Tag Archives: green chemistry

Are copper nanoparticles good candidates for synthesizing medicine?

This research appears to be a collaboration between Russian and Indian scientists. From a December 5, 2017 news item on Nanowerk (Note: A link has been removed),

Chemists of Ural Federal University with colleagues from India proved the effectiveness of copper nanoparticles as a catalyst on the example of analysis of 48 organic synthesis reactions (Coordination Chemistry Reviews, “Copper nanoparticles as inexpensive and efficient catalyst: A valuable contribution in organic synthesis”).

One of the advantages of the catalyst is its insolubility in traditional organic solvents. This makes copper nanoparticles a valuable alternative to heavy metal catalysts, for example palladium, which is currently used for the synthesis of many pharmaceuticals and is toxic for cells.

“Copper nanoparticles are an ideal variant of a heterophasic catalyst, since they exist in a wide variety of geometric shapes and sizes, which directly affects the surface of effective mass transfer, so reactions in the presence of this catalyst are characterized by shorter reaction times, selectivity and better yields,” says co-author Grigory Zyryanov, Doctor of Chemistry, Associate Professor of the Department of Organic and Biomolecular Chemistry of UrFU.

A December 11, 2017 (there can be a gap between distributing a press release and posting it on the home website) Ural Federal University press release, which originated the news item, makes the case for copper nanoparticles as catalytic agents,

Copper nanoparticles are inexpensive since there are many simple ways to obtain them from cheap raw materials and these methods are constantly being modified. As a result, it is possible to receive a highly porous structure of catalyst based on copper nanoparticles with a pore size of several tens to several hundred nanometers. Due to the small particle size, the area of the catalytic surface is enormous. Moreover, due to the insolubility of copper nanoparticles, the reactions catalyzed by them go on the surface of the catalyst. After the reaction is completed, the copper nanoparticles that do not interact with the solvents are easily removed, which guarantees the absence of the catalyst admixture in the composition of the final product. These catalysts are already in demand for organic synthesis by the methods of “green chemistry”. Its main principles are simplicity, cheapness, safety of production, recyclability of the catalysts.

One of the promising areas of application of the copper nanoparticle catalyst is, first of all, the creation of medical products using cross-coupling reactions. In 2010, for work in the field of palladium catalyzed cross-coupling reactions, the Nobel Prize in Chemistry was awarded to scientists from Japan and the USA: Richard Heck, Ei-ichi Negishi and Akira Suzuki. Despite worldwide recognition, palladium catalyzed cross-coupling reactions are undesirable for the synthesis of most medications due to the toxicity of palladium for living cells and the lack of methods for reliable removal of palladium traces from the final product. In addition to toxicity, the high cost of catalysts based on palladium, as well as another catalyst for pharmaceuticals, platinum, makes the use of copper nanoparticles economically and environmentally justified.

Here’s a link to and a citation for the paper,

Copper nanoparticles as inexpensive and efficient catalyst: A valuable contribution in organic synthesis by Nisha Kant Ojha, Grigory V. Zyryanov, Adinath Majee, Valery N. Charushin, Oleg N. Chupakhin, Sougata Santra. Coordination Chemistry Reviews Volume 353, 15 December 2017, Pages 1-57 https://doi.org/10.1016/j.ccr.2017.10.004

This paper is behind a paywall.

Refining metals more sustainably

We don’t just extract and refine metals from the earth, increasingly, we extract and refine them from consumer goods. Researchers from McGill University (Montréal, Québec, Canada) have devised a ‘greener’ technique to do this. From a June 7, 2017 McGill University news release (received via email and also on EurekAlert),

A team of chemists in Canada has developed a way to process metals without using toxic solvents and reagents.

The system, which also consumes far less energy than conventional techniques, could greatly shrink the environmental impact of producing metals from raw materials or from post-consumer electronics.

“At a time when natural deposits of metals are on the decline, there is a great deal of interest in improving the efficiency of metal refinement and recycling, but few disruptive technologies are being put forth,” says Jean-Philip Lumb, an associate professor in McGill University’s Department of Chemistry. “That’s what makes our advance so important.”

The discovery stems from a collaboration between Lumb and Tomislav Friscic at McGill in Montreal, and Kim Baines of Western University in London, Ont. In an article published recently in Science Advances, the researchers outline an approach that uses organic molecules, instead of chlorine and hydrochloric acid, to help purify germanium, a metal used widely in electronic devices. Laboratory experiments by the researchers have shown that the same technique can be used with other metals, including zinc, copper, manganese and cobalt.

The research could mark an important milestone for the “green chemistry” movement, which seeks to replace toxic reagents used in conventional industrial manufacturing with more environmentally friendly alternatives. Most advances in this area have involved organic chemistry – the synthesis of carbon-based compounds used in pharmaceuticals and plastics, for example.

“Applications of green chemistry lag far behind in the area of metals,” Lumb says. “Yet metals are just as important for sustainability as any organic compound. For example, electronic devices require numerous metals to function.”

Taking a page from biology

There is no single ore rich in germanium, so it is generally obtained from mining operations as a minor component in a mixture with many other materials. Through a series of processes, that blend of matter can be reduced to germanium and zinc.

“Currently, in order to isolate germanium from zinc, it’s a pretty nasty process,” Baines explains. The new approach developed by the McGill and Western chemists “enables you to get germanium from zinc, without those nasty processes.”

To accomplish this, the researchers took a page from biology. Lumb’s lab for years has conducted research into the chemistry of melanin, the molecule in human tissue that gives skin and hair their color. Melanin also has the ability to bind to metals. “We asked the question: ‘Here’s this biomaterial with exquisite function, would it be possible to use it as a blueprint for new, more efficient technologies?'”

