Tag Archives: Hans van der Voorn

Nanopore instruments, femtomolar concentrations, Ireland, and New Zealand

It was the word femtomolar that did it for me. While I have somehow managed to conceptualize the nanoscale, the other scales (pico, femto, atto, zetto, and yocto) continue to  elude me. If my experience with the ‘nanoscale ‘ is any guide, the only solution will be to find as much information as I can on these other ones and immerse myself in them. With that said, here’s more from the July 19, 2012 Izon press release,

Researchers at the Lee Bionanosciences Laboratory at UCD [University College Dublin] School of Chemistry and Chemical Biology in Dublin have demonstrated the detection and measurement of biological analytes down to femtomolar concentration levels using an off the shelf qNano instrument. This ultra low level biodetection capability has implications for biomedical research and clinical development as trace amounts of a biological substance in a sample can now be detected amd quantfied using standard commercially available equipment.

Platt [Dr Mark Platt] and colleagues’ [Professor Gil Lee and Dr Geoff Willmott] method for femtomolar-level detection uses magnetic particle systems and can be applied to any biological particle or protein for which specific aptamers or antibodies exist. Resistive pulse sensing, the underlying technology of the qNano [Izon product], was used to monitor individual and aggregated rod-shaped nanoparticles as they move through tunable pores in elastomeric membranes.

Dr Platt says, “The strength of using the qNano is the ability to interrogate individual particles through a nanopore. This allowed us to establish a very sensitive measurement of concentration because we could detect the interactions occurring down to individual particle level.

”The unique and technically innovative approach of the authors was to detect a molecule’s presence by a process that results in end on end or side by side aggregation of rod shaped nickel-gold particles. The rods were designed so that the aptamers could be attached to one end only.

“By comparing particles of similar dimensions we demonstrated that the resistive pulse signal is fundamentally different for rod and sphere-shaped particles, and for rod shaped particles of different lengths. We could exploit these differences in a new agglutina¬tion assay to achieve these low detection levels,” says Dr Platt.

In the agglutination assay particles with a particular aspect ratio can be distinguished by two measurements: the measured drop in current as particles traverse the pore (∆ip), which reveals the particle’s size; and the full width at half maximum (FWHM) duration of the resistive pulse, which relates to the particle’s speed and length. Limits of detection down to femtomolar levels were thus able to be demonstrated.

I’m a little unclear as to what qNano actually is. I did find this description on the qNano product page,

qNano uses unique nanopore-based detection to enable the physical properties of a wide range of particle types to be measured with unsurpassed accuracy.

Detailed Multi-Parameter Analysis.

Particle-by-particle measurement through qNano enables detailed determination of:

Nanopore-based detection allows thousands of particles to be measured individually, providing far greater detail and accuracy than light-based techniques.

Applications & Particle Types

A wide range of biological and synthetic particle types, spanning 50 nm – 10 μm, can be measured, across a broad range of research fields.

qNano Package

qNano is sold as a full system ready for use including the base instrument, variable pressure module, fluid cell and a starter kit of nanopores, buffer solution and standard particle sets.

Here’s what the product looks like,

qNano (from the Izon website)

As for what this all might mean to those of us who exist at the macroscale (from the Izon press release),

Izon Science will continue to work with Dr Platt at Loughborough, and with University College Dublin and various customers to develop a series of diagnostic kits that can be used with the qNano to identify and measure biomolecules, viruses, and microvesicles.“This is a real milestone for Izon’s technology as being able to measure biomolecules down to these extremely low levels opens up new bio-analysis options for researchers. 10 femtomolar was achieved, which is the equivalent dilution to 1 gram in 3.3 billion litres, or 1 gram in 1300 Olympic sized swimming pools,” says Hans van der Voorn, Executive Chairman of Izon Science.

For those interested in finding out about nanopores, these were mentioned in my July 18, 2012 posting while aptamers were discussed in my interview (Oct. 25, 2011 posting) with Dr. Maria DeRosa who researches them in her Carleton University laboratory (Ottawa, Canada).

Prediction about New Zealand’s $166M R&D gamble from Izon’s van der Voorn

It’s an interesting problem and one that governments worldwide are attempting to solve in any number of ways. Funding research and development with one eye to stimulating ‘innovation’, i.e. commercialization and economic prosperity in the near future, while keeping  one eye to supporting the grand scientific  discoveries and thinking that will influence future generations but  have no immediate prospects for development is a tricky balancing act.

Having gone through a recent review of Canadian federal government funding in research and development (R&D) where there was an attempt to redress that balance here, I found  the May 28, 2012 article by Hamish Fletcher for the New Zealand Herald provided some insight into how at least one other jurisdiction is responding,

The Government said last week it would dedicate $90 million of operating funding and $76.1 million of capital funding over the next four years to create the Advanced Technology Institute (ATI).

A number of scientists welcomed news of the funding and New Zealand Association of Scientists’ president Shaun Hendy said it would build stronger links between science and industry.

But the chairman of Izon Science, Hans van der Voorn, said the ATI was a bad idea and would not be successful in driving innovation.

Van der Voorn said although Crown research institutes “do good science”, they had no track record when it came to commercialisation. Instead of putting money into the ATI, van der Voorn said the Government should look at giving more funding to research centres at universities.

