Tag Archives: greenhouse gases

Carbon capture with ‘diamonds from the sky’

Before launching into the latest on a new technique for carbon capture, it might be useful to provide some context. Arthur Neslen’s March 23, 2015 opinion piece outlines the issues and notes that one Norwegian Prime Minister resigned when coalition government partners attempted to build gas power plants without carbon capture and storage facilities (CCS), Note : A link has been removed,

At least 10 European power plants were supposed to begin piping their carbon emissions into underground tombs this year, rather than letting them twirl into the sky. None has done so.

Missed deadlines, squandered opportunities, spiralling costs and green protests have plagued the development of carbon capture and storage (CCS) technology since Statoil proposed the concept more than two decades ago.

But in the face of desperate global warming projections the CCS dream still unites Canadian tar sands rollers with the UN’s Intergovernmental Panel on Climate Change (IPCC), and Shell with some environmentalists.

With 2bn people in the developing world expected to hook up to the world’s dirty energy system by 2050, CCS holds out the tantalising prospect of fossil-led growth that does not fry the planet.


“With CCS in the mix, we can decarbonise in a cost-effective manner and still continue to produce, to some extent, our fossil fuels,” Tim Bertels, Shell’s Glocal CCS portfolio manager told the Guardian. “You don’t need to divest in fossil fuels, you need to decarbonise them.”

The technology has been gifted “a very significant fraction” of the billions of dollars earmarked by Shell for clean energy research, he added. But the firm is also a vocal supporter of public funding for CCS from carbon markets, as are almost all players in the industry.

Enthusiasm for this plan is not universal (from Neslen’s opinion piece),

Many environmentalists see the idea as a non-starter because it locks high emitting power plants into future energy systems, and obstructs funding for the cheaper renewables revolution already underway. “CCS is is completely irrelevant,” said Jeremy Rifkin, a noted author and climate adviser to several governments. “I don’t even think about it. It’s not going to happen. It’s not commercially available and it won’t be commercially viable.”

I recommend reading Neslen’s piece for anyone who’s not already well versed on the issues. He uses Norway as a case study and sums up the overall CCS political situation this way,

In many ways, the debate over carbon capture and storage is a struggle between two competing visions of the societal transformation needed to avert climate disaster. One vision represents the enlightened self-interest of a contributor to the problem. The other cannot succeed without eliminating its highly entrenched opponent. The battle is keenly fought by technological optimists on both sides. But if Norway’s fractious CCS experience is any indicator, it will be decided on the ground by the grimmest of realities.

On that note of urgency, here’s some research on carbon dioxide (CO2) or, more specifically, carbon capture and utilization technology, from an Aug. 19, 2015 news item on Nanowerk,,

Finding a technology to shift carbon dioxide (CO2), the most abundant anthropogenic greenhouse gas, from a climate change problem to a valuable commodity has long been a dream of many scientists and government officials. Now, a team of chemists says they have developed a technology to economically convert atmospheric CO2    directly into highly valued carbon nanofibers for industrial and consumer products.

An Aug. 19, 2015 American Chemical Society (ACS) news release (also on EurekAlert), which originated the news time, expands on the theme,

The team will present brand-new research on this new CO2 capture and utilization technology at the 250th National Meeting & Exposition of the American Chemical Society (ACS). ACS is the world’s largest scientific society. The national meeting, which takes place here through Thursday, features more than 9,000 presentations on a wide range of science topics.

“We have found a way to use atmospheric CO2 to produce high-yield carbon nanofibers,” says Stuart Licht, Ph.D., who leads a research team at George Washington University. “Such nanofibers are used to make strong carbon composites, such as those used in the Boeing Dreamliner, as well as in high-end sports equipment, wind turbine blades and a host of other products.”

Previously, the researchers had made fertilizer and cement without emitting CO2, which they reported. Now, the team, which includes postdoctoral fellow Jiawen Ren, Ph.D., and graduate student Jessica Stuart, says their research could shift CO2 from a global-warming problem to a feed stock for the manufacture of in-demand carbon nanofibers.

Licht calls his approach “diamonds from the sky.” That refers to carbon being the material that diamonds are made of, and also hints at the high value of the products, such as the carbon nanofibers that can be made from atmospheric carbon and oxygen.

Because of its efficiency, this low-energy process can be run using only a few volts of electricity, sunlight and a whole lot of carbon dioxide. At its root, the system uses electrolytic syntheses to make the nanofibers. CO2 is broken down in a high-temperature electrolytic bath of molten carbonates at 1,380 degrees F (750 degrees C). Atmospheric air is added to an electrolytic cell. Once there, the CO2 dissolves when subjected to the heat and direct current through electrodes of nickel and steel. The carbon nanofibers build up on the steel electrode, where they can be removed, Licht says.

To power the syntheses, heat and electricity are produced through a hybrid and extremely efficient concentrating solar-energy system. The system focuses the sun’s rays on a photovoltaic solar cell to generate electricity and on a second system to generate heat and thermal energy, which raises the temperature of the electrolytic cell.

Licht estimates electrical energy costs of this “solar thermal electrochemical process” to be around $1,000 per ton of carbon nanofiber product, which means the cost of running the system is hundreds of times less than the value of product output.

“We calculate that with a physical area less than 10 percent the size of the Sahara Desert, our process could remove enough CO2 to decrease atmospheric levels to those of the pre-industrial revolution within 10 years,” he says. [emphasis mine]

At this time, the system is experimental, and Licht’s biggest challenge will be to ramp up the process and gain experience to make consistently sized nanofibers. “We are scaling up quickly,” he adds, “and soon should be in range of making tens of grams of nanofibers an hour.”

