Tag Archives: Graphene Flagship Project

Another day, another graphene centre in the UK as the Graphene flagship consortium’s countdown begins

The University of Cambridge has announced a Cambridge Graphene Centre due to open by the end of 2013 according to a Jan. 24, 2012 news item on Nanowerk,

The Cambridge Graphene Centre will start its activities on February 1st 2013, with a dedicated facility due to open at the end of the year. Its objective is to take graphene to the next level, bridging the gap between academia and industry. It will also be a shared research facility with state-of-the-art equipment, which any scientist researching graphene will have the opportunity to use.

The University of Cambridge Jan. 24, 2013 news release, which originated the news item, describes the plans for graphene research and commercialization,

The first job for those working in the Cambridge Graphene Centre will be to find ways of manufacturing and optimising graphene films, dispersions and inks so that it can be used to good effect.

Professor Andrea Ferrari, who will be the Centre’s Director, said: “We are now in the second phase of graphene research, following the award of the Nobel Prize to Geim and Novoselov. That means we are targeting applications and manufacturing processes, and broadening research to other two-dimensional materials and hybrid systems. The integration of these new materials could bring a new dimension to future technologies, creating faster, thinner, stronger, more flexible broadband devices.”

One such project, led by Dr Stephan Hofmann, a Reader and specialist in nanotechnology, will look specifically at the manufacturability of graphene and other, layered, 2D materials. At the moment, sheets of graphene that are just one atom thick are difficult to grow in a controllable manner, manipulate, or connect with other materials.

Dr Hofmann’s research team will focus on a growth method called chemical vapour deposition (CVD), which has already opened up other materials, such as diamond, carbon nanotubes and gallium nitride, to industrial scale production.

“The process technology will open up new horizons for nanomaterials, built layer by layer, which means that it could lead to an amazing range of future devices and applications,” Dr Hofmann said.

The Government funding for the Centre is complemented by strong industrial support, worth an additional £13 million, from over 20 partners, including Nokia, Dyson, Plastic Logic, Philips and BaE systems. A further £11M of European Research Council funding will support activities with the Graphene Institute in Manchester, and Lancaster University. [emphasis mine]

Its work will focus on taking graphene from a state of raw potential to a point where it can revolutionise flexible, wearable and transparent electronics. The Centre will target the manufacture of graphene on an industrial scale, and applications in the areas of flexible electronics, energy, connectivity and optoelectronics.

Professor Yang Hao, of Queen Mary, University of London, will lead Centre activities targeting connectivity, so that graphene can be integrated into networked devices, with the ultimate vision of creating an “internet of things”.

Professor Clare Grey, from Cambridge’s Department of Chemistry, will lead the activities targeting the use of graphene in super-capacitors and batteries for energy storage. The research could, ultimately, provide a more effective energy storage for electric vehicles, storage on the grid, as well as boosting the energy storage possibilities of personal devices such as MP3 players and mobile phones.

The announcement of a National Graphene Institute in Manchester was mentioned in my Jan. 14, 2013 posting and both the University of Manchester and the Lancaster University are part of the Graphene Flagship consortium along with the University of Cambridge and Sweden’s Chalmers University, which is the lead institution, and others competing against three other Flagship projects for one of two 1B Euro prizes.

These two announcements (Cambridge Graphene Centre and National Graphene Institute come at an interesting time, the decision as to which two projects will receive 1B Euros for research is being announced Jan. 28, 2013 in Brussels, Belgium. The Jan. 15, 2013 article by Frank Jordans on the R&D website provides a few more details,

Teams of scientists from across the continent [Europe] are vying for a funding bonanza that could see two of them receive up to €1 billion ($1.33 billion) over 10 years to keep Europe at the cutting edge of technology.

The contest began with 26 proposals that were whittled down to six last year. Just four have made it to the final round.

They include a plan to develop digital guardian angels that would keep people safe from harm; a massive data-crunching machine to simulate social, economic and technological change on our planet; an effort to craft the most accurate computer model of the human brain to date; and a team working to find better ways to produce and employ graphene—an ultra-thin material that could revolutionize manufacturing of everything from airplanes to computer chips.

Jordans’ article goes on to further explain the reasoning for this extraordinary contest. All four groups must be highly focused on Monday’s (Jan. 28, 2013) announcement from EU (European Union) officials, after all, two prizes and four competitors means that the odds of winning are 50/50. Good luck!

National Graphene Institute at the UK’s University of Manchester

It will house the UK’s graphene research efforts according to the Jan. 14, 2013 news item Nanowerk,

This is the first glimpse of the new £61m research institute into wonder material graphene, which is to be built at The University of Manchester.

The stunning, glass-fronted National Graphene Institute (NGI) will be the UK’s home of research into the world’s thinnest, strongest and most conductive material, providing the opportunity for researchers and industry to work together on a huge variety of potential applications.

