Tag Archives: green technology

Canada: Happy 150th anniversary!

There’s a bit of fun in the title for Jennifer Pascoe’s June 27, 2017 University of Alberta news release, (assuming you’re familiar with the opening words for Canada’s national anthem: “O Canada!”),

Nan-Oh-Canada

At just 32 atoms and visible only through a million-dollar scanning tunneling microscope, a tiny maple leaf created by UAlberta PhD student Roshan Achal illustrates the next wave of green technology, all while showing patriotic pride.

Invisible to the naked eye, the little leaf is pulling triple duty: celebrating Canada’s 150th birthday, attempting a world record, and—with critical implications for our technology-driven information society—providing critical steps towards the next generation of smaller and faster computers.

“It’s super cool and super Canadian and demonstrates our strength and skill in this niche of nanotechnology,” said Achal. “Almost no one else in the world can do it this well.”

Unlike other ultra-small atomic creations, this maple leaf retains its structure at room temperature.

A tiny act of patriotism

At ten nanometres in width, the leaf is roughly 100 times smaller than the world’s smallest national flag—created at the University of Waterloo in September 2016—10,000 times smaller than a human hair, and 53 million times smaller than the world’s largest maple leaf.

The leaf demonstrates the technique of building structures atom by atom (via something called scanning tunneling microscopy), which is being used to create and study circuitry to make smaller computational components while simultaneously speeding them up. In this particular niche of nanotechnology, Canada rates high on the international stage, with the University of Alberta leading the way.

“It’s hard to imagine, because it’s so small, but picture a surface almost like bubble wrap,” explained Achal of the silicon crystal wafer on which the leaf is patterned. “The bubbles are actually hydrogen atoms bonded to the surface, and we are able to pop those bubbles to create patterns.”

Nano pioneers

Achal is working on perfecting that patterning process to make atomic structures which will help revolutionize the next generation of computing by consuming less power. He’s using an ultra-sharp tool, a tip just one atom in width, which was perfected by his supervisor, UAlberta physics professor Robert Wolkow, whom Achal calls a “visionary.”

A pioneer in scanning tunneling microscopy technology, Wolkow already has a Guinness World Record for the nano-tip, the world’s sharpest man-made object, which provides unparalleled precision for patterning electronic circuits.

Achal explained the team wanted to do something to demonstrate their technological capabilities, but also something fun and meaningful to mark the occasion of Canada 150.

While they wait to hear back from Guinness World Records with an official nod to their small sculpture, the scientists continue to perfect their technique, with significant implications for next generation computing. This capability is now being put to commercial use by local spin-off Quantum Silicon Incorporated to make revolutionary ultra-fast and efficient silicon electronic devices.

It’s nice to see the enthusiasm although calling Wolkow ‘a visionary’ seems a little over the top especially with all of the other exuberance (super Canadian?). In any event, there are very few visionaries, maybe Wolkow could have been described as amazing, groundbreaking, and/or extraordinary?

Getting back to the point: Happy 150th Canada Day July 1, 2017!

h/t June 27, 2017 news item on Nanowerk.

Switching of a single-atom channel

An Oct. 28, 2016 news item on phys.org announces a single-atom switch,

Robert Wolkow is no stranger to mastering the ultra-small and the ultra-fast. A pioneer in atomic-scale science with a Guinness World Record to boot (for a needle with a single atom at the point), Wolkow’s team, together with collaborators at the Max Plank Institute in Hamburg, have just released findings that detail how to create atomic switches for electricity, many times smaller than what is currently used.

What does it all mean? With applications for practical systems like silicon semi-conductor electronics, it means smaller, more efficient, more energy-conserving computers, as just one example of the technology revolution that is unfolding right before our very eyes (if you can squint that hard).

“This is the first time anyone’s seen a switching of a single-atom channel,” explains Wolkow, a physics professor at the University of Alberta and the Principal Research Officer at Canada’s National Institute for Nanotechnology. “You’ve heard of a transistor—a switch for electricity—well, our switches are almost a hundred times smaller than the smallest on the market today.”