Licht explains that one advance the group has recently achieved is the ability to synthesize carbon fibers using even less energy than when the process was initially developed. “Carbon nanofiber growth can occur at less than 1 volt at 750 degrees C, which for example is much less than the 3-5 volts used in the 1,000 degree C industrial formation of aluminum,” he says.

A low energy approach that cleans up the air by converting greenhouse gases into useful materials and does it quickly is incredibly exciting. Of course, there are a few questions to be asked. Are the research outcomes reproducible by other teams? Licht notes the team is scaling the technology up but how soon can we scale up to industrial strength?

Carbon sequestration and buckyballs (aka C60 or buckminsterfullerenes)

Sometime in the last few years I was asked about carbon sequestration (or carbon capture) and nanotechnology and had no answer for the question until now (drat!). A July 13, 2015 Rice University (Texas, US) news release (also on EurekAlert) describes some research into buckyballs and the possibility they could be used to confine greenhouse gases,

Rice University scientists are forging toward tunable carbon-capture materials with a new study that shows how chemical changes affect the abilities of enhanced buckyballs to confine greenhouse gases.

The lab of Rice chemist Andrew Barron found last year that carbon-60 molecules (aka buckyballs, discovered at Rice in the 1980s) gain the ability to sequester carbon dioxide when combined with a polymer known as polyethyleneimine (PEI).

Two critical questions – how and how well – are addressed in a new paper in the American Chemical Society journal Energy and Fuels.

The news release expands on the theme,

The amine-rich combination of C60 and PEI showed its potential in the previous study to capture emissions of carbon dioxide, a greenhouse gas, from such sources as industrial flue gases and natural-gas wells.

In the new study, the researchers found pyrolyzing the material – heating it in an oxygen-free environment – changes its chemical composition in ways that may someday be used to tune what the scientists call PEI-C60 for specific carbon-capture applications.

“One of the things we wanted to see is at what point, chemically, it converts from being something that absorbed best at high temperature to something that absorbed best at low temperature,” Barron said. “In other words, at what point does the chemistry change from one to the other?”

Lead author Enrico Andreoli pyrolyzed PEI-C60 in argon at various temperatures from 100 to 1,000 degrees Celsius (212 to 1,832 degrees Fahrenheit) and then evaluated each batch for carbon uptake.

He discovered the existence of a transition point at 200 C, a boundary between the material’s ability to soak in carbon dioxide through chemical means as opposed to physical absorption.

The material that was pyrolyzed at low temperatures became gooey and failed at pulling in carbon from high-temperature sources by chemical means. The opposite was true for PEI-C60 pyrolyzed at high heat. The now-porous, brittle material became better in low-temperature environments, physically soaking up carbon dioxide molecules.

At 200 C, they found the heat treatment breaks the polymer’s carbon-nitrogen bonds, leading to a drastic decrease in carbon capture by any means.

“One of the goals was to see if can we make this a little less gooey and still have chemical uptake, and the answer is, not really,” Barron said. “It flips from one process to the other. But this does give us a nice continuum of how to get from one to the other.”

Andreoli found that at its peak, untreated PEI-C60 absorbed more than a 10th of its weight in carbon dioxide at high temperatures (0.13 grams per gram of material at 90 C). Pyrolyzed PEI-C60 did nearly as well at low temperatures (0.12 grams at 25 C).

The researchers, with an eye on potential environmental benefits, continue to refine their process. “This has definitely pointed us in the right direction,” Barron said.

Here’s a link to and a citation for the paper,

Correlating Carbon Dioxide Capture and Chemical Changes in Pyrolyzed Polyethylenimine-C60 by Enrico Andreoli and Andrew R. Barron. Energy Fuels, Article ASAP DOI: 10.1021/acs.energyfuels.5b00778 Publication Date (Web): July 2, 2015

Copyright © 2015 American Chemical Society

This paper is behind a paywall.

Venezuela, oil production, and reducing its environmental footprint

The Nov. 14, 2012 article by Humberto Marquez for AlertNet; a Thompson Reuters Foundation Service, provides a context for why Venezuela is so interested in reducing the environmental footprint left by oil production,

Venezuela, a founding member of the Organisation of the Petroleum Exporting Countries (OPEC), extracts close to three million barrels of oil a day and has over two billion barrels of heavy crude oil reserves.

There are six refineries in the South American country that process a total of 1.1 million barrels daily.

Meanwhile, according to OPEC figures, the country consumes 742,000 barrels of different types of fuel daily, of which 300,000 barrels correspond to the gasoline used by more than six million motor vehicles.

The Ministry of the Environment reports that Venezuela is responsible for 0.48 percent of worldwide emissions of greenhouse gases and 0.56 percent of one of these “villains”, carbon dioxide.

Here are a few details about the research they are currently pursuing,

“We are seeking to use nanoparticles of metallic salts, such as iron, nickel or cobalt nitrates, as catalysts in oil-related processes that produce greenhouse gas emissions,” said Sarah Briceño, a researcher at the Centre for Physics at the Venezuelan Institute of Scientific Research (IVIC).

Catalysts are substances used to speed up chemical processes, “and our goal is to develop catalysts adapted to Venezuelan industry that will make it possible to reduce greenhouse gas emissions from activities such as oil refining and fuel consumption by motor vehicles by up to 50 percent,” Briceño told Tierramérica*.

Apparently, they are expecting this research to yield results in 2013 although it’s unclear whether that means laboratory results or practical applications. Interesting article and this is the first time I’ve found an opportunity to post about Venezuela and its nanotechnology efforts.