The scientists teamed up to synthesize a molecule that mimics some of the qualities of melanin. In particular, this “organic co-factor” acts as a mediator that helps to extract germanium at room temperature, without using solvents.

Next step: industrial scale

The system also taps into Friscic’s expertise in mechanochemistry, an emerging branch of chemistry that relies on mechanical force – rather than solvents and heat – to promote chemical reactions. Milling jars containing stainless-steel balls are shaken at high speeds to help purify the metal.

“This shows how collaborations naturally can lead to sustainability-oriented innovation,” Friscic says. “Combining elegant new chemistry with solvent-free mechanochemical techniques led us to a process that is cleaner by virtue of circumventing chlorine-based processing, but also eliminates the generation of toxic solvent waste”

The next step in developing the technology will be to show that it can be deployed economically on industrial scales, for a range of metals.

“There’s a tremendous amount of work that needs to be done to get from where we are now to where we need to go,” Lumb says. “But the platform works on many different kinds of metals and metal oxides, and we think that it could become a technology adopted by industry. We are looking for stakeholders with whom we can partner to move this technology forward.”

Here’s a link to and a citation for the paper,

A chlorine-free protocol for processing germanium by Martin Glavinovic, Michael Krause, Linju Yang, John A. McLeod, Lijia Liu, Kim M. Baines, Tomislav Friščić, and Jean-Philip Lumb. Science Advances 05 May 2017: Vol. 3, no. 5, e1700149 DOI: 10.1126/sciadv.1700149

This paper is open access.

ETA June 9, 2017 at 1700 hours PDT: I have to give them marks for creativity. Here’s the image being used to illustrate the work,

Caption: Strategy for reducing the environmental impact of a refining process: replace hazardous chemicals with more benign and recyclable compounds. Credit: Michael J. Krause (Western University)

nano tech 2017 being held in Tokyo from February 15-17, 2017

I found some news about the Alberta technology scene in the programme for Japan’s nano tech 2017 exhibition and conference to be held Feb. 15 – 17, 2017 in Tokyo. First, here’s more about the show in Japan from a Jan. 17, 2017 nano tech 2017 press release on Business Wire (also on Yahoo News),

The nano tech executive committee (chairman: Tomoji Kawai, Specially Appointed Professor, Osaka University) will be holding “nano tech 2017” – one of the world’s largest nanotechnology exhibitions, now in its 16th year – on February 15, 2017, at the Tokyo Big Sight convention center in Japan. 600 organizations (including over 40 first-time exhibitors) from 23 countries and regions are set to exhibit at the event in 1,000 booths, demonstrating revolutionary and cutting edge core technologies spanning such industries as automotive, aerospace, environment/energy, next-generation sensors, cutting-edge medicine, and more. Including attendees at the concurrently held exhibitions, the total number of visitors to the event is expected to exceed 50,000.

The theme of this year’s nano tech exhibition is “Open Nano Collaboration.” By bringing together organizations working in a wide variety of fields, the business matching event aims to promote joint development through cross-field collaboration.

Special Symposium: “Nanotechnology Contributing to the Super Smart Society”

Each year nano tech holds Special Symposium, in which industry specialists from top organizations from Japan and abroad speak about the issues surrounding the latest trends in nanotech. The themes of this year’s Symposium are Life Nanotechnology, Graphene, AI/IoT, Cellulose Nanofibers, and Materials Informatics.

Notable sessions include:

Life Nanotechnology
“Development of microRNA liquid biopsy for early detection of cancer”
Takahiro Ochiya, National Cancer Center Research Institute Division of Molecular and Cellular Medicine, Chief

AI / IoT
“AI Embedded in the Real World”
Hideki Asoh, AIST Deputy Director, Artificial Intelligence Research Center

Cellulose Nanofibers [emphasis mine]
“The Current Trends and Challenges for Industrialization of Nanocellulose”
Satoshi Hirata, Nanocellulose Forum Secretary-General

Materials Informatics
“Perspective of Materials Research”
Hideo Hosono, Tokyo Institute of Technology Professor

View the full list of sessions:
>> http://nanotech2017.icsbizmatch.jp/Presentation/en/Info/List#main_theater

nano tech 2017 Homepage:
>> http://nanotechexpo.jp/

nano tech 2017, the 16th International Nanotechnology Exhibition & Conference
Date: February 15-17, 2017, 10:00-17:00
Venue: Tokyo Big Sight (East Halls 4-6 & Conference Tower)
Organizer: nano tech Executive Committee, JTB Communication Design

As you may have guessed the Alberta information can be found in the .Cellulose Nanofibers session. From the conference/seminar program page; scroll down about 25% of the way to find the Alberta presentation,

Production and Applications Development of Cellulose Nanocrystals (CNC) at InnoTech Alberta

Behzad (Benji) Ahvazi
InnoTech Alberta Team Lead, Cellulose Nanocrystals (CNC)

[ Abstract ]

The production and use of cellulose nanocrystals (CNC) is an emerging technology that has gained considerable interest from a range of industries that are working towards increased use of “green” biobased materials. The construction of one-of-a-kind CNC pilot plant [emphasis mine] at InnoTech Alberta and production of CNC samples represents a critical step for introducing the cellulosic based biomaterials to industrial markets and provides a platform for the development of novel high value and high volume applications. Major key components including feedstock, acid hydrolysis formulation, purification, and drying processes were optimized significantly to reduce the operation cost. Fully characterized CNC samples were provided to a large number of academic and research laboratories including various industries domestically and internationally for applications development.