An Oct. 28, 2016 University of Alberta news release by Jennifer Pascoe, which originated the news item, describes the research in more detail,

Today’s tiniest transistors operate at the 14 nanometer level, which still represents thousands of atoms. Wolkow’s and his team at the University of Alberta, NINT, and his spinoff QSi, have worked the technology down to just a few atoms. Since computers are simply a composition of many on/off switches, the findings point the way not only to ultra-efficient general purpose computing but also to a new path to quantum computing.

Green technology for the digital economy

“We’re using this technology to make ultra-green, energy-conserving general purpose computers but also to further the development of quantum computers. We are building the most energy conserving electronics ever, consuming about a thousand times less power than today’s electronics.”

While the new tech is small, the potential societal, economic, and environmental impact of Wolkow’s discovery is very large. Today, our electronics consume several percent of the world’s electricity.  As the size of the energy footprint of the digital economy increases, material and energy conservation is becoming increasingly important.

Wolkow says there are surprising benefits to being smaller, both for normal computers, and, for quantum computers too. “Quantum systems are characterized by their delicate hold on information. They’re ever so easily perturbed. Interestingly though, the smaller the system gets, the fewer upsets.” Therefore, Wolkow explains, you can create a system that is simultaneously amazingly small, using less material and churning through less energy, while holding onto information just right.

Smaller systems equal smaller environmental footprint

When the new technology is fully developed, it will lead to not only a smaller energy footprint but also more affordable systems for consumers. “It’s kind of amazing when everything comes together,” says Wolkow.

Wolkow is one of the few people in the world talking about atom-scale manufacturing and believes we are witnessing the beginning of the revolution to come. He and his team have been working with large-scale industry leader Lockheed Martin as the entry point to the market.

“It’s something you don’t even hear about yet, but atom-scale manufacturing is going to be world-changing. People think it’s not quite doable but, but we’re already making things out of atoms routinely. We aren’t doing it just because. We are doing it because the things we can make have ever more desirable properties. They’re not just smaller. They’re different and better. This is just the beginning of what will be at least a century of developments in atom-scale manufacturing, and it will be transformational.”

Bill Mah in a Nov. 1, 2016 article for the Edmonton Journal delves a little further into issues around making transistors smaller and the implications of a single-atom switch,

Current computers use transistors, which are essentially valves for flowing streams of electrons around a circuit. In recent years, engineers have found ways to make these devices smaller, but pushing electrons through narrow spaces raises the danger of the machines overheating and failing.

“The transistors get too hot so you have to run them slower and more gently, so we’re getting more power in modern computers because there are more transistors, but we can’t run them very quickly because they make a lot of heat and they actually just shut down and fail.”

The smallest transistors are currently about 14 nanometres. A nanometre is one-billionth of a metre and contains groupings of 1,000 or more atoms. The switches detailed by Wolkow and his colleagues will shrink them down to just a few atoms.

Potential benefits from the advance could lead to much more energy-efficient and smaller computers, an increasingly important consideration as the power consumption of digital devices keeps growing.

“The world is using about three per cent of our energy today on digital communications and computers,” Wolkow said. “Various reports I’ve seen say that it could easily go up to 10 or 15 per cent in a couple of decades, so it’s crucial that we get that under control.”

Wolkow’s team has received funding from companies such as Lockheed Martin and local investors.

The advances could also open a path to quantum computing. “It turns out these same building blocks … enable a quantum computer, so we’re kind of feverishly working on that at the same time.”

