2015) doi:10.1038/nnano.2015.54 Published online 13 April 2015

This paper is behind a paywall but there is a free preview via ReadCube Access.

Carbon nanotube commercialization report from the US National Nanotechnology Initiative

Apparently a workshop on the topic commercializing carbon nanotubes was held in Washington, DC. in Sept. 2014. A March 12, 2015 news item on Nanowerk (originated by  March 12, 2015 US National Nanotechnology Initiative news release on EurekAlert) announces the outcome of that workshop (Note: Links have been removed),

The National Nanotechnology Initiative today published the proceedings of a technical interchange meeting on “Realizing the Promise of Carbon Nanotubes: Challenges, Opportunities, and the Pathway to Commercialization” (pdf), held at the National Aeronautics and Space Administration (NASA) Headquarters on September 15, 2014. This meeting brought together some of the Nation’s leading experts in carbon nanotube materials to identify, discuss, and report on technical barriers to the production of carbon nanotube (CNT)-based bulk and composite materials with properties that more closely match those of individual CNTs and to explore ways to overcome these barriers.

The outcomes of this meeting, as detailed in this report, will help inform the future directions of the NNI Nanotechnology Signature Initiative “Sustainable Nanomanufacturing: Creating the Industries of the Future”, which was launched in 2010 to accelerate the development of industrial-scale methods for manufacturing functional nanoscale systems.

The Technical Interchange Proceedings ‘Realizing the Promise of Carbon Nanotubes: Challenges, Opportunities, and the Pathway to Commercialization‘ (30 pp. PDF) describes areas for improvement in its executive summary,

A number of common themes and areas requiring focused attention were identified:

● Increased efforts devoted to manufacturing, quality control, and scale-up are needed. The development of a robust supply of CNT bulk materials with well-controlled properties would greatly enhance commercialization and spur use in a broad range of applications.
● Improvements are needed in the mechanical and electrical properties of CNT-based bulk materials (composites, sheets, and fibers) to approach the properties of individual CNTs. The development of bulk materials with properties nearing ideal CNT values would accelerate widespread adoption of these materials.
● More effective use of simulation and modeling is needed to provide insight into the fundamentals of the CNT growth process. Theoretical insight into the fundamentals of the growth process will inform the development of processes capable of producing high-quality material in quantity.
● Work is needed to help develop an understanding of the properties of bulk CNT-containing materials at longer length scales. Longer length scale understanding will enable the development of predictive models of structure–process–properties relationships and structural design technology tailored to take advantage of CNT properties.
● Standard materials and protocols are needed to guide the testing of CNT-based products for commercial applications. Advances in measurement methods are also required to characterize bulk CNT material properties and to understand the mechanism(s) of failure to help ensure material reliability.
● Life cycle assessments are needed for gauging commercial readiness. Life cycle assessments should include energy usage, performance lifetime, and degradation or disposal of CNT-based products.
● Collaboration to leverage resources and expertise is needed to advance commercialization of CNT-based products. Coordinated, focused efforts across academia, government laboratories, and industry to target grand challenges with support from public–private partnerships would accelerate efforts to provide solutions to overcome these technical barriers.

This meeting identified a number of the technical barriers that need to be overcome to make the promise of carbon nanotubes a reality. A more concerted effort is needed to focus R&D activities towards addressing these barriers and accelerating commercialization. The outcomes from this meeting will inform the future directions of the NNI Nanomanufacturing Signature Initiative and provide specific areas that warrant broader focus in the CNT research community. [p. vii print; p. 9 PDF]

This report, in its final section, explains the basis for the interest in and the hopes for carbon nanotubes,