[ Profile ]

Dr. Ahvazi completed his Bachelor of Science in Honours program at the Department of Chemistry and Biochemistry and graduated with distinction at Concordia University in Montréal, Québec. His Ph.D. program was completed in 1998 at McGill Pulp and Paper Research Centre in the area of macromolecules with solid background in Lignocellulosic, organic wood chemistry as well as pulping and paper technology. After completing his post-doctoral fellowship, he joined FPInnovations formally [formerly?] known as PAPRICAN as a research scientist (R&D) focusing on a number of confidential chemical pulping and bleaching projects. In 2006, he worked at Tembec as a senior research scientist and as a Leader in Alcohol and Lignin (R&D). In April 2009, he held a position as a Research Officer in both National Bioproducts (NBP1 & NBP2) and Industrial Biomaterials Flagship programs at National Research Council Canada (NRC). During his tenure, he had directed and performed innovative R&D activities within both programs on extraction, modification, and characterization of biomass as well as polymer synthesis and formulation for industrial applications. Currently, he is working at InnoTech Alberta as Team Lead for Biomass Conversion and Processing Technologies.

Canada scene update

InnoTech Alberta was until Nov. 1, 2016 known as Alberta Innovates – Technology Futures. Here’s more about InnoTech Alberta from the Alberta Innovates … home page,

Effective November 1, 2016, Alberta Innovates – Technology Futures is one of four corporations now consolidated into Alberta Innovates and a wholly owned subsidiary called InnoTech Alberta.

You will find all the existing programs, services and information offered by InnoTech Alberta on this website. To access the basic research funding and commercialization programs previously offered by Alberta Innovates – Technology Futures, explore here. For more information on Alberta Innovates, visit the new Alberta Innovates website.

As for InnoTech Alberta’s “one-of-a-kind CNC pilot plant,” I’d like to know more about it’s one-of-a-kind status since there are two other CNC production plants in Canada. (Is the status a consequence of regional chauvinism or a writer unfamiliar with the topic?). Getting back to the topic, the largest company (and I believe the first) with a CNC plant was CelluForce, which started as a joint venture between Domtar and FPInnovations and powered with some very heavy investment from the government of Canada. (See my July 16, 2010 posting about the construction of the plant in Quebec and my June 6, 2011 posting about the newly named CelluForce.) Interestingly, CelluForce will have a booth at nano tech 2017 (according to its Jan. 27, 2017 news release) although the company doesn’t seem to have any presentations on the schedule. The other Canadian company is Blue Goose Biorefineries in Saskatchewan. Here’s more about Blue Goose from the company website’s home page,

Blue Goose Biorefineries Inc. (Blue Goose) is pleased to introduce our R3TM process. R3TM technology incorporates green chemistry to fractionate renewable plant biomass into high value products.

Traditionally, separating lignocellulosic biomass required high temperatures, harsh chemicals, and complicated processes. R3TM breaks this costly compromise to yield high quality cellulose, lignin and hemicellulose products.

The robust and environmentally friendly R3TM technology has numerous applications. Our current product focus is cellulose nanocrystals (CNC). Cellulose nanocrystals are “Mother Nature’s Building Blocks” possessing unique properties. These unique properties encourage the design of innovative products from a safe, inherently renewable, sustainable, and carbon neutral resource.

Blue Goose assists companies and research groups in the development of applications for CNC, by offering CNC for sale without Intellectual Property restrictions. [emphasis mine]

Bravo to Blue Goose! Unfortunately, I was not able to determine if the company will be at nano tech 2017.

One final comment, there was some excitement about CNC a while back where I had more than one person contact me asking for information about how to buy CNC. I wasn’t able to be helpful because there was, apparently, an attempt by producers to control sales and limit CNC access to a select few for competitive advantage. Coincidentally or not, CelluForce developed a stockpile which has persisted for some years as I noted in my Aug. 17, 2016 posting (scroll down about 70% of the way) where the company announced amongst other events that it expected deplete its stockpile by mid-2017.

Should nanotechnology take its cue from green chemistry?

An editorial by John C. Warner for Green Chemistry Letters and Review suggests that nanotechnology should take its cue from green chemistry research (from a Taylor & Francis Publishing Oct. 27, 2016 press release [received via email]),

Warner is the President and Chief Technology Officer at the Warner Babcock Institute for Green Chemistry, and often whilst touring visitors around the campus finds himself posed with the question “do you work in nanotechnology?”, perhaps linked to the association between high-tech materials science and this area.

He feels that a new science such as nanotechnology is much like a new child trying to learn their native language. Whilst the basic understanding of the language is present to form sentences relating quite complex ideas, the structural understanding of the grammar is not. Soon the child will, somewhat ironically, start using verbs, nouns, and adjectives to learn about verbs, nouns, and adjectives!

He feels that the same can be said for nanotechnology, as often the instrumentation and tools used to study nanomaterials are constructed using nanostructures, and by understanding the rules governing their behaviour, so the scientific field can advance.

In such a new field, he feels that bringing in ideas from green chemistry will help words like ‘safety’ and ‘toxicity’ become embedded in the vocabulary of nanotechnology. This is critical to avoid creating materials and processes that have negative consequences – not only being unethical but also slowing the rate of progress in the field.

Warner makes some interesting points but I suspect his ‘child’ analogy works better in speech than in text.

Here’s a link and a citation for the editorial,

Purpose and intent at the intersection of nanotechnology and green chemistry by John C. Warner.  Green Chemistry Letters and Reviews
Volume 9, 2016 – Issue 4 Pages 208-209 Published online: 27 Sep 2016

This is open access.