There is an animation illustrating a single-atom switch,

This animation represents an electrical current being switched on and off. Remarkably, the current is confined to a channel that is just one atom wide. Also, the switch is made of just one atom. When the atom in the centre feels an electric field tugging at it, it loses its electron. Once that electron is lost, the many electrons in the body of the silicon (to the left) have a clear passage to flow through. When the electric field is removed, an electron gets trapped in the central atom, switching the current off.  Courtesy: University of Alberta

Here’s a link to and a citation for the research paper,

Time-resolved single dopant charge dynamics in silicon by Mohammad Rashidi, Jacob A. J. Burgess, Marco Taucer, Roshan Achal, Jason L. Pitters, Sebastian Loth, & Robert A. Wolkow. Nature Communications 7, Article number: 13258 (2016)  doi:10.1038/ncomms13258 Published online: 26 October 2016

This paper is open access.

Cleaning up oil* spills with cellulose nanofibril aerogels

Given the ever-expanding scope of oil and gas production as previously impossible to reach sources are breached and previously unusable contaminated sources are purified for use while major pipelines and mega tankers are being built to transport all this product, it’s good to see that research into cleaning up oil spills is taking place. A Feb. 26, 2014 news item on Azonano features a project at the University of Wisconsin–Madison,

Cleaning up oil spills and metal contaminates in a low-impact, sustainable and inexpensive manner remains a challenge for companies and governments globally.

But a group of researchers at the University of Wisconsin–Madison is examining alternative materials that can be modified to absorb oil and chemicals without absorbing water. If further developed, the technology may offer a cheaper and “greener” method to absorb oil and heavy metals from water and other surfaces.

Shaoqin “Sarah” Gong, a researcher at the Wisconsin Institute for Discovery (WID) and associate professor of biomedical engineering, graduate student Qifeng Zheng, and Zhiyong Cai, a project leader at the USDA Forest Products Laboratory in Madison, have recently created and patented the new aerogel technology.

The Feb. 25, 2014 University of Wisconsin–Madison news release, which originated the news item, explains a little bit about aergels and about what makes these cellulose nanofibril-based aerogels special,

Aerogels, which are highly porous materials and the lightest solids in existence, are already used in a variety of applications, ranging from insulation and aerospace materials to thickening agents in paints. The aerogel prepared in Gong’s lab is made of cellulose nanofibrils (sustainable wood-based materials) and an environmentally friendly polymer. Furthermore, these cellulose-based aerogels are made using an environmentally friendly freeze-drying process without the use of organic solvents.

It’s the combination of this “greener” material and its high performance that got Gong’s attention.

“For this material, one unique property is that it has superior absorbing ability for organic solvents — up to nearly 100 times its own weight,” she says. “It also has strong absorbing ability for metal ions.”

Treating the cellulose-based aerogel with specific types of silane after it is made through the freeze-drying process is a key step that gives the aerogel its water-repelling and oil-absorbing properties.

The researchers have produced a video showing their aerogel in operation,

For those who don’t have the time for a video, the news release describes some of the action taking place,

“So if you had an oil spill, for example, the idea is you could throw this aerogel sheet in the water and it would start to absorb the oil very quickly and efficiently,” she says. “Once it’s fully saturated, you can take it out and squeeze out all the oil. Although its absorbing capacity reduces after each use, it can be reused for a couple of cycles.”

In addition, this cellulose-based aerogel exhibits excellent flexibility as demonstrated by compression mechanical testing.

Though much work needs to be done before the aerogel can be mass-produced, Gong says she’s eager to share the technology’s potential benefits beyond the scientific community.

“We are living in a time where pollution is a serious problem — especially for human health and for animals in the ocean,” she says. “We are passionate to develop technology to make a positive societal impact.”

Here’s a link to and a citation for the research paper,

Green synthesis of polyvinyl alcohol (PVA)–cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents by Qifeng Zheng, Zhiyong Cai, and Shaoqin Gong.  J. Mater. Chem. A, 2014,2, 3110-3118 DOI: 10.1039/C3TA14642A First published online 16 Dec 2013

This paper is behind a paywall. I last wrote about oil-absorbing nanosponges in an April 17, 2012 posting. Those sponges were based on carbon nanotubes (CNTs).