Improving the electrical and mechanical properties of bulk carbon nanotube materials (yarns, fibers, wires, sheets, and composites) to more closely match those of individual carbon nanotubes will enable a revolution in materials that will have a broad impact on U.S. industries, global competitiveness, and the environment. Use of composites reinforced with high-strength carbon nanotube fibers in terrestrial and air transportation vehicles could enable a 25% reduction in their overall weight, reduce U.S. oil consumption by nearly 6 million barrels per day by 2035 [42], and reduce worldwide consumption of petroleum and other liquid fuels by 25%. This would result in the reduction of CO2 emissions by as much as 3.75 billion metric tons per year. Use of carbon nanotube-based data and power cables would lead to further reductions in vehicle weight, fuel consumption, and CO2 emissions. For example, replacement of the copper wiring in a Boeing 777 with CNT data and power cables that are 50% lighter would enable a 2,000-pound reduction in airplane weight. Use of carbon nanotube wiring in power distribution lines would reduce transmission losses by approximately 41 billion kilowatt hours annually [42], leading to significant savings in coal and gas consumption and reductions in the electric power industry’s carbon footprint.

The impact of developing these materials on U.S. global competitiveness is also significant. For example, global demand for carbon fibers is expected to grow from 46,000 metric tons per year in 2011 to more than 153,000 metric tons in 2020 due to the exponential growth in the use of composites in commercial aircraft, automobiles, aerospace, and wind energy [43]. Ultrahigh-strength CNT fibers would be highly attractive in each of these applications because they offer the advantage of reduced weight and improved performance over conventional carbon fibers. [p. 10 print; p. 20 PDF]

As these things go, this is a very short document, which makes it a fast read, and it has a reference list, something I always find useful.

My colleague, Dexter Johnson in a March 17, 2015 posting on his Nanoclast blog (on the IEEE [Institute for Electrical and Electronics Engineers] website) provides some background information before launching into an analysis of the report’s recommendations (Note: Links have been removed),

In the last half-a-decade we have witnessed once-beloved carbon nanotubes (CNTs) slowly being eclipsed by graphene as the “wonder material” of the nanomaterial universe.

This changing of the guard has occurred primarily within the research community, where the amount of papers being published about graphene seems to be steadily increasing. But in terms of commercial development, CNTs still have a leg up on graphene, finding increasing use in creating light but strong composites. Nonetheless, the commercial prospects for CNTs have been taking hits recently, with some producers scaling down capacity because of lack of demand.

With this as the backdrop, the National Nanotechnology Initiative (NNI), famous for its estimate back in 2001 that the market for nanotechnology will be worth $1 trillion by 2015,  has released a report based on a meeting held last September. …

I recommend reading Dexter’s analysis.

Cute, adorable roundworms help measure nanoparticle toxicity

Caption: Low-cost experiments to test the toxicity of nanomaterials focused on populations of roundworms. Rice University scientists were able to test 20 nanomaterials in a short time, and see their method as a way to determine which nanomaterials should undergo more extensive testing. Credit: Zhong Lab/Rice University

Caption: Low-cost experiments to test the toxicity of nanomaterials focused on populations of roundworms. Rice University scientists were able to test 20 nanomaterials in a short time, and see their method as a way to determine which nanomaterials should undergo more extensive testing.
Credit: Zhong Lab/Rice University

Until now, ‘cute’ and ‘adorable’ are not words I would have associated with worms of any kind or with Rice University, for that matter. It’s amazing what a single image can do, eh?

A Feb. 3, 2015 news item on Azonano describes how roundworms have been used in research investigating the toxicity of various kinds of nanoparticles,

The lowly roundworm is the star of an ambitious Rice University project to measure the toxicity of nanoparticles.

The low-cost, high-throughput study by Rice scientists Weiwei Zhong and Qilin Li measures the effects of many types of nanoparticles not only on individual organisms but also on entire populations.

A Feb. 2, 2015 Rice University news release (also on EurekAlert), which originated the news item, provides more details about the research,

The Rice researchers tested 20 types of nanoparticles and determined that five, including the carbon-60 molecules (“buckyballs”) discovered at Rice in 1985, showed little to no toxicity.

Others were moderately or highly toxic to Caenorhabditis elegans, several generations of which the researchers observed to see the particles’ effects on their health.