Discovering why nanoscale gold has catalytic properties

Gold’s glitter may have inspired poets and triggered wars, but its catalytic prowess has helped make chemical reactions greener and more efficient. (Image courtesy of iStock/sbayram) [downloaded from http://www1.lehigh.edu/news/scientists-uncover-secret-gold%E2%80%99s-catalytic-powers

Gold’s glitter may have inspired poets and triggered wars, but its catalytic prowess has helped make chemical reactions greener and more efficient. (Image courtesy of iStock/sbayram) [downloaded from http://www1.lehigh.edu/news/scientists-uncover-secret-gold%E2%80%99s-catalytic-powers

A Sept. 27, 2016 news item on phys.org describes a discovery made by scientists at Lehigh University (US),

Settling a decades-long debate, new research conclusively shows that a hierarchy of active species exists in gold on iron oxide catalysis designed for low temperature carbon monoxide oxidation; Nanoparticles, sub-nanometer clusters and dispersed atoms—as well as how the material is prepared—are all important for determining catalytic activity.

A Sept. 27, 2016 Lehigh University news release by Lori Friedman, which originated the news item, provides more information about the discovery that gold nanoparticles can be used in catalysis and about the discovery of why that’s possible,

Christopher J. Kiely calls the 1982 discovery by Masatake Haruta that gold (Au) possessed a high level of catalytic activity for carbon monoxide (CO) oxidation when deposited on a metal-oxide “a remarkable turn of events in nanotechnology”—remarkable because gold had long been assumed to be inert for catalysis.

Haruta showed that gold dispersed on iron oxide effectively catalyzed the conversion of harmful carbon monoxide into more benign carbon dioxide (CO2) at room temperatures—a reaction that is critical for the construction of fire fighters’ breathing masks and for removal of CO from hydrogen feeds for fuel cells. In fact, today gold catalysts are being exploited in a major way for the greening of many important reactions in the chemical industry, because they can lead to cleaner, more efficient reactions with fewer by-products.

Haruta and Graham J. Hutchings, who co-discovered the use of gold as a catalyst for different reactions, are noted as Thompson Reuters Citation Laureates and appear annually on the ScienceWatch Nobel Prize prediction list. Their pioneering work opened up a new area of scientific inquiry and kicked off a decades-long debate about which type of supported gold species are most effective for the CO oxidation reaction.

In 2008, using electron microscopy technology that was not yet available in the 1980s and ’90 s, Hutchings, the director of the Cardiff Catalysis Institute at Cardiff University worked with Kiely, the Harold B. Chambers Senior Professor Materials Science and Engineering at Lehigh, examined the structure of supported gold at the nanoscale. One nanometer (nm) is equal to one one-billionth of a meter or about the diameter of five atoms.

Using what was then a rare piece of equipment—Lehigh’s aberration-corrected JEOL 2200 FS scanning transmission electron microscope (STEM)—the team identified the co-existence of three distinct gold species: facetted nanoparticles larger than one nanometer in size, sub-clusters containing less than 20 atoms and individual gold atoms strewn over the support. Because only the larger gold nanoparticles had previously been detected, this created debate as to which of these species were responsible for the good catalytic behavior.

Haruta, professor of applied chemistry at Tokyo Metropolitan University, Hutchings and Kiely have been working collaboratively on this problem over recent years and are now the first to demonstrate conclusively that it is not the particles or the individual atoms or the clusters which are solely responsible for the catalysis—but that they all contribute to different degrees. Their results have been published in an article in Nature Communications titled: “Population and hierarchy of active species in gold iron oxide catalysts for carbon monoxide oxidation.”

“All of the species tend to co-exist in conventionally prepared catalysts and show some level of activity,” says Kiely. “They all do something—but some less efficiently than others.”

Their research revealed the sub-nanometer clusters and 1-3nm nanoparticles to be the most efficient for catalyzing this CO oxidation reaction, while larger particles were less so and the atoms even less.  Nevertheless, Kiely cautions, all the species present need to be considered to fully explain the overall measured activity of the catalyst.

Among the team’s other key findings: the measured activity of gold on iron oxide catalysts is exquisitely dependent on exactly how the material is prepared. Very small changes in synthesis parameters  influence the relative proportion and spatial distribution of these various Au species on the support material and thus have a big impact on its overall catalytic performance.

A golden opportunity

Building on their earlier work (published in a 2008 Science article), the team sought to find a robust way to quantitatively analyze the relative population distributions of nanoparticles of various sizes, sub-nm clusters and highly dispersed atoms in a given gold on iron oxide sample. By correlating this information with catalytic performance measurements, they then hoped to determine which species distribution would be optimal to produce the most efficient catalyst, in order to utilize the precious gold component in the most cost effective way.

Ultimately, it was a catalyst synthesis problem the team faced that offered them a golden opportunity to do just that.

During the collaboration, Haruta’s and Hutchings’ teams each prepared gold on iron oxide samples in their home labs in Tokyo and Cardiff. Even though both groups nominally utilized the same ‘co-precipitation’ synthesis method, it turned out that a final heat treatment step was beneficial to the catalytic performance for one set of materials but detrimental to the other. This observation provided a fascinating scientific conundrum that detailed electron microscopy studies performed by Qian He, one of Kiely’s PhD students at the time, was key to solving. Qian He is now a University Research Fellow at Cardiff University leading their electron microscopy effort.

“In the end, there were subtle differences in the order and speed in which each group added in their ingredients while preparing the material,” explains He. “When examined under the electron microscope, it was clear that the two slightly different methods produced quite different distributions of particles, clusters and dispersed atoms on the support.”

“Very small variations in the preparation route or thermal history of the sample can alter the relative balance of supported gold nanoparticles-to-clusters-to-atoms in the material and this manifests itself in the measured catalytic activity,” adds Kiely.

The group was able to compare this set of materials and correlate the Au species distributions with catalytic performance measurements, ultimately identifying the species distribution that was associated with greater catalytic efficiency.

