Tag Archives: Harry Brumer

University of British Columbia gets $3.5M in funding for nanoscience and other sciences

One-third to one-half of the researchers getting grants are working on nanotechnology projects. From a March 1, 2016 University of British Columbia (UBC) news release (received via email),

Research into forest renewal, quantum computer nanotechnology, solar power, high-tech manufacturing, forestry products and the Subarctic ocean climate gained a boost today, with the announcement of $3.5 million in funding for six UBC projects from the Natural Sciences and Engineering Research Council of Canada (NSERC).

The funding comes from NSERC’s Strategic Partnership Grants, which support scientific partnerships to strengthen the Canadian economy, society and environment.

Konrad Walus, Associate Professor, Department of Electrical and Computer Engineering

A framework for embedding, simulation and design of computational nanotechnology using a quantum annealing processor [emphasis mine] — $394,500

This project will work with Quantum Silicon Inc. [emphasis mine] to conduct experiments that provide better insight into the potential of quantum computing, and will develop design rules for future designers of the technology.

Alireza Nojeh, Professor, Department of Electrical and Computer Engineering

Thermionic solar energy converter — $510,500

In close collaboration with four Canadian industrial partners, this project will establish a novel approach to solar electricity generation using recent discoveries in nanostructured materials.

With mention of quantum annealing, I would have expected their industrial partner to be D-Wave Systems, a Vancouver-based company which has gotten a lot of attention for its quantum annealing processor (a Dec. 16, 2015 post titled: Google announces research results after testing 1,097-qubit D-Wave 2X™ quantum computers is one of my most recent pieces about the company). The company mentioned, Quantum Silicon, is based in Alberta.

There is one project where I believe at least some of the work is being done at the nanoscale or less (from the March 1, 2016 news release0,

Harry Brumer, Professor, Michael Smith Laboratories at UBC

Biorefining of novel cellulosics from forest fibre resources — $532,812

Working with a Canadian forest products company, this project will use genomic and biochemical methods to develop new technology for wood-fibre modification.

And for the curious, here are the other projects (from the March 1, 2016 news release),

Suzanne Simard, Professor, Department of Forest and Conservation Sciences

Designing successful forest renewal practices for our changing climate — $929,000

This project will investigate novel forest renewal methods, and establish recommendations for best harvesting and regeneration practices under changing climate conditions.

Chadwick Sinclair, Professor, Faculty of Applied Science – Materials Engineering

Through-process modeling for optimized electron beam additive manufacturing — $484,400

Working in collaboration with Canadian electron-beam processor PAVAC Industries Inc. [emphasis mine], this project will develop a through-process model for additive manufacturing that will link machine control to material microstructure and properties.

Philippe Tortell, Professor, Department of Earth, Ocean and Atmospheric Sciences

Quantifying climate-dependent and anthropogenic impacts on ecosystem services in the Subarctic Pacific Ocean; State-of-the-art observational tools to inform policy and management — $707,100

University scientists and Fisheries and Oceans Canada will use field-based observations to generate satellite-based models of ecosystem productivity to examine fish yields and environmental variability.

PAVAC Industries is headquartered in Richmond, BC, Canada,.

Congratulations to the researchers!

Nanocellulose at the American Chemical Society’s 243rd annual meeting

Nanocellulose seems to be one of the major topics at the ACS’s (Americal Chemical Society) 243rd annual meeting themed Chemistry of Life  in San Diego, California, March 25-29, 2012. From the March 25, 2012 news item on Nanowerk,

… almost two dozen reports in the symposium titled, “Cellulose-Based Biomimetic and Biomedical Materials,” that focused on the use of specially processed cellulose in the design and engineering of materials modeled after biological systems. Cellulose consists of long chains of the sugar glucose linked together into a polymer, a natural plastic–like material. Cellulose gives wood its remarkable strength and is the main component of plant stems, leaves and roots. Traditionally, cellulose’s main commercial uses have been in producing paper and textiles –– cotton being a pure form of cellulose. But development of a highly processed form of cellulose, termed nanocellulose, has expanded those applications and sparked intense scientific research. Nanocellulose consists of the fibrils of nanoscale diameters so small that 50,000 would fit across the width of the period at the end of this sentence.

“We are in the middle of a Golden Age, in which a clearer understanding of the forms and functions of cellulose architectures in biological systems is promoting the evolution of advanced materials,” said Harry Brumer, Ph.D., of Michael Smith Laboratories, University of British Columbia, Vancouver. He was a co-organizer of the symposium with J. Vincent Edwards, Ph.D., a research chemist with the Agricultural Research Service, U.S. Department of Agriculture in New Orleans, Louisiana. “This session on cellulose-based biomimetic and biomedical materials is really very timely due to the sustained and growing interest in the use of cellulose, particularly nanoscale cellulose, in biomaterials.”

One of the presenters has a very charming way of describing the nanocellulose product his team is working on (from the news item),

Olli Ikkala, Ph.D., [Aalto University, Finland] described the new buoyant material, engineered to mimic the water strider’s long, thin feet and made from an “aerogel” composed of the tiny nano-fibrils from the cellulose in plants. Aerogels are so light that some of them are denoted as “solid smoke. [emphasis mine]” The nanocellulose aerogels also have remarkable mechanical properties and are flexible.