New Zealand’s Minister of Science and Innovation, Steven Joyce, noted van der Voorn’s criticism was justified and replied the government was carefully designing the new centre so it was being driven by industry rather than science.

I look forward to seeing how this experiment in New Zealand works as Joyce’s and van der Voorn’s comments remind me of one of the recommendations from Canada’s recent R&D review,

Recommendation 4: Transform the institutes of the National Research Council (NRC) into a constellation of large-scale, sectoral collaboration R&D centres involving business, the university sector and the provinces while transferring public policy-related research activity to the appropriate federal agencies. (p. E12 print version, p. 26 PDF, Innovation Canada: A Call to Action)

I’ve not gotten word yet as to whether this recommendation has been adopted or whether it’s being implemented. Some days I think it’s more likely I’ll hear about what’s going on with New Zealand’s initiative before I find out about the Canadian one.

One final note, I have written about Izon Science before notably in my Sept. 26, 2011 posting regarding a race they sponsored to make measurements at the nanoscale. I believe they will be holding the race again in  Sept. 2012 and this time there may be some Canadian participation. For anyone who’s interested in Izon, from their home page,

Izon provides the world’s most comprehensive nanoparticle analysis system in a single instrument.

Virtually all particles including nanoparticles, viruses, bacteria and bioparticles (such as exosomes and liposomes) can be measured and characterised. Particle size, concentration, electrophoretic mobilty and aggregation may all be analysed. Monitoring subtle changes in the characteristics of particle sets allows interactions between particles and particles and biomolecules to be monitored in real time. Explore our technology, learn about our applications and ask how we can take your research to the next level.

A classic public relations ploy and a race only a scientist could love: a race to make measurements

The first Inter-University Nanotechnology Measurement Championships were held in Cambridge, Massachusetts, Sept. 21, 2011. From the Sept. 20, 2011 news item on Nanowerk,

Hans van der Voorn, Executive Chairman of Izon Science [event host] says, “The nanotech champs is a fun combination of sport and science that will pitch the top Universities against each other. The researcher who is the quickest to accurately measure a complex set of nanoparticles will receive a cup and associated bragging rights. This measurement could not have even been done two years ago so the ability to have a race demonstrates the rapid adoption of new technology in science.”

Contestants included:

  • Dr. Jim Felton, from the laboratory of Professors Bruce and Barbara Furie, Harvard University, Beth Israel Deaconess Medical Center. Dr. Felton is using Izon’s instrument for studying the role that blood microparticles may have in the formation of blood clots or “thrombi”. The Furie group is a world leader in hematology research, focused on advancing diagnosis and treatment of bleeding and thrombotic disorders.
  • Iraj Aalaei, a graduate student from the laboratory of Prof. Dhimiter Bello, University of Massachusetts Lowell, Center for High-rate Nanomanufacturing. The group is using Izon’s instruments in nanotoxicology research with interest in the biological significance of exposure, exposure routes, measurement issues and metrics, the relationship between the physical properties of nanoparticles with health outcomes.
  • Dr. Meredith Mintzer, a Postdoctoral Fellow from the laboratory of Prof. Mark Grinstaff, Boston University, Department of Biomedical Engineering. Dr Mintzer is using Izon’s instruments in research into drug delivery systems. The Grinstaff group pursues highly interdisciplinary research in the areas of biomedical engineering and macromolecular chemistry with the goal of elucidating the underlying fundamental chemistry and engineering principles of drug delivery systems.
  • Dr. Steven Biller, a Postdoctoral Associate from the laboratory of Prof. Penny Chisholm, MIT, Department of Civil and Environmental Engineering. Marine biologist Dr. Biller is currently researching marine cyanobaterium Prochlorococcus, the smallest and most abundant photosynthetic organism on the planet. While each Prochlorococcus cell is less than 1µm in diameter, the total oceanic population is responsible for a significant fraction of global oxygen production.

I’ll put you out of your suspense, Dr. Meredith Mintzer won the race. From the Sept. 23, 2011 news item on Nanowerk,

Dr. Mintzer uses Izon’s instruments in her research into drug delivery systems. The Grinstaff group pursues highly interdisciplinary research in the areas of biomedical engineering and macromolecular chemistry with the goal of elucidating the underlying fundamental chemistry and engineering principles of drug delivery systems.

This was a classic public relations (PR) ploy: create a contest to drum up interest in your product or, in this case, the launch of your new US headquarters. From the Sept. 23, 2011 news item,

The Inter-University Nanoparticle Measurement Championships was held at an opening function for Izon Science’s new office and laboratory in Cambridge, MA which will serve as the company’s new US headquarters.

I wish they had followed through on the initial premise that this was a sporting event and had reported on the kinds of details traditionally associated with them. Unfortunately, the Sept. 23 news item doesn’t offer any colour commentary or details about the race, e.g., the contestant’s times, any interesting tidbits about the race itself, etc.

For anyone deeply curious about Izon, here’s what the Sept. 20, 2011 news item has to offer,

Izon Science is the developer of the qNano and qViro instruments with unique size-tunable nanopores. The instruments offer significant improvements in accuracy and precision over previously available techniques and are helping to advance research in a number of fields including drug delivery, hematology, biomedical diagnostics, and vaccine development. Instruments have been sold in 23 countries.