Now that the team has identified the catalytic activity hierarchy associated with these supported gold species, the next step, says Kiely, will be to modify the synthesis method to positively influence that distribution to optimize the catalyst performance while making the most efficient use of the precious gold metal content.

“As a next stage to this study we would like to be able to observe gold on iron oxide materials in-situ within the electron microscope while the reaction is happening,” says Kiely.

Once again, it is next generation microscopy facilities that may hold the key to fulfilling gold’s promise as a pivotal player in green technology.

Despite the link to the paper already in the news release, here’s one that includes a citation,

Identification of Active Gold Nanoclusters on Iron Oxide Supports for CO Oxidation by Andrew A. Herzing, Christopher J. Kiely, Albert F. Carley, Philip Landon, Graham J. Hutchings. Science  05 Sep 2008: Vol. 321, Issue 5894, pp. 1331-1335 DOI: 10.1126/science.1159639

This paper is currently behind a paywall but, if you can wait one year, free access can be gained if you register (for free) with Science.

Cellulosic nanomaterials in automobile parts and a CelluForce update

The race to find applications for cellulosic nanomaterials continues apace. The latest entrant is from Clemson University in South Carolina (US). From a July 27, 2016 news item on Nanowerk,

Trees that are removed during forest restoration projects could find their way into car bumpers and fenders as part of a study led by Srikanth Pilla of Clemson University.

Pilla is collaborating on the study with researchers from the USDA Forest Service’s Forest Products Laboratory in Madison, Wisconsin.

The Madison researchers are converting some of those trees into liquid suspensions of tiny rod-like structures with diameters 20,000 times smaller than the width of a human hair. Pilla is using these tiny structures, known as cellulosic nanomaterials, to develop new composite materials that could be shaped into automotive parts with improved strength.

The auto parts would also be biorenewable, which means they could go to a composting facility instead of a landfill when their time on the road is done. The research could help automakers meet automotive recycling regulations that have been adopted in Europe and could be on the way to the United States.

Pilla, an assistant professor in the Department of Automotive Engineering at Clemson University, wants to use the composite materials he is creating to make bumpers and fenders that will be less likely to distort or break on impact.

“They will absorb the energy and just stay intact,” he said. “You won’t have to replace them because there will be no damage at all. Parts made with current materials might resist one impact. These will resist three or four impacts.”

A July 27, 2016 Clemson University media release, which originated the news item, describes the project and the reason for the support provides an interesting view of the politics behind the science (Note: A link has been removed),

The U.S. Department of the Agriculture’s National Institute of Food and Agriculture is funding the $481,000 research project for five years. Pilla’s research will be based out of the Clemson University International Center for Automotive Research in Greenville, South Carolina.

Craig Clemons, a materials research engineer at the Forest Products Laboratory and co-principal investigator on the project, said that the Forest Service wants to find large-volume uses for cellulosic nanomaterials.

“We find appropriate outlets for all kinds of forest-derived materials,” he said. “In this case, it’s cellulosic nanomaterials. We’re trying to move up the value chain with the cellulosic nanomaterials, creating high-value products out of what could otherwise be low-value wood. We’ll be producing the cellulosic nanomaterials, which are the most fundamental structural elements that you can get out of wood and pulp fibers. We’ll also be lending our more than 25 years of experience in creating composites from plastics and wood-derived materials to the project.”

The research is environmentally friendly from start to finish.

The cellulosic nanomaterials could come from trees that are removed during forest restoration projects. Removing this material from the forests helps prevent large, catastrophic wildfires. Researchers will have no need to cut down healthy trees that could be used for other purposes, Pilla said.

Ted Wegner, assistant director at the Forest Products Laboratory, said, “The use of cellulosic nanomaterials will help meet the needs of people for sustainable, renewable and lightweight products while helping to improve the health and condition of America’s forests. The United States possesses abundant forest resources and the infrastructure to support a large cellulosic nanomaterials industry. Commercialization of cellulosic nanomaterials has the potential to create jobs, especially in rural America.”

One of the technical challenges Pilla and Clemons face in their work is combining the water-friendly cellulosic nanomaterials with the water-unfriendly polymers. They will need to show that the material can be mass produced because automakers need to make thousands of parts.

“We will use supercritical fluid as a plasticizer, allowing the nanoreinforcements to disperse through the polymer,” Pilla said. “We can help develop a conventional technique that will be scalable in the automotive sector.”

Robert Jones, executive vice president for academic affairs and provost at Clemson, congratulated Pilla on the research, which touches on Jones’ area of expertise.

Jones has a bachelor’s in forest management, a master’s in forestry from Clemson and a doctorate in forest ecology from the State University of New York College of Environmental Science and Forestry, Syracuse University.

“The research that Srikanth Pilla is doing with the USDA Forest Service is a creative way of using what might otherwise be a low-value wood product to strengthen automobile parts,” Jones said. “It’s even better that these parts are biorenewable. The research is good for the Earth in more ways than one.”

This research could grow in importance if the United States were to follow the European Union’s lead in setting requirements on how much of a vehicle must be recovered and recycled after it has seen its last mile on the road.

“In the U.S., such legislation is not yet here,” Pilla said. “But it could make its way here, too.”

Pilla is quickly establishing himself as a leading expert in making next-generation automotive parts. He won the 2016 Robert J. Hocken Outstanding Young Manufacturing Engineer Award from the nonprofit student and professional organization SME.

Pilla is nearing the end of the first year of a separate $5.81-million, five-year grant from the Department of Energy. As part of that research, Pilla and his team are developing ultra-lightweight doors expected to help automakers in their race to meet federal fuel economy standards.

Zoran Filipi, chair of Clemson’s automotive engineering, said that Pilla is playing a key role in making Clemson the premiere place for automotive research.