The results were published by the American Chemical Society journal Environmental Sciences and Technology. They are also available on the researchers’ open-source website.

“Nanoparticles are basically new materials, and we don’t know much about what they will do to human health and the health of the ecosystem,” said Li, an associate professor of civil and environmental engineering and of materials science and nanoengineering. “There have been a lot of publications showing certain nanomaterials are more toxic than others. So before we make more products that incorporate these nanomaterials, it’s important that we understand we’re not putting anything toxic into the environment or into consumer products.

“The question is, How much cost can we bear?” she said. “It’s a long and expensive process to do a thorough toxicological study of any chemical, not just nanomaterials.” She said that due to the large variety of nanomaterials being produced at high speed and at such a large scale, there is “an urgent need for high-throughput screening techniques to prioritize which to study more extensively.”

Rice’s pilot study proves it is possible to gather a lot of toxicity data at low cost, said Zhong, an assistant professor of biosciences, who has performed extensive studies on C. elegans, particularly on their gene networks. Materials alone for each assay, including the worms and the bacteria they consumed and the culture media, cost about 50 cents, she said.

The researchers used four assays to see how worms react to nanoparticles: fitness, movement, growth and lifespan. The most sensitive assay of toxicity was fitness. In this test, the researchers mixed the nanoparticles in solutions with the bacteria that worms consume. Measuring how much bacteria they ate over time served as a measure of the worms’ “fitness.”

“If the worms’ health is affected by the nanoparticles, they reproduce less and eat less,” Zhong said. “In the fitness assay, we monitor the worms for a week. That is long enough for us to monitor toxicity effects accumulated through three generations of worms.” C. elegans has a life cycle of about three days, and since each can produce many offspring, a population that started at 50 would number more than 10,000 after a week. Such a large number of tested animals also enabled the fitness assay to be highly sensitive.

The researchers’ “QuantWorm” system allowed fast monitoring of worm fitness, movement, growth and lifespan. In fact, monitoring the worms was probably the least time-intensive part of the project. Each nanomaterial required specific preparation to make sure it was soluble and could be delivered to the worms along with the bacteria. The chemical properties of each nanomaterial also needed to be characterized in detail.

The researchers studied a representative sampling of three classes of nanoparticles: metal, metal oxides and carbon-based. “We did not do polymeric nanoparticles because the type of polymers you can possibly have is endless,” Li explained.

They examined the toxicity of each nanoparticle at four concentrations. Their results showed C-60 fullerenes, fullerol (a fullerene derivative), titanium dioxide, titanium dioxide-decorated nanotubes and cerium dioxide were the least damaging to worm populations.

Their “fitness” assay confirmed dose-dependent toxicity for carbon black, single- and multiwalled carbon nanotubes, graphene, graphene oxide, gold nanoparticles and fumed silicon dioxide.

They also determined the degree to which surface chemistry affected the toxicity of some particles. While amine-functionalized multiwalled nanotubes proved highly toxic, hydroxylated nanotubes had the least toxicity, with significant differences in fitness, body length and lifespan.

A complete and interactive toxicity chart for all of the tested materials is available online.

Zhong said the method could prove its worth as a rapid way for drug or other companies to narrow the range of nanoparticles they wish to put through more expensive, dedicated toxicology testing.

“Next, we hope to add environmental variables to the assays, for example, to mimic ultraviolet exposure or river water conditions in the solution to see how they affect toxicity,” she said. “We also want to study the biological mechanism by which some particles are toxic to worms.”