The University of Manchester Jan. 14, 2013 news release, which originated the news item, spells out some of the hopes and dreams along with descriptions of the building plans,

It is hoped the centre will initially create around 100 jobs, with the long-term expectation of many thousands more in the North West and more widely in the UK.

The 7,600 square metre building will house state-of-the-art facilities, including two ‘cleanrooms’ – one which will take up the whole of the lower ground floor – where scientists can carry out experiments and research without contamination.

The Institute will also feature a 1,500 square metre research lab for University of Manchester graphene scientists to collaborate with their colleagues from industry and other UK universities.

Funding for the NGI will come from £38m from the Government, as part of £50m allocated for graphene research, and the University has applied for £23m from the European Research and Development Fund (ERDF). The NGI will operate as a ‘hub and spoke’ model, working with other UK institutions involved in graphene research.

Some of the world’s leading companies are also expected to sign up to work at the NGI, where they will be offered the chance to work on cutting edge projects, across various sectors, with Nobel Laureates and other leading members of the graphene team.

Graphene, isolated for the first time at The University of Manchester by Professor Andre Geim and Professor Kostya Novoselov in 2004, has the potential to revolutionise a huge number of diverse applications; from smartphones and ultrafast broadband to drug delivery and computer chips.


Professor Colin Bailey, Vice-President and Dean of the Faculty of Engineering and Physical Sciences, added: “The National Graphene Institute will be the world’s leading centre of graphene research, combining the expertise of University of Manchester academics with their counterparts at other UK universities and with leading global commercial organisations.

“The potential for its impact on the city and the North West is huge, and will be one of the most exciting centres of cutting edge research in the UK.”

Work is set to start on the five-story NGI, which will have its entrance on Booth Street East, in March, and is expected to be completed in early 2015.

UK National Graphene Institute (NGI) Illustration courtesy of the University of Manchester, UK

UK National Graphene Institute (NGI) Illustration courtesy of the University of Manchester, UK

The University of Manchester is one of the institutions that forms the Graphene Flagship consortium which is currently competing for one of two European Union prizes of 1 Billion Euros for research to be awarded later this year.

British royalty and graphene

The UK’s graphene campaign is relentless (my most recent, previous comment on it was in a Feb. 6, 2012 posting). Now, they’ve brought royalty to the University of Manchester, according to a Feb. 20, 2012 news item by Cameron Chai on Azonano,

His Royal Highness, The Duke of York has made a visit to the University of Manchester to understand more about graphene and its commercializing research.

The original Feb. 17, 2012 news release from the University of Manchester about Prince Andrew’s visit notes,

In the afternoon, the Prince was invited to the Innovation Centre and met UMI3 CEO, Clive Rowland.   His Royal Highness visited UMI3 as part of his desire to see that the UK is recognised as the best place in the world for Science and Engineering.

[Clive said] “He is keen to see the University continue to develop its capabilities in this regard and promote its successes and products internationally. He is extremely enthusiastic about the potential of graphene and interested in the different applications and routes to market for it.

Given that the University of Manchester is part of a consortium competing for a 1 billion Euro funding prize for the GRAPHENE-CA FET (Future and Emerging Technologies) flagship project, this campaign is fascinating to observe. The question that arises: If this is what we can observe, what can they be doing behind closed doors?

UK rolls dice on glamourous graphene

These days, graphene is the glamourpuss (a US slang term from the 1940s for which I have great affection) of the nanoscience/nanotechnology research world and is an international ‘object of desire’. For example, the UK government just announced a GBP 50 M investment in graphene research. From the Feb. 2, 2012 news item on Nanowerk,

Minister for Universities and Science, David Willetts, said: “This significant investment in graphene will drive growth and innovation, create high-tech jobs and keep the UK at the very forefront of this rapidly evolving area of science. With a Nobel Prize and hundreds of published papers under their belts, scientists in the UK have already demonstrated that we have real strengths in this area. The graphene hub will build on this by taking this research through to commercial success.”

A key element of the graphene hub will be a national institute of graphene research and commercialisation activities. The University of Manchester has been confirmed as the single supplier invited to submit a proposal for funding a new £45 million national institute, £38 million of which will be provided by the UK Government. This world-class shared facility for graphene research and commercialisation activities will be accessible by both researchers and business.

I’d never really heard about graphene until 2010 when Andre Geim and Konstantin Novoselov at the University of Manchester won the Nobel Prize in Physics for their work in graphene. (In 2012, both scientists were knighted and I could have referred to them as Sir Geim and Sir Novoselov.) Since that time money has been flowing towards graphene research. As far as I can tell this GBP 50 M is the tip of the iceberg.