There were some 20 presentations in this symposium held under the auspices of the ACS annual meeting. Here’s a few of the presentations (some of these folks have been featured on this blog previously), from the news item,

Native cellulose nanofibers: From biomimetic nanocomposites to functionalized gel spun fibers and functional aerogels Olli Ikkala, Professor, PhD, Aalto University, P.O. Box 5100, Espoo, Finland, FIN-02015, Finland , 358-9-470 23154, olli.ikkala@aalto.fi Native cellulose nanofibers and whiskers attract interest even beyond the traditional cellulose community due to their mechanical properties, availability and sustainability. We describe biomimetic nanocomposites with aligned self-assemblies combining nanocellulose with nanoclays, polymers, block copolymer, or graphene, allowing exciting mechanical properties. Functional ductile and even flexible aerogels are presented, combining superhydrophobicity, superoleophobicity, oil-spill absorption, photocatalytics, optically switchable water absorption, sensing, and antimicrobial properties. Finally mechanically excellent fibers are gel-spun and functionalized for electric, magnetic, optical and drug-release properties.

Evaluation of skin tissue repair materials from bacterial cellulose Lina Fu, Miss, Huazhong University of Science & Technology, College of Life Science & Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China , 86-18971560696, runa0325@gmail.com Bacterial cellulose (BC) has been reported as the materials in the tissue engineering fields, such as skin, bone, vascular and cartilage tissue engineering. Exploitation of the skin substitutes and modern wound dressing materials by using BC has attracted much attention. A skin tissue repair materials based on BC have been biosynthesized by Gluconacetobacter xylinus. The nano-composites of BC and chitosan form a cohesive gel structure, and the cell toxicity of the composite is excellent. Unlike other groups, which showed more inflammatory behavior, the inflammatory cells of the BC group were mainly polymorph-nuclear and showed few lymphocytes. The BC skin tissue repair material has an obviously curative effect in promoting the healing of epithelial tissue and reducing inflammation. With its superior mechanical properties, and the excellent biocompatibility, these skin tissue repair materials based on BC have great promise and potential for wound healing and very high clinical value.

….

New materials from nanocrystalline cellulose Mark MacLachlan [mentioned in my Nov. 18, 2010 posting], University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada , 604-822-3070, mmaclach@chem.ubc.ca Nanocrystalline cellulose (NCC) is available from the acid-catalyzed degradation of cellulosic materials. NCC is composed of cylindrical crystallites with diameters of ca. 5-10 nm and large aspect ratios. This form of cellulose has intriguing properties, including its ability to form a chiral nematic structure. By using the chiral nematic organization of NCC as a template, we have been able to create highly porous silica films and carbon films with chiral nematic organization.1,2 These materials are iridescent and their structures mimic the shells of jewel beetles. In this paper, I will describe our recent efforts to use NCC to create new materials with interesting optical properties.

Factors influencing chiral nematic pitch and texture of cellulose nanocrystal films Derek G Gray, McGill University, Department of Chemistry, Pulp and Paper Building, 3420 University Street, Montreal, QC, H3A 2A7, Canada , 1-514-398-6182, derek.gray@mcgill.ca Appropriately stabilized cellulose nanocrystal (NCC) suspensions in water form chiral nematic liquid crystalline phases above some critical concentration. In the absence of added electrolye, the chiral nematic pitch of such suspensions is longer than that of visible light. Films prepared by evaporation from the suspensions also often display the characteristic fingerprint patterns characteristic of long-pitch chiral nematic phases, but the pitch values can be shifted into the visible range by adding small quantities of electrolyte to the evaporating suspension. The factors that control the final pitch have been the subject of some confusion. While still not well understood, it is clear that at high nanocrystal concentrations and in solid films, the pitch is not simply a reversible function of nanocrystal concentration. We examine some of the factors that control the pitch and liquid crystal texture during the drying of chiral nematic NCC films.

….

Bioprinting of 3D porous nanocellulose scaffolds for tissue engineering and organ regeneration Paul Gatenholm, Professor, [mentioned in my March 19, 2012 posting] Wallenberg Wood Science Center, Chalmers, Department of Chemical and Biological Engineering, Kemigarden 4, Goteborg, V. Gotaland, SE41296, Sweden , 46317723407, paul.gatenholm@chalmers.se Nanocellulose is a promising biocompatible hydrogel like nano-biomaterial with potential uses in tissue engineering and regenerative medicine. Biomaterial scaffolds for tissue engineering require precise control of porosity, pore size, and pore interconnectivity. Control of scaffold architecture is crucial to promote cell migration, cell attachment, cell proliferation and cell differentiation. 3D macroporous nanocellulose scaffolds, produced by unique biofabrication process using porogens incorporated in the cultivation step, have shown ability to attract smooth muscle cells, endothelial cells, chondrocytes of various origins, urethral cells and osteoprogenitor cells. We have developed bioprinter which is able to produce 3D porous nanocellulose scaffolds with large size and unique architecture. Surface modifications have been applied to enhance cell adhesion and cell differentiation. In this study we have focused on use of 3D porous Nanocellulose scaffolds for stem cell differentiation into osteogenic and chondral lineages.