Here’s a citation for the paper and links to the paper and to the researchers’ website,

A multi-endpoint, high-throughput study of nanomaterial toxicity in Caenorhabditis elegans by Sang-Kyu Jung, Xiaolei Qu, Boanerges Aleman-Meza, Tianxiao Wang, Celeste Riepe, Zheng Liu, Qilin Li, and Weiwei Zhong. Environ. Sci. Technol., Just Accepted Manuscript DOI: 10.1021/es5056462 Publication Date (Web): January 22, 2015
Copyright © 2015 American Chemical Society

Nanomaterial effects on C. elegans

Home | Download | Tutorial | About

This heat map indicates whether a measurement for the nanomaterial-exposed worms is higher (yellow), or lower (blue) than the control worms. Black indicates no effects from nanomaterial exposure.

Clicking on colored blocks to see detailed experimental data.

The published paper is open access but you need an American Chemical Society site registration to access it. The researchers’ site is open access.

Nanoelectronics at the University of British Columbia (UBC located in Vancouver, Canada)

Hidden in a Jan. 9, 2014 University of British Columbia (UBC) announcement abut funding from Canada’s Natural Sciences and Engineering Research Council (NSERC) was some information about a nano electronics laboratory,

  • Flexible, efficient solar-battery nano-textile, led by Peyman Servati, funded for $514,000.
  • Bio-inspired soft epidermal and wearable nanofiber electronics for wireless health monitoring, led by Peyman Servati, funded for $516,000. [emphases mine]

Peryman Servati leads FEEL, the flexible electronics and energy lab according to his faculty bio page. The two FEEL project s listed in the announcement have received a total of $1.3* (corrected to $1.03M, Jan. 30, 2014) in funding, over 1/3* (it’s closer to 1/4; corrected Jan. 30, 2014)  of the $4.3M earmarked* (spelling corrected Jan. 30, 2014) for nine UBC projects. Here’s more about the lab’s current roster of four ‘research areas’ from the Research Projects webpage,

1. Transparent Electrodes for Photovoltaic (PV) Devices:

Solar energy, as a clean and renewable resource, is heavily untapped, mainly due to the high cost (>$2 per watt) and low conversion efficiency (~20% for silicon) of today’s PV devices. This project aims at reducing the manufacturing cost of PV devices, by finding a scalable transparent electrode for replacing metal fingers or indium tin oxide (ITO) electrodes of conventional devices. We deposit nanocomposite fibers (NFs) with embedded conductive nanotubes (NTs) and nanowires (NWs) using novel electrospinning process that provides multiscale ordering and alignment in the structure of the NF mesh, similar to veins of a leaf (below). The process is scalable to substrates including plastic, paper and fabric, in a roll-to-roll manufacturing system. Challenges for integration of the NF mesh with Si and thin-film PV panels are being investigated to achieve the required properties at low cost.

2. Nanowire (NW) Growth and Device Fabrication:

Semiconductor and metallic NWs have unique electrical and optical properties not present in the bulk. We grow different NWs with controlled morphology using chemical vapour deposition and other growth techniques. We also work on integration of these nanomaterials into large area electronic devices, including transistors, strain sensors, bio-sensors, photodetectors, and solar cells. Materials of interest include Si, Ge, ZnO, and GaAs.

3. Flexible Organic Solar Cells:

Organic semiconductors can be deposited at low temperature on a variety of substrates. We investigate the aging and annealing effects in these materials and how the morphology of these semiconductors and blends change with time. The goal is to improve efficiency and stability of these devices.

4. Modeling of Nanomaterials and Nanocomposites:

We investigate the electron transport and band structure of novel electronic materials such as nanowires, nanotubes and graphene using atomistic modeling and simulation. [emphasis mine] Our work points out the delicacy of the surface properties of silicon nanowires (NWs) (below) and the dependence of electronic properties on surface composition and reconstruction. In addition, we work on developing analytical models that connect properties of single nanostrucutres to the properties of materials and devices made by using a large number of these nanostrucutures.

My guess is that the two projects which have received money are being investigated via the lab’s four ‘research areas’.

I am glad to have found this nanoeletronics laboratory. Sadly, they’re not investigating the memristors which so fascinate me but I can now say with certainty that there’s at least one laboratory in Canada researching, the world’s currently trendiest nanomaterial, graphene.