The University of Manchester and other institutions in the UK are part of an international consortium competing for a 1 billion Euro research prize through the European Union’s Future and Emerging Technologies (FET) programme. (I have a bit more about the FET competition in my June 13, 2011 posting.)

There does seem to be some jockeying for position. First, the graphene consortium is currently competing for the FET money as the Graphene Flagship. Only two of six competing flagships will receive money for further research. Should the consortium’s flagship be successful, there will be six member countries competing for a share of that 1 billion Euro prize. The UK is represented by three research institutions (University of Manchester, Lancaster University, and the University of Cambridge) while every other country in the graphene consortium is represented by one research institution.

The decision as to which two FET flagship projects receive the funding will be made public in late 2012. Meanwhile, the UK not only announces this latest funding but last fall also launched a big graphene exhibition, anchored by the three UK universities in the consortium,  in Warsaw. I wrote about that development in my Nov. 25, 2011 posting and questioned the communication strategy. It’s taken me a while but I’m beginning to realize that this was likely part of a larger political machination designed to ensure UK dominance in graphene research and, I imagine they dearly hope this will be true, commercialization.

ETA Feb. 6, 2012: Dexter Johnson at the Nanoclast blog (on the Institute of Electrical and Electronics Engineers [IEEE] website) noted this about the UK and commercializing graphene in the electronics industry in his Feb. 3, 2012 posting,

The press release emphasizes how “The graphene hub will build on this [investment] by taking this research through to commercial success.” So I was wondering if there would be any discussion of how they intended to build up an electronics industry that it never really had in the first place to exploit the material.

Brits go for the graphene gusto in Warsaw but where are the Swedes?

The Universities of Cambridge, Manchester, and Lancaster (all in the UK) have launched an exhibition extolling graphene in Warsaw (Poland). From the Nov. 25, 2011 news item on physorg.com,

The European programme for research into graphene, for which the Universities of Cambridge, Manchester and Lancaster are leading the technology roadmap, today unveiled an exhibition and new videos communicating the potential for the material that could revolutionise the electronics industries. [emphasis mine]

I’m a little confused as I thought the Swedish partner was either the leader or one of the lead partners.

I found this Nov. 24, 2011 news release from the University of Cambridge where the announcement was made,

An exhibition has been launched in Warsaw today highlighting the development and future of graphene, the ‘wonder substance’ set to change the face of electronics manufacturing, as part of the Graphene Flagship Pilot (GFP), aimed at developing the proposal for a 1 billion European programme conducting research and development on graphene, for which the Universities of Cambridge, Manchester and Lancaster are leading the technology roadmap.

The exhibition covers the development of the material, the present research and the vast potential for future applications. The GFP also released two videos aimed at introducing this extraordinary material to a wider audience, ranging from stakeholders and politicians to the general public. The videos also convey the mission and vision of the graphene initiative.

“Our mission is to take graphene and related layered materials from a state of raw potential to a point where they can revolutionise multiple industries – from flexible, wearable and transparent electronics to high performance computing and spintronics” says Professor Andrea Ferrari, Head of the Nanomaterials and Spectroscopy Group.

“This material will bring a new dimension to future technology – a faster, thinner, stronger, flexible, and broadband revolution. Our program will put Europe firmly at the heart of the process, with a manifold return on the investment of 1 billion Euros, both in terms of technological innovation and economic exploitation.”

Graphene, a single layer of carbon atoms, could prove to be the most versatile substance available to mankind. Stronger than diamond, yet lightweight and flexible, graphene enables electrons to flow much faster than silicon. It is also a transparent conductor, combining electrical and optical functionalities in an exceptional way.

This is connected to the European Union’s FET11 flagship projects initiative (described at more length in my June 13, 2011 graphene roundup posting) where six different research areas have been funded in preparation for a major funding round in late 2012 when two research projects will  be selected for a prize of 1B Euros each.

I find the communications strategy mildly confusing since the original project team listed Jari Kinaret of Chalmers University of Technology in Sweden (as highlighted in my Nov. 9, 2011 posting about funding for the Swedish effort with no mention of the other partners). The flagship group appears to be working both cooperatively and separately on the same project.

I did get a little curious as to the membership for this graphene research group (consortium) and found this,

1  CHALMERS UNIVERSITY OF TECHNOLOGY, Sweden

2  THE UNIVERSITY OF MANCHESTER,  United Kingdom

3  LANCASTER UNIVERSITY, United Kingdom

4  THE UNIVERSITY OF CAMBRIDGE, United Kingdom

5  AMO GMBH, Germany

6  CATALAN INSTITUTE OF NANOTECHNOLOGY, Spain

7  NATIONAL RESEARCH COUNCIL OF ITALY, Italy

8  NOKIA OYJ, Finland

9  EUROPEAN SCIENCE FOUNDATION, France

You can find more information about the Graphene Flagship Project here although they don’t appear to update the information very frequently.