* ‘oils’ in headline changed to ‘oil’ on May 6, 2014.

Bake and shake your t-shirt to make a flexible electronic device

I don’t think you actually need to shake but you do need to bake your cotton t-shirt, albeit in a special way, to create a wearable battery  or so the University of South Carolina’s Xiaodong Li says. Excerpted from the June 29, 2012 news item on Nanowerk,

Over the years, the telephone has gone mobile, from the house to the car to the pocket. The University of South Carolina’s Xiaodong Li envisions even further integration of the cell phone – and just about every electronic gadget, for that matter – into our lives.

“We wear fabric every day,” said Li, a professor of mechanical engineering at USC. “One day our cotton T-shirts could have more functions; for example, a flexible energy storage device that could charge your cell phone or your iPad.”

Li is helping make the vision a reality. He and post-doctoral associate Lihong Bao have just reported in the journal Advanced Materials (“Towards Textile Storage from Cotton T-Shirts”) how to turn the material in a cotton T-shirt into a source of electrical power.

I’ve been following the ‘wearable battery’ story for a while (the May 9, 2012 posting is the most recent) but Li’s approach is a little different.  Excerpted from the June 29, 2012 University of South Caroline news release by Steven Powell,

Starting with a T-shirt from a local discount store, Li’s team soaked it in a solution of fluoride, dried it and baked it at high temperature. They excluded oxygen in the oven to prevent the material from charring or simply combusting.

The surfaces of the resulting fibers in the fabric were shown by infrared spectroscopy to have been converted from cellulose to activated carbon. Yet the material retained flexibility; it could be folded without breaking.

“We will soon see roll-up cell phones and laptop computers on the market,” Li said. “But a flexible energy storage device is needed to make this possible.”

The once-cotton T-shirt proved to be a repository for electricity. By using small swatches of the fabric as an electrode, the researchers showed that the flexible material, which Li’s team terms activated carbon textile, acts as a capacitor. Capacitors are components of nearly every electronic device on the market, and they have the ability to store electrical charge.

Here’s what makes the approach different; it’s ‘green’ according to Powell’s news release,

Li is particularly pleased to have improved on the means by which activated carbon fibers are usually obtained. “Previous methods used oil or environmentally unfriendly chemicals as starting materials,” he said. “Those processes are complicated and produce harmful side products. Our method is a very inexpensive, green process.”

Somehow I’ve always seen ‘wearable batteries and/or electronics’ as opportunities for electrocution but I seem to be alone with this fear as there’s never any discussion about the safety issues might arise.

ETA July 3, 2012: Dexter Johnson in his June 29, 2012 posting on Nanoclast (a blog on the IEEE [Institute of Electrical and Electronics Engineers] website) notes that the simplicity of Li’s process may be specially exciting,

While Li makes mention of the environmentally friendly chemicals used to impart this capability to a t-shirt, it is perhaps the simplicity of the process that will likely be the most intriguing aspect to manufacturers.

Carbon nanotubes the natural way; weaving carbon nanotubes into heaters; how designers think; robotic skin

Today I’ll be focusing, in a very mild way, on carbon nanotubes. First, a paper in Astrophysical Journal Letters (Feb. 2010 issue) titled, The Formation of Graphite Whiskers in the  Primitive Solar Nebula, is where an international team of scientists have shared an intriguing discovery about carbon nanotubes. From the news item on physorg.com,

Space apparently has its own recipe for making carbon nanotubes, one of the most intriguing contributions of nanotechnology here on Earth, and metals are conspicuously missing from the list of ingredients.

[Joesph] Nuth’s team [based at NASA’s Goddard Space Flight Center] describes the modest chemical reaction. Unlike current methods for producing carbon nanotubes—tiny yet strong structures with a range of applications in electronics and, ultimately, perhaps even medicine—the new approach does not need the aid of a metal catalyst. “Instead, nanotubes were produced when graphite dust particles were exposed to a mixture of carbon monoxide and hydrogen gases,” explains Nuth.