“Dr. Pilla is doing research that helps Clemson and the auto industry stay a step ahead,” Filipi said. “He is anticipating needs automakers will face in the future and seeking solutions that could be put into place very quickly. His research with the USDA Forest Service is another example of that.”

Congratulations also came from Anand Gramopadhye, dean of Clemson’s College of Engineering, Computing and Applied Sciences.

“Dr. Pilla’s work continues to have an impact on automotive engineering, especially in the area of manufacturing,” Gramopadhye said. “His innovations are positioning Clemson, the state, and the nation for strength into the future.”

This search for applications is a worldwide competition. Cellulose is one of the most abundant materials on earth and can be derived from carrots, bananas, pineapples, and more. It just so happens that much of the research in the northern hemisphere focuses on cellulose derived from trees in an attempt to prop up or reinvigorate the failing forest products industry.

In Canada we have three production facilities for cellulosic nanomaterials. There’s a plant in Alberta (I’ve never seen a name for it), CelluForce in Windsor, Québec, and Blue Goose Biorefineries in Saskatchewan. I believe Blue Goose derives their cellulosic from trees and other plant materials while the Alberta and CelluForce plants use trees only.

CelluForce Update

CelluForce represents a big investment by the Canadian federal government. The other companies and production facilities have received federal funds but my understanding is that CelluForce has enjoyed significantly more. As well, the company has had a stockpile of cellulose nanocrystals (CNC) that I first mentioned here in an Oct. 3, 2013 post (scroll down about 75% of the way). A June 8, 2016 CelluForce news release provides more information about CelluForce activities and its stockpile,

  •  In the first half of 2016, Cellulose nanocrystals (CNC) shipments to industrial partners have reached their highest level since company inception.
  • Recent application developments in the oil & gas, the electronics and plastics sectors are expected to lead to commercial sales towards year end.
  • New website to enhance understanding of CelluForce NCCTM core properties and scope of performance in industrial applications is launched.

Montreal, Québec – June 8th 2016 – CelluForce, a clean technology company, is seeing growing interest in its innovative green chemistry product called cellulose nanocrystals (CNC) and has recorded, over the first half of 2016, the largest CNC shipment volumes since the company’s inception.

“Over the past year, we have been actively developing several industry-specific applications featuring CelluForce NCCTM, a form of cellulose nanocrystals which is produced in our Windsor plant.   Three of these applications have now reached a high level of technical and commercial maturity and have been proven to provide cost benefits and sustained performance in the oil & gas, electronics and plastics segments,” said Sebastien Corbeil [emphasis mine], President and CEO of CelluForce. “Our product development teams are extremely pleased to see CelluForce NCCTM [nanocrystalline cellulose; this is a trade name for CNC] now being used in full scale trials for final customer acceptance tests”.

With the current shipment volumes forecast, the company expects to deplete its CelluForce NCCTM inventory by mid-2017 [emphasis mine]. The inventory depletion will pave the way for the company to start commercial production of CNC at its Windsor plant next year.

CelluForce has built a strong network of researchers with academic and industrial partners and continues to invest time and resources to develop, refine and expand applications for CNC in key priority industrial markets. Beyond oil & gas, electronics and plastics, some of these markets are adhesives, cement, paints and coatings, as well as personal and healthcare.

Furthermore, as it progressively prepares for commercial production, CelluForce has revamped its digital platform and presence, with the underlying objective of developing a better understanding of its product, applications and its innovative green technology capabilities.  Its new brand image is meant to convey the innovative, versatile and sustainable properties of CNC.

Nice to see that there is sufficient demand that the stockpile can be eliminated soon. In my last piece about CelluForce (a March 30, 2015 post), I noted an interim president, René Goguen. An April 27, 2015 CelluForce news release announced Sebastien Corbeil’s then new appointment as company president.

One final note, nanocrystalline cellulose (NCC) was the generic name coined by Canadian scientists for a specific cellulose nanomaterial. Over time, cellulose nanocrystals (CNC) became the preferred term for the generic material and CelluForce decided to trademark NCC (nanocrystalline cellulose) as their commercial brand name for cellulose nanocrystals.

Synthetic biowire for nanoelectronics

Apparently this biowire derived by synthetic biology processes can make nanoelectronics a greener affair. From a July 14, 2016 news item on ScienceDaily,

Scientists at the University of Massachusetts Amherst report in the current issue of Small that they have genetically designed a new strain of bacteria that spins out extremely thin and highly conductive wires made up of solely of non-toxic, natural amino acids.

A July 14, 2016 University of Massachusetts at Amherst news release (also on EurekAlert), which originated the news item, provides more information,

Researchers led by microbiologist Derek Lovley say the wires, which rival the thinnest wires known to man, are produced from renewable, inexpensive feedstocks and avoid the harsh chemical processes typically used to produce nanoelectronic materials.

Lovley says, “New sources of electronic materials are needed to meet the increasing demand for making smaller, more powerful electronic devices in a sustainable way.” The ability to mass-produce such thin conductive wires with this sustainable technology has many potential applications in electronic devices, functioning not only as wires, but also transistors and capacitors. Proposed applications include biocompatible sensors, computing devices, and as components of solar panels.

This advance began a decade ago, when Lovley and colleagues discovered that Geobacter, a common soil microorganism, could produce “microbial nanowires,” electrically conductive protein filaments that help the microbe grow on the iron minerals abundant in soil. These microbial nanowires were conductive enough to meet the bacterium’s needs, but their conductivity was well below the conductivities of organic wires that chemists could synthesize.

“As we learned more about how the microbial nanowires worked we realized that it might be possible to improve on Nature’s design,” says Lovley. “We knew that one class of amino acids was important for the conductivity, so we rearranged these amino acids to produce a synthetic nanowire that we thought might be more conductive.”