The structure of the carbon nanotubes produced in these experiments was determined by Yuki Kimura, a materials scientist at Tohoku University, Japan, who examined the samples under a powerful transmission electron microscope. He saw particles on which the original smooth graphite gradually morphed into an unstructured region and finally to an area rich in tangled hair-like masses. A closer look with an even more powerful microscope showed that these tendrils were in fact cup-stacked carbon nanotubes, which resemble a stack of Styrofoam cups with the bottoms cut out.

Since metals are used as catalysts for creating carbon nanotubes, this discovery hints at the possibility of a ‘greener’ process. In conjunction with the development at McGill (mentioned on this blog here) for making chemical reactions greener by using new nonmetallic catalysts, there may be some positive environmental impacts due to nanotechnology.

Meanwhile here on earth, there’s another new carbon nanotube development and this time it has to do with the material’s conductivity. From the news item on Nanowerk,

An interesting development using multifilament yarns is a new fabric heater made by weaving CNTEC® conductive yarns from Kuraray Living Co., Ltd. This fabric generates heat homogeneously all over the surface because of its outstanding conductivity and is supposed to be the first commercial use of Baytubes® CNTs from Bayer MaterialScience in the Japanese market.

The fabric heater is lightweight and thin, compact and shows a long-lasting bending resistance. It can be used for instance for car seats, household electrical appliances, for heating of clothes and as an anti-freezing material. Tests revealed that it may for example be installed in the water storage tank of JR Hokkaido’s “Ryuhyo-Norokko” train. Inside this train the temperature drops to around -20 °C in wintertime, because so far no heating devices other than potbelly stoves are available. According to JR Hokkaido railway company the fabric heater performed well in preventing the water from freezing. A seat heating application of the fabric heater is still on trial on another JR Hokkaido train line. It is anticipated that the aqueous dispersions might as well be suitable for the compounding of various kinds of materials.

I sometimes suspect that these kinds of nanotechnology-enabled applications are going to change the world in such a fashion that our ancestors (assuming we survive disasters) will be able to understand us only dimly. The closest analogy I have is with Chaucer. An English-speaker trying to read The Canterbury Tales in the language that Chaucer used to write, Middle English, needs to learn an unfamiliar language.

On a completely different topic, Cliff Kuang at Fast Company has written an item on designers and the Myer-Briggs personality test (industrial designer Michael Roller’s website with his data),

Designers love to debate about what personality type makes for the best designer. So Michael Roller took the extra step of getting a bunch of designers to take the Myers Briggs personality test, and published the results …

In other words, designers are less akin to the stereotypical touchy-feely artist, and more like engineers who always keep the big picture in mind.

This reminds me of a piece I wrote up on Kevin Dunbar (here) and his work investigating how scientists think. He came to the conclusion that when they use metaphors and analogies to describe their work to scientists in specialties not identical to their own, new insights and breakthroughs can occur. (Note: he takes a more nuanced approach than I’m able to use in a single, descriptive sentence.) What strikes me is that scientists often need to take a more ‘artistic and intuitive’ [my words] approach to convey information if they are to experience true breakthroughs.

My last bit is an item about more tactile robotic skin. From the news item on the Azonano website,

Peratech Limited, the leader in new materials designed for touch technology solutions, has announced that they have been commissioned by the MIT Media Lab to develop a new type of electronic ‘skin’ that enables robotic devices to detect not only that they have been touched but also where and how hard the touch was.

The key to the sensing technology is Peratech’s patented ‘QTC’ materials. QTC’s, or Quantum Tunnelling Composites, are a unique new material type which provides a measured response to force and/or touch by changing its electrical resistance – much as a dimmer light switch controls a light bulb. This enables a simple electronic circuit within the robot to determine touch. Being easily formed into unique shapes – including being ‘draped’ over an object much like a garment might, QTC’s provide a metaphor [emphasis mine] for how human skin works to detect touch.