The trick they discovered to accomplish this was to introduce tryptophan, an amino acid not present in the natural nanowires. Tryptophan is a common aromatic amino acid notorious for causing drowsiness after eating Thanksgiving turkey. However, it is also highly effective at the nanoscale in transporting electrons.

“We designed a synthetic nanowire in which a tryptophan was inserted where nature had used a phenylalanine and put in another tryptophan for one of the tyrosines. We hoped to get lucky and that Geobacter might still form nanowires from this synthetic peptide and maybe double the nanowire conductivity,” says Lovley.

The results greatly exceeded the scientists’ expectations. They genetically engineered a strain of Geobacter and manufactured large quantities of the synthetic nanowires 2000 times more conductive than the natural biological product. An added bonus is that the synthetic nanowires, which Lovley refers to as “biowire,” had a diameter only half that of the natural product.

“We were blown away by this result,” says Lovley. The conductivity of biowire exceeds that of many types of chemically-produced organic nanowires with similar diameters. The extremely thin diameter of 1.5 nanometers (over 60,000 times thinner than a human hair) means that thousands of the wires can easily be packed into a very small space.

The added benefit is that making biowire does not require any of the dangerous chemicals that are needed for synthesis of other nanowires. Also, biowire contains no toxic components. “Geobacter can be grown on cheap renewable organic feedstocks so it is a very ‘green’ process,” he notes. And, although the biowire is made out of protein, it is extremely durable. In fact, Lovley’s lab had to work for months to establish a method to break it down.

“It’s quite an unusual protein,” Lovley says. “This may be just the beginning” he adds. Researchers in his lab recently produced more than 20 other Geobacter strains, each producing a distinct biowire variant with new amino acid combinations. He notes, “I am hoping that our initial success will attract more funding to accelerate the discovery process. We are hoping that we can modify biowire in other ways to expand its potential applications.”

As it often does, funding provides some notes of interest,

This research was supported by the Office of Naval Research, the National Science Foundation’s Nanoscale Science and Engineering Center and the UMass Amherst Center for Hierarchical Manufacturing.

Caption: Synthetic biowire are making an electrical connection between two electrodes. Researchers led by microbiologist Derek Lovely at UMass Amherst say the wires, which rival the thinnest wires known to man, are produced from renewable, inexpensive feedstocks and avoid the harsh chemical processes typically used to produce nanoelectronic materials. Credit: UMass Amherst

Caption: Synthetic biowire are making an electrical connection between two electrodes. Researchers led by microbiologist Derek Lovely at UMass Amherst say the wires, which rival the thinnest wires known to man, are produced from renewable, inexpensive feedstocks and avoid the harsh chemical processes typically used to produce nanoelectronic materials. Credit: UMass Amherst

Here’s a link to and a citation for the paper,

Synthetic Biological Protein Nanowires with High Conductivity by Yang Tan, Ramesh Y. Adhikari, Nikhil S. Malvankar, Shuang Pi, Joy E. Ward, Trevor L. Woodard, Kelly P. Nevin, Qiangfei Xia, Mark T. Tuominen, and Derek R. Lovley. Small DOI: 10.1002/smll.201601112 Version of Record online: 13 JUL 2016

© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

This paper is behind a paywall.

Synthesizing titanium dioxide nanoparticles with herbal extracts

It was somewhat unexpected to see a science collaboration between an Iranian researcher and an Iraqi researcher given the two countries engaged in a hard-fought war for almost eight years (1980 – 88). However, since almost 30 years have passed, it seems at least two people feel it’s time to approach things differently. A Jan. 28, 2016 news item on Nanotechnology Now announces the research,

Environmental preservation is today one of the greatest concerns of scientists in all scientific aspects.

Given the direct effect of chemical industry on environment, chemists try to present new methods for the synthesis of materials with less chemical pollution but more biocompatibility.

Iranian and Iraqi researchers studied the possibility of the application of herbal extracts to synthesize titanium dioxide nanoparticles. Results prove that the herbal extract enables production of nanoparticles at a higher rate and efficiency but less environmental pollution.

A Jan. 28, 2016 Fars Agency news release, which originated the news item, expands on the theme,

The aim of the research was to synthesize titanium dioxide nanoparticles in a simple, fast and cost effective manner with high efficiency in the presence of Euphorbia heteradena Jaub extract. This plant is found commonly in the western and central parts of Iran.

The nanoparticles also have application in the degradation of organic materials and water and wastewater purification due to their appropriate stability, non-toxicity and photocatalytic activity.

The method presented in this research is in agreement with global standards of green chemistry unlike other chemical methods. In fact, no toxic solvent or reactant (such as chemical reducers and stabilizers) has been used in this method. Elimination of by-products during the synthesis of nanoparticles and ease of production scaling up from laboratorial scale to industrial one are among the other advantages of the new method.

According to the researchers, instability of the synthetic nanoparticles is one of the challenges in previous studies. However, experiments suggest that no structural change is observed in the synthetized nanoparticles even after two months.

Here’s a link to and a citation for the researchers’ 2015 paper,

Synthesis and characterization of titanium dioxide nanoparticles using Euphorbia heteradena Jaub root extract and evaluation of their stability by Mahmoud Nasrollahzadeh, S. Mohammad Sajad. Ceramics International Volume 41, Issue 10, Part B, December 2015, Pages 14435–14439 doi:10.1016/j.ceramint.2015.07.079 Available online 21 July 2015

This paper is behind a paywall.

Using stevia to synthesize gold nanoparticles?

The research into using stevia as a greener alternative to synthesize gold nanoparticles is from Iran (from a June 2, 2015 news item on Nanotechology Now),

Iranian researchers suggested the extract of stevia plant as a replacement for chemical solvents and reducers in the synthesis of gold nanoparticles.