Yes, I found another reference to metaphors although this metaphor is being used to convey information to a nontechnical audience. As for the ‘graphite whiskers’ in the title for the article which opened this posting, it is another metaphor and here, I suspect, it’s being used to describe something to other scientists who have specialties that are not identical to the researchers’ (as per Kevin Dunbar’s work).

Patenting and copyrighting intellectual property; the role of technical innovation; more on London’s digital cloud

I keep expecting someone to try patenting/copyrighting/trademarking a nanoparticle or some such nanoscale object. If you believe that to be unthinkable, I suggest you read this (from TechDirt’s  Mike Masnick’s news item here),

We’ve seen a few ridiculous cases whereby local governments claim copyright on a law [emphasis mine], but it’s still stunning to see what’s going on in Liberia. Tom sends in the news that no one knows what the law covers in Liberia, because one man, leading a small group of lawyers, claims to hold the copyright on the laws of the country and won’t share them unless people (or, rather, the government of Liberia) is willing to pay. Oh, and did we mention that the US government paid for some of this?

Masnick’s article provides a link to more information in the story, He’s got the law (literally) in his hands, by Jina Moore and Glenna Gordon. While I find the situation extreme what strikes me first in Masnick’s piece is that it’s not unusual. So if people are actually going to try and copyright a law, why not a nanoparticle?

Coincidentally, China and India have made a proposal to eschew intellectual property rights with regard to green/clean technologies prior to the big climate talks during December (2009) in Copenhagen.  From the news item on Nanowerk,

As world leaders prepare for climate talks in Copenhagen next month, developing nations have tabled a controversial proposal which would effectively end patent protection for clean technologies.
China and India have floated the idea of making new green technology subject to ‘compulsory licensing’, which critics say amounts to waiving intellectual property rights.
The idea of adapting or liberalising patent rules for crucial new inventions which can help reduce carbon emissions is not new, but the EU and US are unhappy with compulsory licensing, fearing it would dramatically reduce the incentive for businesses to innovate and stifle green job creation.
Compulsory licensing has to date only been used in emergency situations where patent-protected pharmaceuticals were seen as prohibitively expensive. The Thai government used the mechanism to allow local medicines factories [to] produce HIV drugs at a fraction of the cost.

I’m guessing the reason that this item was posted on Nanowerk is that nanotechnology is often featured as an enabler of cleaner/greener products.

On a related theme, Andrew Maynard has posted his thoughts on the World Economic Forum that he attended last week in Dubai (from his Nov.22.09 posting),

Developing appropriate technology-based solutions to global challenges is only possible if  technology innovation policy is integrated into the decision-making process at the highest levels in government, industry and other relevant organizations.  Without such high-level oversight, there is a tendency to use the technology that’s available, rather than to develop the technology that’s needed.  And as the challenges of living in an over-populated and under-resourced world [emphasis mine] escalate, this will only exacerbate the disconnect between critical challenges and technology-based solutions.

The importance of technology innovation – and emerging technologies in particular – was highlighted by Lord Malloch-Brown in his closing remarks at this year’s Summit on the Global Agenda.  Yet there is still a way to go before technology innovation is integrated into the global agenda dialogue, rather than being tacked on to it

Maynard provides an intriguing insight into some of the international agenda which includes a much broader range of discussion topics that I would have expected from something called an ‘economic’ forum.  You can read more about the World Economic Forum organization and its latest meeting here.

I wasn’t expecting to find out more about London Olympics 2012”s digital cloud proposed project on Andy Miah’s website as I tend to associate him with human enhancement, Olympic sports, post humanism, and nanotechnology topics. I keep forgetting about his media interests. Here’s his latest (Nov.22.09) posting on the Digital Olympics (title of his new book) where he includes images and a video about the architectural project.