A May 31, 2015 Iran Nanotechnology Initiative Council news release, which originated the news item, provides a little more detail,

Various chemical methods have been proposed for the synthesis of gold nanoparticles as the application of these particles has increased. These methods cause some problems, including environmental pollution and difficulty in synthesis. This research studied the possibility of using stevia leaf extract to reduce gold ions into atomic nanoparticles.

According to the researchers, the extract of stevia plant is biocompatible and it acts as a reducing and stabilizing agent. In addition, the simplicity of the method easily makes possible the quick biosynthesis of gold nanoparticles in different sizes.

Since the antibacterial effect of gold nanoparticles has been proved, these materials can be used in the production of detergents, packaging industry and production of medical drugs.

Gold nanoparticles stabilized with stevia extract in this research are absorbed by cells more than nanoparticles coated with chemical stabilizers (polymers). The reason is that nanoparticles stabilized with herbal extract contain various proteins and fibers on their surface. Therefore, the nanoparticles are more probable to diffuse into the cells through the multiple receivers of protein in comparison with the dual receiver of protein and chemical polymer. Therefore, it is expected that the transfer of protein and drugs into the cells can be adjusted by changing the size and shape of the nanoparticles.

Here’s a link to and a citation for the paper,

GC–MS analysis of bioactive components and synthesis of gold nanoparticle using Chloroxylon swietenia DC leaf extract and its larvicidal activity by Govindasamy Balasubramani, Rajendiran Ramkumar, Narayanaswamy Krishnaveni, Rajamani Sowmiya, Paramasivam Deepak, Dhayalan Arul, & Pachiappan Perumal. Journal of Photochemistry and Photobiology B: Biology Volume 148, July 2015, Pages 1–8  doi:10.1016/j.jphotobiol.2015.03.016

This paper is behind a paywall.

Transmetalation, substituting one set of metal atoms for another set

Transmetalation bears a resemblance of sorts to transmutation. While the chemists from the University of Oregon aren’t turning lead to gold through an alchemical process they are switching out individual metal atoms, aluminum for indium. From a July 21, 2014 news item on ScienceDaily,

The yield so far is small, but chemists at the University of Oregon have developed a low-energy, solution-based mineral substitution process to make a precursor to transparent thin films that could find use in electronics and alternative energy devices.

A paper describing the approach is highlighted on the cover of the July 21 [2014] issue of the journal Inorganic Chemistry, which draws the most citations of research in the inorganic and nuclear chemistry fields. [emphasis mine] The paper was chosen by the American Chemical Society journal as an ACS Editor’s Choice for its potential scientific and broad public interest when it initially published online.

One observation unrelated to the research, the competition amongst universities seems to be heating up. While journals often tout their impact factor, it’s usually more discreetly than in what amounts to a citation in the second paragraph of the university news release, which originated the news item.

The July 21, 2014 University of Oregon news release (also on EurekAlert), describes the work in more detail,

The process described in the paper represents a new approach to transmetalation, in which individual atoms of one metal complex — a cluster in this case — are individually substituted in water. For this study, Maisha K. Kamunde-Devonish and Milton N. Jackson Jr., doctoral students in the Department of Chemistry and Biochemistry, replaced aluminum atoms with indium atoms.

The goal is to develop inorganic clusters as precursors that result in dense thin films with negligible defects, resulting in new functional materials and thin-film metal oxides. The latter would have wide application in a variety of electronic devices.

“Since the numbers of compounds that fit this bill is small, we are looking at transmetelation as a method for creating new precursors with new combinations of metals that would circumvent barriers to performance,” Kamunde-Devonish said.

Components in these devices now use deposition techniques that require a lot of energy in the form of pressure or temperature. Doing so in a more green way — reducing chemical waste during preparation — could reduce manufacturing costs and allow for larger-scale materials, she said.

“In essence,” said co-author Darren W. Johnson, a professor of chemistry, “we can prepare one type of nanoscale cluster compound, and then step-by-step substitute out the individual metal atoms to make new clusters that cannot be made by direct methods. The cluster we report in this paper serves as an excellent solution precursor to make very smooth thin films of amorphous aluminum indium oxide, a semiconductor material that can be used in transparent thin-film transistors.”

Transmetalation normally involves a reaction done in organic chemistry in which the substitution of metal ions generates new metal-carbon bonds for use in catalytic systems and to synthesize new metal complexes.

“This is a new way to use the process,” Kamunde-Devonish said, “Usually you take smaller building blocks and put them together to form a mix of your basic two or three metals. Instead of building a house from the ground up, we’re doing some remodeling. In everyday life that happens regularly, but in chemistry it doesn’t happen very often. We’ve been trying to make materials, compounds, anything that can be useful to improve the processes to make thin films that find application in a variety of electronic devices.”

The process, she added, could be turned into a toolbox that allows for precise substitutions to generate specifically desired properties. “Currently, we can only make small amounts,” she said, “but the fact that we can do this will allow us to get a fundamental understanding of how this process happens. The technology is possible already. It’s just a matter of determining if this type of material we’ve produced is the best for the process.”

Here’s a citation for and a link to the paper,

Transmetalation of Aqueous Inorganic Clusters: A Useful Route to the Synthesis of Heterometallic Aluminum and Indium Hydroxo—Aquo Clusters by Maisha K. Kamunde-Devonish, Milton N. Jackson, Jr., Zachary L. Mensinger, Lev N. Zakharov, and Darren W. Johnson. Inorg. Chem., 2014, 53 (14), pp 7101–7105 DOI: 10.1021/ic403121r Publication Date (Web): April 18, 2014

Copyright © 2014 American Chemical Society

This paper appears to be open access (I was able to view the HTML version when I clicked).